
 
 

 
 

 
AgriEngineering 2024, 6, 995–1008. https://doi.org/10.3390/agriengineering6020057 www.mdpi.com/journal/agriengineering 

Article 

Prediction of Noise Levels According to Some Exploitation  
Parameters of an Agricultural Tractor: A Machine  
Learning Approach 
Željko Barač, Dorijan Radočaj *, Ivan Plaščak, Mladen Jurišić and Monika Marković 

Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 
31000 Osijek, Croatia; zbarac@fazos.hr (Ž.B.); iplascak@fazos.hr (I.P.); mjurisic@fazos.hr (M.J.);  
monika.markovic@fazos.hr (M.M.) 
* Correspondence: dradocaj@fazos.hr; Tel.: +385-31-554-965 

Abstract: The paper presents research on measuring and the possibility of prediction of noise levels 
on the left and right sides of the operator within the cabin of an agricultural tractor when moving 
across various agrotechnical surfaces, considering movement velocity and tire pressures while em-
ploying machine learning techniques. Noise level measurements were conducted on a LANDINI 
POWERFARM 100 type tractor, and aligned with standards (HRN ISO 5008, HRN ISO 6396 and 
HRN ISO 5131). The obtained noise values were divided into two data sets (left and right set) and 
processed using multiple linear regression (mlr) and three machine learning methods (gradient 
boosting machine (gbm); support vector machine using radial basis function kernel (svmRadial); 
monotone multi-layer perceptron neural network (monmlp)). The most accurate method, consider-
ing surfaces, from the left side data set—(R2 0.515–0.955); (RMSE 0.302–0.704); (MAE 0.225–0.488)—
and the right side—(R2 0.555–0.955); (RMSE 0.180–0.969); (MAE 0.139–0.644)—was monmlp pre-
dominantly, and to a lesser extent svmRadial. On analyzing the total data sets from the left and 
right sides regarding surfaces, gbm emerged as the most accurate method. The application of ma-
chine learning methods demonstrated data accuracy, yet in future research, measurements on cer-
tain surfaces may need to be repeated multiple times potentially to improve accuracy further. 

Keywords: ergonomy; agrotechnical surfaces; velocity; tire pressure; decision trees; support vector 
machine; artificial neural networks; 10-fold cross-validation 
 

1. Introduction 
Contemporary agricultural technology, through its development, not only leads to 

increased efficiency but also to the improvement of ergonomically designed operator 
workspaces. There are numerous factors influencing the operator workspace, and one of 
the most researched is noise. Noise is any unwanted sound that can have a negative im-
pact on the operator’s health—Chandrappa et al. and Liu et al. [1,2]. An occupational ill-
ness that can result from noise exposure is hearing loss. Hearing loss can be of twofold: 
hearing loss caused by acute acoustic trauma and/or hidden hearing loss. Furthermore, 
hearing impairments are divided into two types: mechanical hearing impairments and 
metabolic hearing impairments. Considering that operators are often unaware of the ex-
tent of their exposure to noise in their environment and how they can protect themselves 
from potential hearing damage, it is necessary to raise awareness of the negative effects 
of noise—Ding et al. [3]. In their research—Araújo Alves et al. [4] (where they prepared a 
review of all works from 2016 to 2019 on the topic of the impact of low-frequency noise 
on operator health)—the authors noted that noise has a negative impact on the operator’s 
health in terms of sleep disorders, insomnia, irritability, discomfort, agitation, occurrence 
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of hearing loss, and cardiovascular disease. They state that the indirect negative conse-
quences of noise may include increased use of sleeping pills and antidepressants. 

Noise in and around the tractor cabin is a result of the tractor engine operation, trans-
mission component operation, exhaust gas passage through the exhaust pipe, air passage 
through the air cleaner, operation of the attached machinery or implements, and the con-
dition of the surface over which the tractor moves, whereby transmitting vibrations to all 
tractor components which could ultimately lead to the generation of a certain noise level. 
The negative impact of noise on the operator manifests in reduced concentration and in-
creased irritability. Breathing disorders may occur, errors during work are more frequent, 
and fatigue sets in more quickly, thereby affecting the performance or productivity of the 
equipment itself—Sabanci; Brkić et al.; EBSCOhost and Durczak et al. [5–8]. 

An extensive study, Scarlett et al. [9], investigates ergonomic factors when operating 
tractors without attached implements. Different types of surfaces and different tractor 
speeds significantly influence them and consequently affect the tractor operator. With var-
ious surfaces and movement speeds, the authors simulated different agrotechnical opera-
tions—plowing, cultivation, spraying, transport—and they carried them out according to 
the HRN ISO 5008 standard [10]. 

In addition to the abovementioned factors (different surfaces, speed of movement 
and air pressure in the tires) that are taken into account in this research, there are, accord-
ing to Sirin et al., Xiong and Flor et al. [11–13], many other factors that influence the pro-
duced noise level. Of more importance are the following: types of tires, stiffness of the 
surface, type of engine, thickness of the asphalt surface, type of exhaust system, and sev-
eral climatic factors. In this research, the latter were not considered because they were 
constant throughout. 

The unit dB is used to measure noise, but since the human ear does not respond 
equally to all noise frequencies, the A weighted frequency filter is used (the unit dB(A)). 
The unit dB(A) is a weighted scale that corresponds to the hearing threshold of the human 
ear, so that the human ear responds equally to high and low frequencies. 

The Regulation on the Protection of Workers from Exposure to Noise at Work [14] 
(NN, 46/2008) sets out the exposure limit values and exposure warning values during an 
eight-hour working day, as well as the following peak sound pressure levels: 
• exposure limit value: L(EX,8 h) = 87 dB(A) and p(peak) = 200 Pa (140 dB(C) relative to 

the reference sound pressure of 20 µPa); 
• upper exposure warning limit: L(EX,8 h) = 85 dB(A) and p(peak) = 140 Pa (137 dB(C) 

relative to the reference sound pressure of 20 µPa); 
• lower exposure warning limit: L(EX,8 h) = 80 dB(A) and p(peak) = 112 Pa (135 dB(C) 

relative to the reference sound pressure of 20 µPa). 
Butkus et al. [15] indicated that the trend of noise level change is correlated with the 

year of production, meaning that older tractors tend to have higher noise levels. On aver-
age, there was an observed increase in noise of 1 dB(A) for each subsequent year of tractor 
age. The research covered 50 different agricultural tractors from 1981 to 2015. Measure-
ment results show a wide fluctuation in noise levels inside the cabins. As this study in-
cluded both modern and old agricultural tractors used, noise levels ranged from 67.7 
dB(A) to 94.7 dB(A), with the highest recorded value being 119 dB(A). Mofrad et al. [16] 
measured noise levels on a MASEY FERGUSON 399 tractor with and without a cabin at 
1500, 1750, and 2000 engine revolutions per minute. For tractors without a cabin, the high-
est measured noise level was 88 dB(A) at 2000 engine revolutions per minute, while for 
tractors with a cabin, the highest noise level, also at 2000 engine revolutions per minute, 
was 72 dB(A), significantly lower compared to tractors without cabins. Barač et al. [17] 
stated that measurements of noise levels on a LANDINI POWERFARM DT100A tractor 
moving across three agrotechnical surfaces (grass, gravel, and asphalt) did not exceed the 
permitted level. The tests were performed according to standards that considered internal 
noise measurements during movement, and the tractor had 5800 operating hours at the 
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time of measurement. Barač et al. [18,19] conducted noise level measurement during op-
eration (when standing and moving) on three FENDT tractors (model 410). During the 
exploitation experiment, the tractors performed similar agrotechnical operations and had 
the same number of working hours. The research lasted three years. The obtained values 
indicate that none of the investigated tractors produced a noise level higher than 80 dB(A), 
thus not exceeding the permissible limit. Souza et al. [20] measured noise inside and out-
side the tractor on two tractors of different power. The obtained values did not exceed the 
permissible limit of 85 dB(A), and it was found that the TL85E tractor had lower measured 
values compared to the MF265 tractor. Research on noise levels on two types of tractors 
from 1993 and 2013 was conducted in the largest agricultural region in Romania. It was 
found that older tractor types produced noise at 95.5 dB(A), exceeding the permissible 
limit by 10.5 dB(A), while for newer tractor types from 2013, the noise level was lower than 
the limit at 65.9 dB(A) Picu [21]. Poje et al. [22] stated that the measured noise level on the 
IMT 565 DV tractor with double-drum winch type LIV with 80 kN capacity under light 
load did not exceed the permitted noise level, while under heavy load, it could reach 
higher than 88 dB(A). The tested tractor was 5 years old. Due to its low price and cheap 
maintenance, this tractor is very often used in the forestry of southeast Europe, where the 
research was carried out. 

The application of machine learning in ergonomics is becoming increasingly recog-
nized for predicting data accuracy, especially in terms of the safety and health of agricul-
tural workers as stated by Son et al. and Nath et al. [23,24]. This is especially the case when 
predicting results when considering a significantly larger number of factors (which do not 
necessarily have to be exploitative, but include also health), and where the data set of 
input values is very big. 

The aim of this research was to measure the noise level inside the cabin of an agricul-
tural tractor as it moves across various agrotechnical surfaces, at different speeds, and 
with changes in air pressure in the tires, and to apply, using multiple linear regression 
(mlr), three machine learning methods (gbm, svmRadial, monmlp) to determine which 
machine learning method can most accurately predict the level of generated noise in the 
tractor under various working conditions and to comprehensively assess the importance 
of independent variables. 

2. Materials and Methods 
The workflow of the proposed tractor noise prediction approach based on machine 

learning regression consisted of three primary steps (Figure 1): (1) Exploratory analysis of 
input tractor noise datasets from its left and right side according to six evaluated surfaces. 
(2) Machine learning prediction of noise levels and accuracy assessment based on 10-fold 
cross-validation. (3) Variable importance analysis according to three independent varia-
bles used for prediction. 
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Figure 1. The workflow of the proposed tractor noise prediction approach based on machine learn-
ing regression. 

2.1. Exploitation Research 
The research was conducted on productive agricultural areas and access roads of the 

Agricultural and Veterinary School Osijek (45°32′16.32632″ N, 18°40′48.18666″ E) using a 
LANDINI POWERFARM 100 tractor, with a nominal power of 68 kW (without any at-
tached implements). Noise level measurement was performed while traversing four dif-
ferent agrotechnical surfaces (asphalt, gravel, grass, and dirt road) and two standardized 
test tracks (smooth and rough) according to standard HRN ISO 5008 [10] (Figure 2). These 
two test tracks were made in accordance with the mentioned standard, with the smooth 
test track being 100-m long and the rough one 35-m long. The tracks were constructed 
separately for each wheel track using rubber, which served as the base, and wooden slats 
of various dimensions to simulate unevenness. 

 
Figure 2. Exploitation measuring on the following: (a) asphalt; (b) gravel; (c) grass; (d) dirt road; (e) 
rough track; (f) smooth track; with (g) microphone on left side; (h) microphone on right side. 
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During the research, tire air pressure was set as follows: prescribed (2.4 bar), lower 
than prescribed (1.9 bar), and higher than prescribed (2.9 bar). Tractor speeds on the se-
lected surfaces were chosen according to the standard [10] and ranged from 6, 5, 4, 3, 2, to 
1 kmh−1. Recommended speeds on the smooth test track were up to 12 kmh−1 and up to 5 
kmh−1 on the rough track [10]. 

Noise was measured using a METREL brand sound level meter type MI 6201 MUL-
TINORM equipped with the corresponding A-filter microphone. The Class 1 microphone 
has a measurement range of 30 to 140 dB(A) with a resolution of 0.1 dB(A). According to 
EN 61672 accuracy at the reference frequency of 1 k Hz, the tolerance limits are +/−1.1 
dB(A). At the lower and upper extremities of the frequency range, the tolerances are wider. 
At 20 Hz, the tolerances are +/−2.5 dB(A). At 16 Hz, the tolerances are +2.5 dB(A) and −4.5 
dB(A). The instrument measures the Leq (or LAeq)—the equivalent continuous sound 
pressure level. During measurement, it was in the sound level meter mode (SLM), which 
simultaneously measures and calculates 19 measurements on two independent channels. 
That is 13 measurements on the first channel (LAF1, LAeq1, LAFmax1, LAFmin1, LA-
peak1, LAE1, L01, L05, L10, L50, L90, L95, and L99) and 6 on the second (LAF2, LAeq2, 
LAFmax2, LAFmin2, LApeak2, LAE2), which is in accordance with the standard HRN 
ISO 61672 [25]. In each channel, time evaluation FAST and frequency evaluation A were 
set. The interval of measurement values of collecting was 170 millisecond or approxi-
mately 6 times per second. The sound level meter was positioned according to standard 
HRN ISO 6396 [26], which dictates that measurement be conducted inside the tractor cabin 
while in motion. Throughout the measurements, doors, windows, or any other openings 
on the tractor cab were closed. The ventilation did not produce airflow that could affect 
the microphone during measurements. The tractor operator did not wear clothing that 
could produce additional noise or mitigate noise, and no helmet was worn. The operator’s 
height in the seated position ranged within the specified values, from 800 mm to 960 mm, 
measured from the seating surface of the seat to the top of the operator’s head. 

Standard HRN ISO 5131 [27] dictates that the sound level meter microphone must be 
positioned 250 mm ± 20 mm from the center of the operator’s head and at a height of 700 
mm ± 20 mm above the seat’s reference point and 100 mm ± 20 mm forward from the seat’s 
reference point. The microphone was placed according to these dimensions on both the 
left and right sides of the operator during measurements (Figure 2). During testing, there 
were no buildings or similar obstacles within a 20-m radius of the tested tractor, and thus 
there was no influence of surrounding noise on the measurement during the research. 
During the measurement, no other source of noise was present. Wind speed did not ex-
ceed 5 m/s. The temperature during noise measurement was also within the specified 
range of −5 °C to 30 °C, and only the tractor operator was present in the cabin. 

2.2. Machine Learning Prediction and Accuracy Assessment 
The machine learning prediction of tractor noise was performed independently for 

left and right input datasets using three independent variables for regression: surface, ve-
locity, and tire pressure. Gradient boosting machine, support vector machine with radial 
basis function kernel, and monotone multi-layer perceptron neural network were evalu-
ated for the prediction, having achieved high prediction accuracy in previous studies re-
lated to ergonomics—Hota et al. and Singh et al. [28,29] and agriculture in general Saleem 
et al. and Varga et al. [30,31]. These methods are also mutually complimentary, represent-
ing three of the fundamental machine learning prediction principles: decision trees (gra-
dient boosting machine), support vector machines, and artificial neural networks (mono-
tone multi-layer perceptron neural network). The conventional multiple linear regression 
(mlr) was performed to provide reference prediction accuracy, which was used to assess 
the efficiency of the evaluated machine learning prediction methods according to the con-
ventional approach. Machine learning predictions were performed in R v4.0.3 using caret 
library. 
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The gradient boosting machine (gbm) merged the results of several weak learners 
from decision trees into a strong predictive model on an iterative basis—Konstantinov 
and Utkin [32]. It successively trained a number of decision trees, each one improving on 
the mistakes made by the one before it, utilizing a stochastic approach. A mini-batch, 
sometimes referred to as a random subset of the input noise data, is sampled for each 
iteration, defined by the number of trees built during the training process (n.trees). A 
higher number of n.trees raises the possibility of overfitting since the model can start to fit 
prediction noise in the data. In addition, gbm has a learning rate (shrinkage) that regulates 
how much each tree contributes to the overall model, with the two hyperparameters being 
tuned and set jointly since smaller shrinkage values require larger n.trees to obtain com-
parable performance. While larger learning rates can produce faster convergence but may 
result in overfitting, smaller learning rates can prevent the algorithm from overfitting and 
may necessitate the use of more trees to achieve comparable performance—Konstantinov 
and Utkin [29]. The maximum depth of interaction between variables in each tree was 
controlled by the interaction-depth hyperparameter, while the minimal number of obser-
vations needed in a terminal node of a decision tree was specified by n.minobsinnode. The 
ensemble often converges to a powerful predictive model, and the final prediction is a 
weighted mixture of the predictions from all the trees. These properties result in the ad-
vantage of gbm in managing complicated, high-dimensional data, capturing non-linear 
correlations, and automatically choosing pertinent characteristics—Ayyadevara [33]. 

Support vector machine using radial basis function kernel (svmRadial) determined 
the appropriate hyperplane for separating input noise data points in a high-dimensional 
feature space—Scholkopf and Smola [34]. The original input noise data were implicitly 
mapped into a higher-dimensional space using the radial basis function kernel, sometimes 
referred to as the Gaussian kernel, so that the data may be linearly separated—Müller et 
al. [35]. The svmRadial seeked to locate a hyperplane in this converted space that opti-
mizes the margin between the points, with the margin being the separation between the 
closest data points—Scholkopf and Smola [34]. The radial basis function kernel was de-
fined with a width that was controlled by sigma hyperparameter, establishing how each 
training example affects the decision margin. The decision border becomes smoother as 
sigma values increase because a larger Gaussian curve indicates that data points have a 
greater overall impact—Müller et al. [35]. The regularization parameter, or cost in svmRa-
dial, was denoted by C. It managed the trade-off between minimizing the regression error 
on the training data, allowing greater regularization by smaller values of C, increasing the 
margin but perhaps enabling some training instances to be mispredicted. 

The monotone multi-layer perceptron neural network (monmlp) provide a flexible 
machine learning model that can identify complex patterns in input noise data by intro-
ducing monotonicity requirements into its design, expanding the conventional multi-
layer perceptron—Eskandarian et al. [36]. Its major objective is to simulate relationships 
between the input characteristics and the target noise variable in a way that ensures the 
predictions retain a steady directional trend, anticipating output consistently as the values 
of specific input attributes increase or decrease—Kamala and Nawaz [37]. The number of 
neurons in the hidden layer of the monotonic multi-layer perceptron model was con-
trolled by the hidden1 hyperparameter, which inferred intricate patterns and representa-
tions from the input noise data. The number of multi-layer perceptron models to include 
in the ensemble was controlled by the hyperparameter n.ensemble. In order to increase 
prediction accuracy and decrease overfitting, assembling entails, training many models 
individually and integrating their predictions with an ensemble having a higher value of 
n.ensemble, can be more reliable and accurate, but may also demand more hardware com-
putational efficiency. 

To ensure the optimal predictive performance of the gbm, svmRadial, and monmlp 
machine learning methods evaluated in the study, the automated hyperparameter tuning 
in caret was performed to determine their optimal configuration. The root mean square 
error was used as a hyperparameter tuning criterion, prioritizing prediction accuracy by 
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selecting the model configuration with the minimum root mean square error. The impact 
of certain predictor variables on the result of a machine learning regression model was 
assessed using model-specific variable importance metrics (https://to-
pepo.github.io/caret/variable-importance.html (accessed on 27 February 2024)). The vari-
able importance of the mlr model was quantified using the absolute value of the resulting 
t-statistic, while gbm summed variable importances over each boosting iteration. The 
svmRadial variable importance was determined indirectly by quantifying the impact on 
the decision boundary support vectors, while monmlp did not provide a functionality for 
quantifying variable importance, which is one of its main disadvantages. Despite the dif-
ferences of absolute value ranges for these metrics across evaluated prediction approaches 
in this study, their relative relationship enabled comprehensive evaluation of the im-
portance of independent variables—Bonaccorso [38]. 

The accuracy assessment of machine learning regression predictions for noise in ag-
ricultural tractors was performed with a 10-fold cross-validation. This included an itera-
tive process containing predictions using 90% of training and 10% of test data in 10 itera-
tions for each model and independent dataset. Three frequently used metrics were ap-
plied for the accuracy assessment: coefficient of determination (R2), root mean square error 
(RMSE), and mean absolute error (MAE)—Chicco et al. [39]. R2 quantified the percentage 
of the variation of the noise levels in the agricultural tractor that the particular method 
successfully explained. The average prediction error was measured using the RMSE for-
mula, which squared the errors before taking their square root to get results in the same 
units as the noise levels. Another way to assess prediction error is MAE, indicating the 
average residual between the model’s predictions and the actual noise levels. Since MAE 
did not square the errors, it was less prone to larger residuals than RMSE. The higher R2 
and lower RMSE and MAE indicated higher noise prediction accuracy. These metrics were 
calculated according to Equations (1)–(3): 

R2 = 1 −
SSR
SST  , (1) 

RMSE = �
∑ (ypredicted ‒ yinput)

2n
1

n , (2) 

MAE = 
∑ �ypredicted ‒ yinput�

2
n
1

n  , (3) 

where SSR represented the sum of squares of residuals between input and predicted trac-
tor noise levels, SST represented total sum of squares, n was the number of samples, 
ypredicted representing the predicted tractor noise values, and yinput represented the input 
tractor noise values. 

The balance between model complexity and generalization for gbm was achieved 
with n.trees = 150, while the interaction depth had 3 captured significant feature interac-
tions without being too complicated. A relatively small shrinkage value of 0.1 provided 
the gradual learning process, which enhanced the model’s ability to generalize and avoid 
overfitting, using a minimum of 10 terminal nodes per decision tree. A sigma of 0.34 for 
svmRadial implies a good compromise between catching detailed patterns in data and 
avoiding overfitting, while C of 1 denotes a balanced approach to this trade-off, prioritiz-
ing error reduction. The hidden1 hyperparameter of monmlp produced 5 neurons in the 
first hidden layer, while a single instance of the monmlp was used according to the n.en-
semble hyperparameter, without performing ensemble averaging (Table 1). 

Table 1. The optimal hyperparameters per machine learning prediction method after automatic tun-
ing for both input noise datasets. 



AgriEngineering 2024, 6 1002 
 

 

Method Hyperparameter Tuned Value 

gbm 

n.trees 150 
interaction depth 3 

shrinkage 0.1 
n.minobsinnode 10 

svmRadial 
sigma 0.34 

C 1 

monmlp 
hidden1 5 

n.ensemble 1 

3. Results and Discussion 
The descriptive statistics of left and right noise input datasets are presented in Table 

2. Box plots of the left and right input data sets of noise according to the type of surface 
are visible in Figure 3. The median is higher on the left side for all measured surfaces, 
except for the rough track and asphalt, where it is higher on the right side. Similarly, the 
data dispersion is greatest precisely on the rough track. During measurements on the 
rough track, the greatest unevenness is present on both the left and right sides of the 
wheels, and since the tractor’s exhaust pipe is located on the right side due to significant 
and sudden lateral movement of the tractor, the obtained median is higher. 

 
Figure 3. Boxplots of left and right input noise datasets according to surface type. 
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Table 2. Descriptive statistics of left and right noise input datasets. 

Dataset N Median Minimum Maximum SD CV (%) Skewness Kurtosis 
left 648 73.8 69.5 79.5 1.665 2.25% 0.446 0.919 

right 648 73.7 67.6 78.9 1.332 1.81% 0.281 2.872 
SD: Standard deviation, CV: Coefficient of variation. 

The highest median was obtained during measurements on the grassy surface on the 
left side, where unevenness on the actual driving surface was observed during measure-
ments. In this case, the tractor moved with minimal lateral displacement, while more 
movement was achieved in the forward–backward direction of the tractor’s movement. 
The lowest median was obtained on the right side on the dirt road. 

The interquartile range of noise level is higher on the left side for all surfaces. It is 
highest on the left side on the rough strip, while it is lowest on the right side on the dirt 
road. It is important to emphasize that none of the data exceeds the permitted noise level 
according to the Regulation on the Protection of Workers from Exposure to Noise at Work 
[10]. In the case of the presence of outliers, their highest number is present on the right 
side, except for the dirt road where the outliers are on the left. 

From Table 3 for the input dataset of measured noise levels on the left side, it was 
determined that monmlp generally performs best for individual surfaces (with a smaller 
amount of more homogeneous data), while gbm is the best performer for the overall da-
taset in both cases (due to better integration of heterogeneous data). Furthermore, signifi-
cant superiority of all machine learning methods over conventional multiple regression 
was observed for all surfaces and both sides of the measurements, individually and over-
all. The significance was established across different surfaces and tractor movement 
speeds, as also noted in the study by Hota et al. [28]. Singh et al. [29] stated that the coef-
ficient of determination ranged from 0.82 to 0.90 (which is a similar case here as well) and 
highlighted the speed of movement as a variable with significant impact on ergonomic 
factors. Furthermore, Lashgari and Maleki [40], in their study of the influence of different 
speeds when mowing grass with a tractor mower on the produced noise level, stated that 
the coefficient of determination R2 was 0.957, which is also the case in the research of Barac 
et al. [19], where noise was measured at the operator’s workplace in relation to the age of 
the tractor. In the aforementioned research, a lower coefficient of determination (R2 = 
0.675), was achieved. The lowest accuracy with the monmlp method (R2, RMSE, and MAE) 
was observed on a smooth track, while the highest was determined for the asphalt surface 
(R2) and dirt road (RMSE, MAE). 

Table 3. Machine learning prediction accuracy assessment per surface type for left input noise da-
taset. 

Method Metric 
Surface Type 

All Surfaces Smooth 
Track 

Rough 
Track Asphalt Gravel Grass Dirt Road 

mlr 
R² 0.064 0.624 0.210 0.684 0.537 0.651 0.163 

RMSE(dB(A)) 0.954 1.791 1.387 0.550 0.947 0.392 1.526 
MAE(dB(A)) 0.829 1.471 1.182 0.459 0.783 0.302 1.223 

gbm 
R² 0.346 0.943 0.921 0.859 0.913 0.747 0.820 

RMSE(dB(A)) 0.784 0.692 0.427 0.350 0.403 0.322 0.709 
MAE(dB(A)) 0.619 0.522 0.316 0.283 0.306 0.259 0.534 

svmRadial 
R² 0.241 0.932 0.936 0.892 0.918 0.758 0.598 

RMSE(dB(A)) 0.848 0.767 0.417 0.316 0.402 0.326 1.073 
MAE(dB(A)) 0.632 0.579 0.314 0.255 0.320 0.262 0.709 

monmlp R² 0.515 0.949 0.955 0.878 0.929 0.771 0.776 
RMSE(dB(A)) 0.704 0.640 0.360 0.311 0.372 0.302 0.785 
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MAE(dB(A)) 0.488 0.455 0.286 0.263 0.300 0.225 0.597 
The most accurate accuracy assessment metrics per prediction are in bold. 

A very similar relative accuracy ratio for all methods from the dataset on the left and 
right sides of the operator’s cabin is evident. The right dataset (Table 4) resulted in slightly 
lower overall accuracy compared to the left dataset. Aiello et al. and Irumva et al. [41,42] 
stated that the research results regarding ergonomic factors provide accuracy in predic-
tion using machine learning, which was also determined in this study. In the author’s re-
search on ergonomic factors—Upadhyay et al. [43]—the gbm machine learning model 
showed the highest accuracy, which is the case here when considering the overall datasets 
from the left and right sides of the operator’s cabin on all surfaces. A similar coefficient of 
determination (R2 = 0.823) when measuring noise on log loaders with and without a cabin 
at the log dump was stated by Melemez and Tunay [44].The highest accuracy with the 
monmlp method (R2, RMSE, and MAE) was observed on the asphalt surface, while the 
lowest was found on the smooth track (R2, RMSE, and MAE) using the svmRadial method. 

Table 4. Machine learning prediction accuracy assessment per surface type for right input noise 
dataset. 

Method Metric 
Surface Type 

All Surfaces Smooth 
Track 

Rough 
Track 

Asphalt Gravel Grass Dirt Road 

mlr 
R² 0.339 0.729 0.293 0.276 0.738 0.059 0.166 

RMSE(dB(A)) 1.208 1.058 0.759 0.663 0.401 0.374 1.226 
MAE(dB(A)) 0.854 0.796 0.619 0.521 0.324 0.309 0.929 

gbm 
R² 0.488 0.862 0.925 0.705 0.850 0.669 0.724 

RMSE(dB(A)) 1.014 0.713 0.267 0.434 0.344 0.238 0.696 
MAE(dB(A)) 0.710 0.529 0.199 0.336 0.284 0.184 0.470 

svmRadial 
R² 0.548 0.839 0.952 0.669 0.795 0.729 0.507 

RMSE(dB(A)) 0.969 0.800 0.209 0.464 0.361 0.206 0.958 
MAE(dB(A)) 0.644 0.515 0.147 0.364 0.294 0.167 0.608 

monmlp 
R² 0.555 0.870 0.955 0.717 0.813 0.747 0.632 

RMSE(dB(A)) 0.997 0.697 0.180 0.433 0.346 0.193 0.807 
MAE(dB(A)) 0.654 0.458 0.139 0.341 0.280 0.157 0.566 

The most accurate accuracy assessment metrics per prediction are in bold. 

From the changing metrics of importance for the left and right input datasets of noise 
in the machine learning prediction method (Figure 4), it was determined that, regardless 
of the absolute scale of importance of independent variables according to the mentioned 
method, their relative relationship is stable. Furthermore, for the most accurate method 
for the overall datasets (gbm), the surface is the most influential parameter. For all three 
machine learning methods for the right input datasets, the parameters of surface and 
speed are more important than for the left, while for the tire pressure parameter, it is the 
opposite. 
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Figure 4. Variable importance metrics for left and right input noise datasets per machine learning 
prediction method. 

4. Conclusions 
This study aimed to apply machine learning methods to predict the accuracy of the 

obtained data for measured noise levels in the cabin of an agricultural tractor while mov-
ing across various agrotechnical surfaces, at different speeds of movement, and with var-
ying tire air pressure. 

By employing machine learning on the measured noise level values within the cabin 
of the agricultural tractor on the left and right sides of the operator, aiming for more ac-
curate prediction, the following was concluded: 
• From the diagrams of left and right input noise datasets according to the type of sur-

face, it was found that the median and interquartile range are higher for all measure-
ment surfaces on the left side compared to the right side (with the exception of the 
median on asphalt and rough track where it was higher on the right). 

• Superiority of all machine learning methods over conventional multiple regression 
was determined for all surfaces, considering each surface individually and collec-
tively. 

• Observing the input dataset of noise on the left side, it was found that the machine 
learning method, monmlp, is the best for each surface individually, while the gbm 
method is the best for all surfaces in both cases (left and right). 
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• A slightly lower accuracy was observed from the dataset of noise on the right side, 
overall for all surfaces, compared to the data on the left side. 

• From the changing importance metrics for left and right input datasets of noise, for 
the most accurate method for overall datasets (gbm), it was found that the surface 
has the highest influence on noise, while for all three methods, surface and speed are 
more important for the right side than the left, whereas for tire pressure, it is the 
opposite. 
The application of machine learning methods proved accurate in predicting noise 

values within the cabin of the agricultural tractor on both (left and right) sides of the op-
erator. Furthermore, in future research, it would be advisable to increase the number of 
measurements (gathered data) on some surfaces to improve the accuracy as much as pos-
sible. None of the measured data exceeded the permitted noise exposure limit and thus 
did not pose a negative impact on the operator’s health. 
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