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Abstract: The effects of phytopathogenic fungi on fruits and vegetables are a significant global
concern, impacting various sectors including social, economic, environmental, and consumer health.
This issue results in diminished product quality, affecting a high percentage of globally important
fruits. Over the last 20 years, the use of chemical products in the agri-food sector has increased by
30%, leading to environmental problems such as harm to main pollinators, high levels of chemical
residue levels, development of resistance in various phytopathogens, and health issues. As a response,
various organizations worldwide have proposed programs aimed at reducing the concentration of
active compounds in these products. Priority is given to alternative treatments that can mitigate
environmental impact, control phytopathogens, and ensure low residuality and toxicity in fruits and
vegetables. This review article presents the mechanisms of action of three alternative treatments:
chitosan, citral, and hexanal. These treatments have the potential to affect the development of
various pathogenic fungi found in tropical and subtropical fruits. It is important to note that further
studies to verify the effects of these treatments, particularly when used in combination, are needed.
Integrating the mechanisms of action of each treatment and exploring the possibility of generating a
broad-spectrum effect on the development of pathogenic microorganisms in fruits is essential for a
comprehensive understanding and effective management.

Keywords: post harvest; essential oils; chitosan; antifungal activity; GRAS substances; bibliometric
analyses

1. Introduction

Global fruit production during the last five years has generated around 1,882 million
tons of produce, according to data from the Food and Agriculture Organization of the
United Nations (FAO) up until 2020 [1]. The last recorded global fruit production world-
wide amounted to 909.6 million tons [2], contributing to a market size which is valued at
USD 551, 100 billion, as reported in 2021 [3].

Management during the post-harvest stage has two main objectives. The first is
to maintain the physical integrity and quality of the products. The second focuses on
preserving the products for long periods, preventing their nutritional and commercial
value from decreasing [4].

In this sense, the United Nations General Assembly established the 2030 Agenda in
2015, which proposed 17 objectives involving the economic, social, and environmental
sectors [5]. According to the proposed objectives, it is important to decrease food losses and
waste. Additionally, there should be a reduction in the application of chemical products
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in the field as well as efforts to mitigate climate change and promote the consumption of
residue-free foods [5–7].

However, in the agri-food sector, post-harvest losses range between 40 and 50% of the
total production. These losses occur due to limitations in fruit handling methods during
classification, packing, storage, transportation, and marketing. Therefore, one of the main
agents of damage is the presence of microorganisms, which significantly impact a product’s
quality [8,9]. Additionally, the inappropriate use of pesticides has increased by 30% in the
last 20 years [10].

Naturally, infections by phytopathogenic fungi cause problems in one or more types of
plants and fruits [11,12]. The mechanisms of fungal infection are generated by the secretion
of enzymes that aid in the adhesion to the surface of the fruit, causing deterioration in its
physical characteristics and commercial quality [13]—hence the importance of understand-
ing the survival modes, which are influenced by factors such as temperature conditions,
humidity, and, in most cases, the presence of water in the environment [14].

The presence of these pathogens decreases crop yield and quality and causes huge
losses in agricultural production [12,15]. In this sense, changes in the chemical composition
and nutritional attributes of fruits, caused by fungi infection, induce the generation of
acidity, the breakdown of sugar molecules, and increased activity of microbial metabo-
lites [16,17]. In addition, the prevalence rate of these pathogens in food is estimated to
be between 60 and 80%. These pathogens primarily belong to the genera Aspergillus,
Alternaria, Fusarium, and Penicillium [18].

The control of phytopathogenic fungi through the use of chemical treatments appears
to have fungistatic and fungicidal effects; however, in some research works, poor applica-
tion practices of these products induce resistance mechanisms, residual chemical particles
in fruits, and effects on consumer health [19–21].

Therefore, the adoption of novel technologies, such as “Generally Recognized as Safe”
(GRAS) substances, has taken an innovative turn. Presently, there are non-polluting inte-
grated control strategies for post-harvest diseases, primarily relying on natural compounds
like essential oils and organic compounds such as aldehydes. Additionally, certain biopoly-
mers with harmless and non-toxic attributes, such as chitosan, offer a viable alternative
for the food and agricultural industry due to their low residuality. They also contribute to
enhancing the defense mechanisms against pathogens during the post-harvest stage [22,23].

In this review, we analyze the impact of alternative treatments, such as chitosan
and essential oil extracts, main citral, and hexanal, on post-harvest applications using a
bibliometric analysis. We discuss their main properties, effects of their application on fruits,
and their role in the agri-food sector and emerging technologies.

2. Bibliometric Analysis of Alternative Post-Harvest Treatments

In recent years, growing scientific research has taken various directions of interest;
for that reason, scientometrics is a tool based on quantitative methods and analyses based
on scientific production [24]. The contribution of bibliometrics is to provide an analysis
of objectives and new evaluations with greater rigor, as well as an improvement in the
scientific activities of universities and research centers, which go hand in hand with the
improvement in technological processes [25,26].

This section contains specifics on the recommended methodology used for this investi-
gation. The primary steps of the proposed method are data search, collection, integration,
and cleansing.

2.1. Bibliometric Methodology in Data Collection

In this paper, we have used Science Direct data collection to quantify the bibliographic
material in related studies and set up the following search profile: Terms = “alternative
treatments” AND “postharvest” AND “fruits” AND “pathogens”. The search was restricted
to materials released between 2010 and 2023 and was carried out in late March 2024. The
results of the search were downloaded and saved as an RIS file.
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Once the documents had been obtained, we set up the bibliometric analysis, selected
seven as the minimal number of occurrences of a keyword, and visualized co-occurrences
between keywords with the VOS-viewer software®1.6.19 version.

2.2. Findings from the Bibliometric Study of Contemporary Alternative Post-Harvest Treatments

According to a search of Science Direct data, we obtained a total of 3,133 results. We
examined the different types of documents, which are shown in Table 1. The statistics
shown indicate that 52.89% (n = 1657) of the documents were concentrated in one category
and had been published as research articles. Book chapters account for 26.27% of the
document types, review articles account for 15.29%, encyclopedias account for 3.29%, and
other document types, including editorials, correspondence, short communication, etc.,
account for 2.27%.

Table 1. Publications found by document type from 2010 to 2023.

Type of Publication Total of Publications Percentage of Total Publication (%)

Research articles 1657 52.89%
Book chapters 823 26.27%
Review articles 479 15.29%
Encyclopedias 103 3.29%

Others 71 2.27%
Total 3133 100%

Similarly, the subject area that received the most attention is “Agriculture and Biolog-
ical Sciences” (n = 2603), indicating a greater propensity for topics related to agriculture
as well as knowledge of interactions and effects of treatment–fruit–pathogen in the field
of “Biochemistry, Genetics and Molecular Biology” (n = 581). “Chemical Engineering”
(n = 393), “Immunology and Microbiology” (n = 313), “Environmental Sciences” (n = 113),
and “Material Sciences” (n = 99) were the subjects that carried on the trend of diverse
research and sparked more interest.

To improve this study´s interpretation of co-citation analysis (in the past) or bibli-
ographic coupling (in the present), as well as forecast the field´s future development,
keyword co-occurrence analysis may be utilized to forecast future research in the area [27].
Less-relevant terms were also manually eliminated to produce more accurate results, and
a threshold level of seven keyword occurrences was established. As seen in Figure 1, the
bibliometric map has been divided into eight clusters, using the co-occurrence frequency of
342 keywords out of a total of 7315 retrieved terms, with 4256 links, and a link strength
of 6048 (indicating the number of cited references which have two elements in common).
Each cluster is represented by a different color; the largest circles represent topics with
the greatest co-occurrence in the various articles, while, the smallest circles, besides the
most distant topics, also represent those with the least co-occurrence in searches related to
the aforementioned criteria. Additionally, this presents an overlay visualization covering
research works spanning 13 years (2010–2023), as shown in Figure 2, with the color scale in-
dicating the presence of research related to each year, with lighter colors being the potential
fields of research.

In addition, an analysis was conducted to explore the relationship between two post-
harvest technologies, chitosan and essential oils. This is shown in Figure 3, detailing
the co-occurrence results over the period of research spanning from 2010 to 2023, with
a total of 2497 results for the analysis of “chitosan”, “post-harvest”, and “treatments”,
classified into six clusters (see Figure 3A). Notably, cluster one (red) exhibits the highest co-
occurrence, with terms such as “induced resistance” related to words like “gene expression”,
“oligochitosan”, “methyl jasmonate”, “defense response”, “reactive oxygen species”, and
“transcriptome”. This suggests that the use of chitosan technology may interfere with the
natural defense mechanisms of fruits and their interaction with various pathogens. This
finding is linked to cluster three (blue), focusing on “fruit quality”, and cluster five (purple),
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emphasizing “shelf life”. Consequently, from the properties and mechanisms of chitosan,
it can be inferred that it contributes to extending the shelf life of fruits during the post-
harvest period. Furthermore, cluster two (green), highlights the relationship with terms
such as “encapsulation”, “nanotechnology”, “nanoparticles”, “antifungal activity”, and
“biological control”, indicating the adaptation of new encapsulation technologies and their
combination with treatments derived from essential oils. This relationship also extends
to cluster four (light green), emphasizing “edible coatings”, and cluster six (light blue),
focusing on “antimicrobial” properties.

On the other hand, the essential oils were evaluated under the same analysis, yielding
2798 results, classified into nine clusters (see Figure 3B). Cluster two (green) exhibits the
highest co-occurrence, primarily with the term “antifungal activity”, which further leads
to related terms such as “post-harvest decay”, “mycotoxins”, “antioxidant enzymes”, and
“fungi”. Consequently, research is this area focuses on studying the efficacy of essential oil
treatments against various phytopathogens affecting the post-harvest conditions of fruits
and vegetables. From the keyword “post-harvest” (cluster four, light green) derived terms
such as “quality”, “antimicrobial”, “storage”, “citral”, “eugenol”, and “fungicide”, indicat-
ing investigations focusing on the utilization of specific essential oil compounds during
the post-harvest period and storage of fruits due to their antimicrobial activity. Lastly,
cluster six (light blue), originating from terms like “encapsulation”, “nanotechnology”,
“post-harvest quality”, “agriculture”, and “biopolymers”, highlights the emphasis on the
use of chitosan treatments and essential oils and their integration with nanotechnological
tools in modern agriculture.
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According to reports from emerging academic markets, it is estimated that, by the
year 2027, alternative treatments could achieve a market size close to USD 28.93 billion.
Therefore, the diversity of academic research serves as the spearhead in the quest for new
trends and strategies within the industrial sector [28,29].
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3. Chitosan, the Biopolymer with Multiple Properties

A cationic polymer derived from chitin, chitosan [30], has garnered interest considering
its chemical compatibility with other organic reagents and its intriguing mechanisms
related to antimicrobial activity and enzyme defense production, particularly regarding
post-harvest quality in fruits [31,32].

Obtained primarily from natural sources of chitin such as marine crustacean shells,
insects, and certain fungi of the Zygomycetes class [33], chitosan undergoes a thermos-
alkaline deacetylation process. This process wields a polymer with a high degree of reactiv-
ity, due to the presence of amino and hydroxyl groups within its chemical structure [34–36].
These functional groups, which are the primary hydroxyl group (OH) at position C-6, the
secondary hydroxyl group (HO) at position C-3, and the amino group (NH2) at position
C-2, contribute significantly to chitosan´s biological properties. Modifications are often
made at the C-2 and C-6 positions to enhance its efficacy as a treatment and its ability to
bind with other compounds (see Figure 4) [30,37].
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In addition to its chemical characteristics, several parameters influence the physical
properties of chitosan. These include molecular weight, the degree of N-acetylation, solvent
evaporation, and the mechanism of regeneration of free amino groups [38]. Furthermore,
factors such as the method of application, the food matrix, and the targeted phytopathogen
play crucial roles in determining chitosan´s effectiveness [39,40].

Effect of Chitosan against Phytopathogens in Fruits

Recently, there have been reports on chitosan’s properties during fruit post-harvest
storage and its role in promoting plant growth [30]. Consequently, various hypotheses have
emerged regarding its mode of action, ranging from its structural effects on pathogenic
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cells, resulting in the release of intracellular components [41,42], to its ability to absorb
essential nutrients from these cells, leading to a decrease in mRNA and protein synthesis
and, ultimately, the inhibition of pathogen development [43,44].

The effectiveness of chitosan as a post-harvest treatment has been attributed to
three mechanisms of action: (i) the formation of a physical barrier between plant tissue,
pathogens, and environmental microorganisms, affecting gas interactions both internally
and externally (see Figure 5A) [33,39,45]; (ii) the reinforcement of plant tissues through
the induction of defense enzymes, the stimulation of lignin deposition, and the increased
production of antimicrobial phenolic compounds (see Figure 5B) [40,42,46]; and (iii) an-
timicrobial activity, which exhibits fungistatic or fungicidal effects by permeabilizing and
damaging the cell wall and membrane of fungi (see Figure 5C) [30,33,34,36,47]. More-
over, this antimicrobial activity is associated with chelating properties, whereby chitosan
captures essential nutrients and metals such as zinc (Zn), copper (Cu), cobalt (Co), man-
ganese (Mn), nickel (Ni), and cadmium (Cd). Once chelated, the positive charges present in
chitosan´s amino group are reinforced, enhancing its ability to interact with the surface
components of microorganisms (see Figure 5C) [34].
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Currently, chitosan is part of a variety of treatments that, through its functionalization,
can incorporate various organic and inorganic materials within the polymer matrix [48–51],
improving biofilm and antimicrobial properties using commercial products at low concen-
trations [39,52].

An analysis of the Kyoto Encyclopedia of Genes and Genomes [53,54] suggests that chi-
tosan´s potential antimicrobial mechanism involves interactions with the genes responsible
for downregulating ribosome formation. Conversely, the genes associated with glyc-
erophospholipid and ether lipid metabolism, as well as steroid biosynthesis, are upregu-
lated. These genes play a role in maintaining cell membrane stability and could hinder fun-
gal development [53–57]. Furthermore, chitosan interacts with a plant´s immune system,
triggering a cascade of biochemical reactions and stimulating the activation of genes related
to the activity of chitinase, peroxidase, catalase, polyphenol oxidase, and B-1,3-glucanase,
while also increasing the concentration of flavonoids and lignin [57–59]. Moreover, the
versatility of this polymer with other technologies helps enhance the formation of a rigid
network derived from these properties [30,60,61].

4. Aromatic Compounds and Their Effects

Recently, the use of eco-friendly technologies in the post-harvest storage of fruits has
emerged to reduce reliance on chemical methods, such as synthetic fungicides. Alternative
approaches, such as plant extracts, have demonstrated diverse mechanisms for controlling
fungal growth by intervening in the host–pathogen interaction [62–64].

Natural extracts can be sourced from various plant parts, including leaves, roots, bark,
flowers, or fruits, and are considered compounds of high biological value. These extracts
are defined as mixtures obtained from the secondary metabolites of plants, composed
primarily of hydrocarbons from polymethylene series, falling under the group of terpenes
(C5H8)n. They also contain aromatic compounds such as alcohols, esters, ethers, aldehydes,
and phenolics, which are characterized by their oxygenation [65,66].

These properties have been reported to exhibit antimicrobial effects against pathogenic
fungi such as Fusarium spp., Alternaria spp., Aspergillus spp., Penicillium spp., and Rhizopus
spp. [67,68].

4.1. Citral’s Antifungal Properties and Mechanisms

Citral is a natural isoprenoid, which is composed of two isomers, geranial and
neral [69], which are found in essential oil extracts of species such as Cymbopogon citratus,
Melissa officinalis, and Verbena officinalis, among others [70].

This compound is considered one of the potential alternative treatments in the agricul-
tural industry due to various mechanisms attributed to its bactericidal, insecticidal, and
antifungal activity [71]. Its mechanism of action focuses on inducing changes in the perme-
ability of the cell membrane, causing alterations in the basic functions of microorganisms
such as Gram-positive and Gram-negative bacteria, as well as fungal pathogens during the
post-harvest stage [72,73].

One of the main effects of citral on the development of phytopathogenic fungi is the
dehydration and distortion of hyphae at a superficial level, along with the collapse of
spores. Additionally, due to increased cellular permeabilization, citral induces the leakage
of molecular substances and lesions in the cellular metabolism, further affecting pathogen
development [69,70,74]. The interaction of citral with ergosterol synthesis, the main sterol
present in yeasts and fungi, leads to the inhibition of pathogen growth and cell death. This
occurs through distillation at C-14 of lanosterol, the biosynthetic precursor of ergosterol,
as well as the possible blockage of scalene epoxidase, affecting the permeability of the
membrane [75,76] (see Figure 6).
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Figure 6. Proposed mechanism of action of citral in fungal cells: (A) deformation and dehydration of
hyphae; (B) effects on cellular metabolism; and (C) interaction of citral with the ergosterol molecules
present in the cell membrane of pathogenic fungi.

Several investigations have tested the efficiency of citral against in vitro pathogens
such as Penicillium sp. [69], Geotrichum citri-auranti [71], P. italicum [72], and Botrytis cinerea
in Solanum lycopersicum [70]. Moreover, its efficacy has been evaluated in kiwi fruits [77],
tomatoes [78], and citrus fruits [79] (see Table 2). In addition, reports indicate that combining
citral with chitosan generates a synergistic effect, enhancing both mechanisms of action
against various pathogens [70].

Table 2. Citral and its principal mechanisms of action in in vitro applications and in vivo assays.

Assay Concentration Effects References

In vitro 0–200 µg/mL

Magnaporthe grisea hyphae exposure to 50 ug/mL showed
ultrastructural changes in the morphology, and the application
of high concentrations led to severe cellular degeneration; the

cell walls appeared to be degraded and displayed cellular
disorganization. This proposes that citral ruptures the cell wall

and penetrates the cell membrane, as has been seen through
scanning and transmission electron microscopy.

[80]

In vitro 0.50–1.00 µL/mL

The permeability of the membrane increased in correlation with
the concentration of citral; in addition, the application induced
a decrease in the content of lipids and ergosterol in Penicillium

italicum fungal cells.

[69]

In vitro 2.0–4.0 µL/mL

Citral application reduces enzymes’ activity of citrate synthase,
isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, and
succionadrogenase; these decreases in mitochondrial enzymes
mark a deficiency in the electron transport chain components, a
decrease in ATP synthesis and the ability to generate NADPH,

and an increase in the oxidative stress in the growth of
Penicillium digitatum.

[81]

In vitro 0–100 µg/mL

Antifungal activity is related to the genes entailed in the chitin
and uridine diphosphate synthesis pathways in the amino

sugar and nucleotide metabolic pathways of Magnaporthe oryzae,
causing a reduction in glucan in the cell wall.

[82]
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Table 2. Cont.

Assay Concentration Effects References

In vivo 0.6 µL/mL

The effect of citral treatment in kiwi fruits causes the
antioxidant enzyme system, which includes catalase,

peroxidase, and superoxide dismutase, to become active,
besides physicochemical parameters which decrease weight

loss, softening, and fruit respiration. On the other hand,
post-harvest quality is maintained by preventing the

breakdown of ascorbic acid content, total flavonoid content,
and total phenolic content.

[83]

In vitro 0–80 mg/mL

The properties of citral (α-β-unsaturated aldehyde) in the
carbonyl group allow β-carbon to become positively polarized
and easily reactant to nucleophiles, basing its ability to act as an
alkylating agent, capable of influencing biological functions and
possibly being harmful by covalently binding to nucleophilic

groups within cells.

[73]

In vitro 128–256 µg/mL

Citral treatment showed an affinity for ergosterol, inhibited
ergosterol biosynthesis, and was related to cell wall alterations,
interfering in the cellular metabolism and the loss of membrane

integrity, indicating a strong antifungal activity in
Cladosporium sphaerospermum.

[76]

In vivo 0–200 µL/mL

Citral applications in citrus fruits increase the activities of
phenylalanine ammonia-lyase, peroxidase, and polyphenol

oxidase; moreover, metabolomic analyses induce the
accumulation of plant hormones as methyl jasmonate, abscisic

acid, and phenylpropanoid metabolites. On the other hand,
RNA-seq revealed the expression of multiple genes related to

jasmonic acid profiles and phenylpropanoid biosynthesis.

[84]

Despite its increasing interest as a treatment, its use is limited due to chemical instabil-
ity, high hydrophobicity, volatility, and susceptibility to oxidative degradation, which may
alter its functions [73].

4.2. Hexanal’s Antifungal Properties and Mechanisms

Hexanal, an organic compound extracted from plants, is produced during lipoperoxi-
dation mediated by lipoxygenase and hydroperoxide lyases. It has been linked to the role
of stress-related responses in plants, primarily caused by cellular wounds, leading to the
production of toxic agents against various pathogens [85,86]. Belonging to the GRAS group
of products, hexanal has been tested in both the pre- and post-harvest stages of fruits [87]
(see Table 3). Currently, it is associated with inhibiting the activity of phospholipase D
(PLD) [88], an enzyme linked to fruit ripening processes. Its effects include alterations
in respiration, color, and firmness, as well as interference with ethylene synthesis. Addi-
tionally, hexanal induces mechanisms against pathogenic microorganisms such as Botrytis
cinerea, Monilina fructicola in berries and tomatoes [89], and Colletotrichum gloeosporioides
and Lasiodiplodia theobromae in bananas [90–95].

Considered a natural metabolizable fungicide, hexanal intervenes in lipoxygenase
activity, resulting in toxicity for pathogen colonization, reduction in fungal activity, and
prevention of new developments, depending on factors such as concentration and exposure
time [85,96].

Li et al. [96] demonstrated hexanal’s antifungal mechanism against various microor-
ganisms. Their metabolic analysis revealed effects on the tricarboxylic acid (TCA) cycle due
to reactive oxygen species (ROS) accumulation, alterations in fatty acids and lipid mem-
branes biosynthesis and composition, mitochondrial activity, increased oxidative stress,
and intracellular compound leakage (see Figure 7).
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Figure 7. Proposed mechanism of action of hexanal against pathogenic microorganism: (A) effect on
membrane cell and lipophilic enzymes’ activity; and (B) changes in mitochondrial activity and the
TCA cycle.

These activities are integral to fruit quality deterioration during the post-harvest stage,
involving elevated ethylene levels. PLD and other lipophilic enzymes are responsible for
lipid membrane hydrolysis [86].

Table 3. Hexanal’s applications pre and post harvest and its principal mechanisms.

Application Concentration Effects References

Pre- and post-harvest 2–3%

Pre-harvest spray application in banana var. Grand
Nain improves fruit retention by 12–18 days compared

with the control. Post-harvest application decreases
peroxidase activity and protein synthesis in the

abscission zone, delayed the climacteric peak, and
decreased the activity of the enzymes that convert

stored carbs to soluble sugars.

[97]
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Table 3. Cont.

Application Concentration Effects References

Pre-harvest 800–2000 µM

Hexanal applications to 1600 µM 30 and 15 days before
harvesting reduce significantly the incidence of

pathogens, pectin methyl-esterase activity, and the
respiration rate and delay the activity of

phospholipase-D of mango fruits, exhibiting an increase
in firmness, total soluble solids, and acidity and
acceptable palatability during 28 days at 12 ◦C

in storage.

[98]

Post-harvest 600–1200 ppm

Vapor application at 800 ppm reduces by 75–80%
pathogen incidence; on the other hand, it increases

peroxidase, polyphenol oxidase, phenylalanine
ammonia-lyase, and glucanase activity and

phospholipase-D inhibition of the main enzymes in the
hydrolysis of phospholipids, thereby increasing the

shelf life of fruits and contributing to the
phenylpropanoid pathway´s induction of resistance in
banana fruits against Colletotrichum gloeosporioides and

Lasiodiplodia theobromae.

[92]

Post-harvest 2.24–2.52 mg/mL

Hexanal concentration showed an inhibitory effect on
the growth of Escherichia coli. The antimicrobial activity

blocking the activity of superoxide dismutase and
phospholipase-D inhibition and, combined with heat

shock, provoked the overexpression of genes related to
fimbria, curli, and biofilm regulation, suggesting that

bacteria are induced to stress and are unable to induce
biofilm formation in these conditions.

[99]

Pre-harvest 0.02%

An application in apples evidenced that fruit retention
and firmness improved, without showing an effect on

parameters such as sugar contents and weight. Enzymes
that break down the cell wall were less active after being

sprayed with hexanal, such as polygalacturonase,
glucanase, and gene expression, such expansins. In

addition, the authors suggest that hexanal is involved in
ethylene biosynthesis, decreasing the expression of four

genes related to commercial maturity.

[94]

Post-harvest 0.15, 0.20 y 0.25%

Suppression of cell wall degrading enzymes activity and
maintenance of parameters such as firmness, total

soluble solids’ content, carotenoids, and antioxidant
activity on jujube fruits “Umran”. The antioxidant
enzymes activity, such superoxide dismutase and

peroxidase, led to a positively active increase in the
commercial life of the fruits up to 21 days in

cold storage.

[100]

5. The Ability of Aldehydes and Chitosan to Improve Their Post-Harvest Mechanisms

Considering that the polymeric matrix may serve as a carrier for a wide range of
additives, the use of edible coatings for disease management has grown in favor in recent
years, and the application of combined treatments has significantly reduced the presence of
phytopathogenic microorganisms in many studies [55,101–103].

One of the reactions that has been extensively studied is the Schiff base interaction,
which involves the union of two organic compounds derived from a primary amine and an
aldehyde or ketone. These interactions result in a double bond at C=N and also act as Lewis
bases, expanding their applications in various environments [103]. This reaction facilitates
the insertion of the functional groups of the chitosan used as a polymer matrix, enhancing its
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properties as an antimicrobial treatment when combined with other treatments possessing
specific structural characteristics, such as citral and hexanal [104].

Several investigations have tested treatments made from biphasic elements, which,
when mixed or combined, enhance their antimicrobial properties, adhesiveness, biodegrad-
ability, and even bioactive potential. These treatments induce physiological changes in fruit
to prolong their shelf life during the post-harvest stage [39,105,106].

The pH of the aqueous medium and the aldehyde chemical structure are two essen-
tial elements for a stable interaction between chitosan and aldehydes. Using the micro-
atmosphere method, combined antifungal effectiveness can be assessed, such as with
citral and cinnamaldehyde, which improve polymer cross-linking and prevent Penicillium
expansum and Botrytis cinerea from growing [55,107,108].

Additionally, it has been reported that the polymer matrix, in conjunction with an
aldehyde like citral, exhibits a broad spectrum of antifungal activity due to its potential
to form charge-transfer complexes with electron donors and its interaction with the SH-
groups [109].

6. Chitin Derivatives and Commercial Natural Compounds: Their Integration into
Post-Harvest Management and Food Sovereignty

In recent years, the focus of technology and research in the agri-food sector has
shifted towards products that allow an increase in crop yields, as well as improvements
in quality during the pre- and post-harvest stages, utilizing natural, biodegradable, and
environmentally benign active substances which do not negatively impact the environment,
as established by the United Nations General Assembly in its 2030 Agenda [5,110].

An alternative method that has shown very promising results in its applications,
enhancing the development and quality of food matrices by increasing the activity of
certain compounds and their response to stimuli such as biotic and abiotic stress, involves
products extracted from natural materials [111].

In the commercial sector, biopolymers such as chitosan have gained traction in agricul-
ture, primarily functioning as bio-stimulants in plant development and protection, as well
as edible biofilm for fruits during their post-harvest stage, due to their physicochemical
and biological properties [60,112].

In the alternative-technologies market, companies such as Lallemand Oenology®,
Cultivers eco®, Summit Agro®, and Biorend® are the main suppliers of chitosan as a
treatment for improving the development of plants/fruits and controlling diseases caused
by phytopathogens. Chitosan is offered at concentrations of 2.5 and 3 g/L and is available
in presentations ready for dilution in water and subsequent application [113].

On the other hand, aldehydes such as citral and hexanal are widely used in products
for perfumery and cosmetics and as flavorings for some foods. In addition, they play an im-
portant role as masking agents in organic synthesis preparations such as vitamin A, ionone,
and p-cymene [114,115]. In some experimental stages, they have demonstrated effects on
phytopathogen control, increasing natural defense mechanisms as well as improving the
physicochemical characteristics of some fruits during their post-harvest stage. However,
there is still no commercial product whose active ingredient is citral or hexanal [83,116,117].

It is noteworthy that agroecology, which has food sovereignty and security as its
primary pillars, is one of the primary societal commitments focused on producing food
free of pests, diseases, and pesticides [118]. Its primary objective is to modify the agri-food
system to contribute to the well-being of the population [119], taking into account concepts
such as the right of each individual to participate in food production and preservation, as
well as the cultural and productive diversity of each community, using food security as the
main mean [120].

For this reason, the application of this type of technology, especially in post-harvest
stages, can pave the way towards the revaluation of knowledge and techniques that can be
innovated to promote multidisciplinary growth. This includes the promotion of programs
and projects that are relevant to sustainable production, addressing agri-food problems and
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encompassing the set of sectors associated with food production, distribution, marketing,
and consumption [121,122].

7. “Omics” Sciences and Their Participation in the Knowledge of New Defense
Mechanisms and Their Interactions

In natural and storage environments, fruits are exposed to interactions with pathogens
with the potential for infection, and various symptoms depend mainly on the host [123].
Infection mechanisms by phytopathogens such as fungi can occur in any part of the plant
and are most evident in the post-harvest stage of the fruit. However, the presence of these
microorganisms causes damage that is generally associated with quality, such as stains and
rot, leading to economic loss and potential hazards if consumed [124–126].

In this context, a complex series of mechanisms is initiated once this interaction
between fruit and pathogen occurs. Therefore, recent studies have offered essential infor-
mation to understand and implement new strategies in disease control during both pre-
and post-harvest stages and have gained recognition. Tools such as omics sciences can
contribute significantly to the exploration of new knowledge regarding both compatible
and non-compatible interactions [127–129].

Recent research on responses in the pathogen–host interaction has been expanding,
leading to advancements in the development of products and treatments. This progress
is based on various approaches, including diagnostics, disease control products, and the
generation of genetically modified organisms [130–132]. However, the most significant
advancements are associated with omics sciences. Through genomic, transcriptomic, pro-
teomic, and metabolomic studies [133,134], coupled with activities involving physiological,
biochemical, and molecular mechanisms, these sciences allow for the expression and inter-
pretation of genes, as well as the regulation, translation, and metabolic pathways present
in plant crops [135].

The applications and new horizons identified with the implementation of omics
technologies have improvements in the quality of fruits as one of their main perspectives in
the immediate future. Parameters such as firmness, senescence, lignin accumulation, and
the activity of secondary metabolites such as phenolic compounds have also demonstrated
effects against the development of pathogens [136], allowing us to understand and identify
cellular responses to various products, pests, and diseases. These technologies serve as a
guide to the possible scenarios occurring in the biological system being evaluated [134,137].

“Omics” studies integrate information about organic molecules, cells, tissues, and
metabolic pathways that respond to various exogenous and endogenous factors. There-
fore, other disciplines are linked to different applications of biological sciences, such as
epigenomics, lipidomics, nutrigenomics, pharmacogenomics, and toxicogenomics. These
disciplines collaborate in the search for more specific answers, aiming to enhance the
understanding of specific mechanisms of action of the fruits and future treatments [131].

Chitosan is one of the most studied biopolymers in the control of diseases and post-
harvest damage in fruits [138,139]. Due to its different mechanisms of action, in tran-
scriptomic analyses and metabolomics, chitosan applications significantly increase the
expression of genes and metabolic pathways that interfere with defense systems. As a
result, cellular and metabolic processes, as well as the response to biotic and abiotic stimuli,
biogenesis, and translation signals, generate effects on the development of phytopathogens
in fruits [132,140].

Metabolomic analyses have demonstrated the effect of hexanal application on metabo-
lites related to the TCA cycle and ABC transport systems. This affects membrane synthesis
in the pathogenic cells of filamentous fungi and causes an increase in oxidative stress in the
mycelium of various fungal species [96,141,142].

8. Perspectives and Conclusions

To prevent diseases brought by pathogens in fruits and vegetables, this review paper
presents three distinct treatments with GRAS substances. These treatments may have
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a better effect when combined, as they could significantly enhance their antimicrobial
properties while also improving post-harvest quality. Chitosan, being a stable polymeric
matrix, can be combined with natural extracts to create a broad-spectrum edible coating
with good mechanical resistance, provided that an appropriate formulation is achieved
based on the results already reported for each component. In some cases, combinations of
these treatments have already been established, utilizing emerging technology methods to
reduce the environmental impact.

Furthermore, the impact of unexplored fields for alternative treatments and the ad-
vancements in research using omics technologies open the door to new knowledge in
pathogen–host interactions and the identification of new mechanisms or pathways in-
volved in the metabolic or genetic response of fruit to prevent damage and diseases.
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