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Abstract: Seed quality significantly affects how well crops grow. Traditional methods for checking
seed quality, like seeing how many seeds sprout or using a chemical test called tetrazolium testing,
require people to look at the seeds closely, which takes a lot of time and effort. Nowadays, computer
vision, a technology that helps computers see and understand images, is being used more in farming.
Here, we use computer vision with X-ray imaging to assist experts in rapidly and accurately assessing
seed quality. We looked at three different sets of seeds using X-ray images and used YOLOv8 to
analyze them. YOLOv8 software measures different aspects about seeds, like their size and the area
taken up by the part inside, called the endosperm. Based on this information, we put the seeds into
four groups depending on how much endosperm they have. Our results show that the YOLOv8
program works well in identifying and separating the endosperm, even with a small amount of data.
Our method was able to accurately identify the endosperm about 95.6% of the time. This means that
our approach can help determine how effective the seeds are to plant crops.

Keywords: deep learning; seed quality; X-ray imaging

1. Introduction

The global demand for food and agricultural products continues to surge, propelled by
the expanding human population, posing significant challenges to soil health, atmospheric
balance, and water resources [1]. Meeting this demand sustainably necessitates solutions
that not only bolster agricultural productivity in terms of land use but also optimize
resource allocation. One effective strategy to enhance productivity involves the cultivation
of high-vigor seeds [2–4]. The quality of these seeds, influenced by genetic, physical,
sanitary, and physiological factors, profoundly impacts crop development, thereby directly
affecting yield potential across plant species [5,6].

Despite the reliability of traditional germination and vigor tests in meeting seed
production standards, they often fall short in predicting seedling emergence under less
favorable environmental conditions [7]. Moreover, these tests can be time-consuming,
costly, and offer limited insights into the internal state of the seed [8]. Addressing this
challenge, the assessment of internal seed morphology has emerged as a crucial approach
for identifying issues related to seed physiological potential [6,9].

Recent research in the literature has explored various computational methods that
correlate image-derived parameters with seed quality standards [5,10,11]. Image anal-
ysis techniques provide non-destructive means to comprehend various aspects of seed
development, establishing a connection between internal morphology and structural in-
tegrity [8,12–14]. This approach enables the determination of the physiological potential
of seed lots. A well-established method for image acquisition relies on X-ray differential
absorption by seed tissues, which varies with tissue thickness, density, composition, and
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radiation wavelength [15]. This process involves exposing seeds to X-rays, creating a
latent image on a photosensitive film [6,11]. However, despite the assistance of computa-
tional tools, the manual measurement of parameters contributing to seed vigor remains a
challenge in seed image analysis.

In the pursuit of automation solutions, the recent literature has explored various com-
putational methods for seed quality assessment. Cheng et al. [7] combined low-field nuclear
magnetic resonance (LF-NMR) spectral data and machine learning algorithms like Fisher’s
linear discriminant (FLD) to accurately distinguish high- and low-vigor rice seeds. Cioccia
et al. [12] used laser-induced breakdown spectroscopy (LIBS) and machine learning algo-
rithms like linear discriminant analysis (LDA) to evaluate the vigor of Brachiaria brizantha
seeds, achieving 100% accuracy in distinguishing high- and low-vigor seeds.

Moreover, recent advancements in computer vision, machine learning, and deep learn-
ing have gained considerable attention for seed quality evaluation [4,14,16]. Convolutional
neural networks (CNNs) have shown particular promise for image-based seed assessment
by learning complex patterns from seed images which are difficult to discern by traditional
methods [11,14,16]. Wu et al. [16] used a CNN model with a weighted loss function to
detect rice seed vigor from hyperspectral images, achieving an impressive accuracy of
97.69%. Xu et al. [14] introduced two CNN models (CNN-FES and CNN-ATM) for maize
seed defect detection using hyperspectral imaging, outperforming traditional methods
with over 90% accuracy and reaching 98.21% accuracy with feature wavelength modeling.

Here, we propose a method to automate the analysis of X-ray images of Brachiaria
seeds (Urochloa brizantha cv. Xaraés) using YOLOv8 [17], which employs Darknet53 as
the CNN backbone feature extractor. We implement a post-processing method to make
YOLOv8 robust to variations in rotation and scale. By subsequently processing the
Darknet53-extracted features, the model can directly analyze X-ray images with multiple
seed instances. We implement YOLOv8 with a post-segmentation module to segment seed
images and derive quality descriptors based on internal morphology, providing a quick
and non-destructive estimate of seed germination potential. The method is compared to
traditional seed quality assessment techniques as well as recent advancements in computer
vision and deep learning for comprehensive evaluation.

2. Materials and Methods

This section provides a comprehensive overview of the procedures undertaken to
establish the seed image database and train the computer vision model employed for
segmentation and classification.

2.1. Seeds

Brachiaria (Urochloa brizantha cv. Xaraés) stands out as an extensively cultivated
forage grass globally [11], underscoring the substantial interest in automated seed quality
assessment within the agricultural sector. In this study, random samples of Brachiaria seeds
were utilized to capture radiographic images. Figure 1 shows the modest size of these seeds
during the inspection, emphasizing the necessity for an automated evaluation approach.

2.2. Dataset

For each set, we used ten sets of 20 seeds. These seeds were arranged on transparent
plastic sheets and secured in place with double-sided adhesive tape. This setup ensured
clear visualization of seed parts, including the embryo, endosperm, seed coat, and empty
spaces. Subsequently, 30 images (each containing 20 seeds, as shown in Figure 2) were
saved on an external storage device for subsequent batch processing, resulting in a total
dataset size of 600 radiographic images of seeds. We used Roboflow (https://roboflow.com,
accessed on 1 March 2024), a computer vision platform for dataset management, to prepare
the training data. Additionally, traditional data augmentation techniques such as rotation
and blur were applied to the bounding boxes of each seed.

https://roboflow.com
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Figure 1. Actual sample of Brachiaria seeds (Urochloa brizantha) with a ruler for size comparison [11].
The right side of the ruler features a scale in millimeters (mm).

Figure 2. Radiographic images of Urochloa brizantha cv. Xaraés seeds [11].

In Figure 2, radiographic images of Urochloa brizantha seeds, cv. Xaraes reveal crucial
details of internal morphology. This allows for the assessment of characteristics such as low
quality (#5, #15 and #19), poor formation (#4 and #11), and the presence of embryo damage
(#17). These factors significantly impact seed lot quality, directly influencing germination.

For seed segmentation, a supervised training approach was employed. Using the
Labelme (https://github.com/labelmeai/labelme, accessed on 1 March 2024) tool, we
labeled the 20 seeds in each image into two categories: seed and endosperm.

2.3. YOLOv8

To address the segmentation of regions of interest, we opted to employ the YOLOv8
model, renowned for its practical training approach and high accuracy. Developed by
Ultralytics in late 2022, YOLOv8 is a member of the YOLO (You Only Look Once) series
of object detection algorithms [17], representing an improvement over its predecessor,
YOLOv5. The architectural enhancements introduced in YOLOv8 focus on boosting both
speed and accuracy, featuring a novel C2F module that replaces YOLOv5’s C3 module. This
alteration results in the generation of more precise feature maps crucial for object detection.

The YOLOv8 architecture comprises three main components: the backbone network,
neck network, and detection head. The backbone, based on CSPDarknet53, is responsible
for extracting feature maps from the input image. The YOLOv8 model backbone network
down-samples the image five times to obtain five layers of feature expressions (P1, P2,
P3, P4, and P5), with Pi denoting a resolution of 1/2i of the original image. These feature
expressions capture hierarchical representations of the input image at different scales,
contributing to the model’s ability to detect objects of varying sizes. Concurrently, the neck

https://github.com/labelmeai/labelme
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network and main network leverage these feature expression maps to infer bounding boxes
and object labels.

YOLOv8 offers various model sizes, such as yolov8n (nano), yolov8s (small), yolov8m
(medium), yolov8l (large), and yolov8x (extra large). The size is directly proportional
to mAP and inversely proportional to inference time. Additionally, YOLOv8 provides
variations tailored for different tasks, including classification (cls), segmentation (seg),
pose estimation (pose), and oriented object detection (obb). In our study, we utilized the
yolov8n-seg version, designed for segmentation applications with a nano size.

During the training phase, our model utilized an augmented dataset, randomly split
into 70% for training and 30% for testing. K-fold cross-validation was employed, dividing
the image dataset into five sets for robust evaluation. The Ultralytics’ version X implemen-
tation of the model incorporated measures to prevent overfitting, including dropout for
balancing network weights, early stopping at 50 training epochs, and weight transfer from
pre-training on the COCO image dataset (https://cocodataset.org, accessed on 1 March
2024). Training occurred at different epochs (500, 1500, and 3000) using the SGD optimizer,
a learning rate of 0.01, and dynamic weight decay.

2.4. Human Analysis of Seed Vigor

To validate the data obtained from our proposed method, images from the dataset
(Figure 3A) underwent human visual analysis. This analysis focused on studying the
internal morphology of the seeds, identifying areas occupied by the seed (Figure 3B) and
endosperm (Figure 3C), the internal area/total area ratio (mm²), and the length and width
of the seeds (Figure 3D). Additionally, it included the detection of deteriorated tissues and
malformations, characteristics that can lead to reduced germination.

A B

C D

Figure 3. Measurement of Brachiaria seed structures using the ImageJ software version 1.8.0: (A) im-
ages from the dataset; (B) areas occupied by seeds; (C) areas occupied by endosperms; (D) length and
width of the seeds.

https://cocodataset.org
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Following the visual analysis, the germination test was conducted using the same seeds
utilized in the X-ray test, maintaining the seed distribution order. Each batch underwent
ten repetitions of 20 seeds. The germination test employed paper sheets premoistened with
distilled water, equivalent to 2.5 times the mass of the dry substrate. Seed-containing paper
rolls were placed in a BOD-type germinator with alternating temperatures of 15–35 ◦C and
a photoperiod of 8 h of light and 16 h of darkness. Evaluations were conducted seven days
after sowing, which is the established date for the first germination count [18].

After seven days post-sowing, we transferred normal and abnormal seedlings, along
with dead seeds, onto black A3 paper. We captured images using an HP Scanjet 2004
scanner, which was adapted in an inverted position within an aluminum box (refer to
Figure 4). The images were scanned at 300 dpi and stored for subsequent analysis.

We individually measured the length of each seedling in millimeters (mm) using the
ImageJ 1.8.0 software tool. This tool allowed us to outline specific parts of the analyzed
material, highlighted in yellow at the center of Figure 5.

A B

Figure 4. (A) Seedlings image capture system; (B) Detail of the scanner adapted in an aluminum box.

Figure 5. Computerized images of Brachiaria seedlings.

Based on the frequency distribution of seed internal area, we established four classes,
as follows:

• Class I: Seeds with an internal area ranging from 0.391 to 1.667 mm2;
• Class II: Seeds with an internal area ranging from 1.668 to 2.944 mm2;
• Class III: Seeds with an internal area ranging from 2.945 to 4.221 mm2;
• Class IV: Seeds with an internal area ranging from 4.222 to 5.497 mm2.

We used a dataset from an experimental design with an unbalanced completely
randomized design (UCRD). For a seedling length variable y, the data underwent trans-
formation by applying

√
y + 1. This transformation was deemed necessary to facilitate

parametric analysis of variance, especially if the homoscedasticity assumption was not
met [19]. The variables were subsequently analyzed using analysis of variance (ANOVA)
at a 5% significance level. Variables exhibiting significant differences underwent Tukey’s
test for mean comparison.
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Table 1 presents the morphological characteristics of Brachiaria seeds, where means
followed by the same letter (a, b, c, or d) in the same column are statistically similar to
each other. The total seed area indicates that Class IV significantly differs from the other
three classes in the Tukey test at a 5% significance level, with a value of 8.50 mm2. Larger
seeds can accommodate a greater endosperm area due to their size. A larger endosperm
area provides more reserves for the germination process, thereby increasing the likelihood
of germination.

Table 1. Morphological characteristics of Brachiaria seeds obtained through visual analysis.

Class
Endosperm

Area Interval
(mm2)

Seed Width
(mm)

Seed Length
(mm)

Endosperm
Area (mm2)

Total Area
(mm2)

Endosperm/Total
Area Ratio

Seedling
Length 1

(mm)
NSG 2 (%)

I 0.391–1.667 2.15d 5.23a 1.03d 8.03 b 12.86 d 2.08b 0.174
II 1.668–2.944 2.20 c 4.97b 2.31 c 8.06 b 28.82 c 9.02a 0.523
III 2.945–4.221 2.29 b 4.90b 3.82 b 8.04 b 47.81 b 9.11a 15.679
IV 4.222–5.497 2.38a 5.03b 4.55a 8.50 a 53.78 a 9.22a 43.728

1 Means transformed by
√

y + 1, where y is the seedling length variable. 2 NSG—Percentage of normal seedlings
on the seventh day after the start of the germination test.

The ratio of internal area to total area exhibited an increasing trend based on seed
class. Class I had the smallest ratio, while Class IV had the largest. Seed length reached its
peak in Class I (Table 1), while the other classes had statistically similar seed lengths.

Examining seed length revealed that Class I had smaller seedlings, as the endosperm
is the primary supplier of reserves needed for germination in Brachiaria seeds. The other
classes did not differ significantly from each other. In summary, vigor increased with
endosperm area classes. Larger endosperm areas indicate greater vigor, as reflected in
seed length. Analyzing seed images through X-ray morphological studies and classifying
seeds into different filling levels allows for the correlation of morphological characteristics
with physiological potential. This highlights the importance of methods that automate this
process, providing significant contributions to the seed industry.

2.5. Proposed Method

To evaluate the robustness of Brachiaria brizantha cv. Xaraés seeds using X-ray images,
we introduced a post-segmentation module to the YOLO model. This module, known as the
morphological analysis module (MAM), employs a digital image processing algorithm to
compute various variables: total area (mm2), embryo and endosperm area (mm2), internal
area/total area ratio (mm2), length (mm), and width of the seeds (mm).

The area is determined using Green’s theorem, implemented numerically in the
OpenCV library (https://opencv.org, accessed on 1 March 2024). Length and width are
derived from the seed’s angle and the extreme limits of the rotated bounding box, ob-
tained through OpenCV methods based on algorithms proposed by O’Rourke et al. [20]
and Klee and Laskowski [21].

Since the measurements are initially in pixels or pixels2, the MAM converts these
values to mm and mm2, respectively, by calibrating the measurement system with a
reference measurement. In this calibration process, a known measurement of 3.5 mm
is precisely marked on the X-ray images using a razor blade, serving as an object of
reference. By precisely counting the pixels along this reference measurement, we establish
the mm/pixels ratio for the images.

To obtain the mm/pixels ratio, the following formula is applied:

mm/pixels ratio =
Known measurement in mm

Counted pixels along the known measurement
. (1)

https://opencv.org
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Subsequently, the ratio defined in Equation (1) serves as a conversion factor, allowing
us to determine the corresponding physical dimensions by simply multiplying the pixel
count of a given measurement by the established mm/pixels ratio.

2.6. Experiment Analysis

For the experiment analysis, we adopted a randomized block design based on the divi-
sions within the X-ray database. This approach aims to reduce bias or confounding factors
that might influence our findings. Initially, we assessed the overall model performance
by blocking based on the fold factor. However, for a more detailed evaluation at the class
level, we maintained the randomized block design, still considering the fold, but this time
stratifying by class.

To check the normality of the residuals, we conducted the Shapiro–Wilk test [22]. For
assessing the homogeneity of variances, we used the O’Neill–Mathews test [23]. While the
majority of the analyses in Section 3 met the assumptions of normality and homogeneity of
variances at the 5% significance level, a few did not comply with one or both assumptions.
Therefore, for these cases, a non-parametric approach, specifically the Wilcoxon test [24],
was employed.

3. Results

We selected the YOLOv8 architecture due to its balanced performance in segmenta-
tion accuracy and efficient training times. Training the model on the seed X-ray dataset
involved 500, 1500, and 3000 epochs, covering dataset sizes of 5, 15, and 30 combinations,
respectively. This training was conducted utilizing an NVIDIA Tesla T4 GPU with the
PyTorch framework.

3.1. Segmentation Performance

The YOLOv8 model achieved an impressive overall Average Precision (AP) of 97.3%
in accurately segmenting seeds and endosperm in the X-ray images (refer to Table 2). This
signifies the correct delineation and classification of seed and endosperm regions in 97.3%
of instances. For comprehensive insights into segmentation performance across training
epochs and dataset sizes, please refer to Tables 2 and 3.

Table 2. YOLOv8 overall segmentation performance (AP, AP50, AP75) by training epochs (500, 1500,
3000) and dataset size.

Dataset
Size

AP AP50 AP75

500 1500 3000 500 1500 3000 500 1500 1 3000 1

5 92.8% 96.3% 97.2% 99.1% 99.2% 99.3% 98.5% 98.6% 99.2%
15 93.7% 96.9% 97.3% 98.8% 99.5% 99.4% 98.0% 99.1% 99.0%
30 93.2% 96.7% 96.6% 98.9% 99.1% 99.2% 98.4% 98.7% 98.8%

1 The combination did not meet the assumptions of normality of the residuals and/or variance homogeneity;
therefore, the non-parametric Wilcoxon test was used as a substitute for ANOVA.

Table 3. YOLOv8 class-wise (seed, endosperm) segmentation performance (AP) by training epochs
(500, 1500, 3000) and dataset size.

Dataset
Size

AP(seed) AP(endosperm)

500 1500 3000 500 1500 1 3000

5 93.8% 98.3% 98.9% 91.8% 94.4% 95.5%
15 95.1% 98.4% 99.0% 92.2% 95.3% 95.6%
30 94.7% 98.6% 98.9% 91.7% 94.9% 94.2%

1 The combination did not meet the assumptions of normality of the residuals and/or variance homogeneity;
therefore, the non-parametric Wilcoxon test was used as a substitute for ANOVA.
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On a per class basis, seeds exhibited a higher Average Precision (AP) compared to
endosperm, achieving 98.9% versus 95.5%, respectively, after 3000 epochs (refer to Table 3).
Despite this slight discrepancy, the inference performance for endosperm remained notably
high, with a minimum AP of 91.7% even after just 500 training epochs. This underscores
the model’s adaptability in handling variability and visual ambiguities inherent in seed
X-rays, particularly within the endosperm area, which tends to exhibit greater variability
compared to the seed area (see Figure 6).

Figure 6. Comparison of segmented seed and endosperm areas by the YOLOv8 model, with contour
levels showing endosperm/seed area ratio (higher ratio indicates better quality).

Furthermore, the Tukey multiple comparison test revealed no statistically significant
differences in AP metrics across varying epoch levels (p > 0.05), while maintaining a fixed
dataset size. This observation indicates a stable performance and suggests appropriate
convergence without overfitting, even when dealing with smaller training set sizes.

3.2. Seed Classification and Vigor Prediction

The segmented seed and endosperm areas obtained through the YOLOv8 model lay
the foundation for an automated classification system for seed vigor levels, relying on
internal morphology. The size of the endosperm, a crucial nutrient reserve for the embryo,
serves as an indicator of germination potential.

Figure 6 shows the relationship between segmented seed and endosperm areas, with
contour levels representing endosperm/seed area ratios—a potential indicator of seed
quality. The majority of points fall within the 50–60% ratio range. Notably, no points
surpass 70%, establishing an initial benchmark for high vigor classification.

Upon qualitative visual inspection (refer to Figure 7), a clear and accurate alignment
is evident between true seed/endosperm boundaries in X-ray images and segmentation
masks predicted by YOLOv8. The model demonstrates proficiency in handling high
appearance variation arising from internal structural ambiguities, rotations, and varying
endosperm densities.
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A B C

Figure 7. Visual comparison between real X-ray seed images and endosperm segmentation masks
from YOLOv8 model for seeds with varying quality: (A) high-vigor seed (endosperm/seed area
ratio ≈ 52%); (B) medium-vigor seed (endosperm/seed area ratio ≈ 12%); (C) low-vigor seed (no
endosperm area, endosperm/seed area ratio = 0%).

4. Discussion

The YOLOv8 model demonstrates impressive segmentation and classification per-
formance even with limited dataset sizes. Given the challenges of compiling specialized
agricultural data, the statistical similarity between 500, 1500, and 3000 training epochs
suggests robust models that avoid overfitting. Notably, segmentation still reached 97.2%
Average Precision (AP) when trained on just five seed X-ray images (refer to Table 2).

This finding is comparable to a computer vision approach used to assess the viability of
guavira treated seeds with tetrazolium salt [25], which achieved better precision with 97.90%
correct recognition for mucilage and 96.71% for lime. However, it relied on destructive tests.
In a vigor test for rice seeds using computer vision techniques [26], a new prediction model
was introduced for non-destructive germination forecasting, achieving a high accuracy of
94.17%. This demonstrates that our results outperform other deep learning methods.

The 50–60% endosperm/seed area ratio range encompassing over 50% of samples (see
Figure 6) offers a clear indication for assessing the viability of seed lots. Although further
physiochemical testing can refine categorical boundaries, this morphological indicator
facilitates quick sorting and selective harvesting.

Deep learning, by automatically extracting spatial features predictive of germination,
circumvents the need for extensive manual measurement while enhancing consistency
compared to subjective human visual assessments. Table 3 highlights the accuracy of
endosperm identification and segmentation, reaching a maximum of 95.6% in 1500 epochs
with 15 training images. The automatic extraction of interpretable morphological features
from X-ray scans through deep learning enables swift and reproducible seed sorting
without requiring specialized image analysis expertise. This method generalizes well
across varying appearances, orientations, and shapes compared to template-matching
approaches. Additionally, easy retraining allows for updates in biological classifications as
expert knowledge evolves.

Our proposed approach offers several advancements over existing methods for seed
quality assessment. Firstly, we utilize a deep learning-based model, YOLOv8, for automated
seed segmentation and classification. As shown in Table 4, most prior works rely on
traditional machine learning techniques [3,13,25,27] without leveraging the representation
learning capabilities of deep neural networks. By using the Darknet53 CNN backbone, our
method can extract robust spatial features predictive of seed vigor levels.

Additionally, our solution provides a low-cost alternative suitable for batch analysis
of seed lots, addressing limitations in techniques requiring expensive hyperspectral cam-
eras [3,13,16,25,28] or destructive biochemical testing [27]. The use of widely accessible
X-ray RGB imagery, correctly segmented over 95% of the time by YOLOv8, offers an af-
fordable option for seed producers compared to hyperspectral imaging utilized in several
related papers.
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Table 4. Related works.

Reference
Machine
Learning

Methodology

Imaging
Technology

Non-
Destructive

Testing

Low Cost
Solution

Use of Deep
Learning

[25]
MNB, RFC,
ADA, MLP,
KNN, SVM

Hyperspectral
Imaging No No No

[3] PLS-R,
SVM-R Vis-NIR HSI Yes No No

[13] PCR, PLS,
SVR

Hyperspectral
Imaging Yes No No

[16] DCNN Hyperspectral
Imaging Yes No Yes

[28] CNN, SVM,
LR, PCA

Near-Infrared
HSI Yes No Yes

[27] Clustering
methods

Visible
Spectrum

RGB Images
No Yes No

This paper YOLOv8 X-ray Yes Yes Yes

Finally, the non-destructive real-time assessment facilitated by our approach enables
the rapid sorting of seed batches into categorical vigor levels with morphological indicators
like endosperm size. This allows for selective harvesting and quality control prior to sow-
ing. The automated measurement of morphological features through post-segmentation
analysis demonstrates comparable or higher accuracy than existing methods, underlining
the viability of our proposed computer vision pipeline for practical applications in the
seed industry.

5. Conclusions

We recommend employing YOLOv8 for the study of the internal structure of Brachiaria
brizantha cv. Xaraés seeds through X-ray images to evaluate seed vigor. YOLOv8, with an
added post-segmentation module, facilitates obtaining quality descriptors for seed batches
based on their internal morphology. This process automates the analysis of segmented
images, replicating human visual analysis.

Our findings suggest that the proposed model performs well in segmenting and
classifying despite having a relatively small dataset. It achieved up to 95.6% accuracy in
identifying and segmenting the endosperm over 1500 epochs with just 15 training images.
The endosperm/seed area ratio, specifically in the 50–60% range, which covers over 50% of
the samples, offers a meaningful measure for assessing the viability of seed batches.

As a future step, we plan to develop a user-friendly web application. This application
aims to be a valuable tool in agricultural engineering post-harvest processes. It will assist
seed production companies by automatically categorizing seed batches, providing the
market with options based on cost-effectiveness.

Author Contributions: Conceptualization, D.d.A.d.S., H.F.A. and D.G.G.; Methodology, D.d.A.d.S.,
E.D.G.d.F. and H.F.A.; Software, D.d.A.d.S. and E.D.G.d.F.; Validation, D.d.A.d.S., E.D.G.d.F., H.F.A.
and D.G.G.; Formal analysis, D.d.A.d.S., E.D.G.d.F. and H.F.A.; Investigation, D.d.A.d.S., E.D.G.d.F.,
H.F.A. and D.G.G.; Data curation, D.d.A.d.S., E.D.G.d.F. and H.F.A.; Writing—original draft, D.d.A.d.S.,
E.D.G.d.F. and H.F.A.; Writing—review and editing, D.d.A.d.S., E.D.G.d.F. and D.G.G.; Visualization,
D.d.A.d.S., E.D.G.d.F. and D.G.G.; Supervision, D.G.G.; Project administration, D.G.G. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior—Brasil (CAPES).



AgriEngineering 2024, 6 879

Data Availability Statement: The data presented in this paper can be accessed upon request to the
corresponding author.

Acknowledgments: Danielo G. Gomes thanks the support of the Conselho Nacional de Desenvolvi-
mento Científico e Tecnológico (CNPq) (grant number #311845/2022-3). We would like to thank
Arley Daniel Peter for proofreading this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the intensification of agriculture for global food

security. Environ. Int. 2019, 132, 105078. [CrossRef] [PubMed]
2. Medeiros, A.D.d.; Silva, L.J.d.; Ribeiro, J.P.O.; Ferreira, K.C.; Rosas, J.T.F.; Santos, A.A.; Silva, C.B.d. Machine Learning for Seed

Quality Classification: An Advanced Approach Using Merger Data from FT-NIR Spectroscopy and X-ray Imaging. Sensors 2020,
20, 4319. [CrossRef] [PubMed]

3. Zhang, T.; Lu, L.; Yang, N.; Fisk, I.D.; Wei, W.; Wang, L.M.; Li, J.J.; Sun, Q. Integration of Hyperspectral Imaging, Non-targeted
Metabolomics and Machine Learning for Vigour Prediction of Naturally and Accelerated Aged Sweetcorn Seeds. Food Control
2023, 153, 109930. [CrossRef]

4. Zou, Z.; Chen, J.; Wu, W.; Luo, J.; Long, T.; Wu, Q.; Wang, Q.; Zhen, J.; Zhao, Y.; Wang, Y. Detection of Peanut Seed Vigor Based on
Hyperspectral Imaging and Chemometrics. Front. Plant Sci. 2023, 14, 1127108. [CrossRef] [PubMed]

5. de Oliveira, G.R.F.; Mastrangelo, C.B.; Hirai, W.Y.; Batista, T.B.; Sudki, J.M.; Petronilio, A.C.P.; Crusciol, C.A.C.; da Silva, E.A.A.
An Approach Using Emerging Optical Technologies and Artificial Intelligence Brings New Markers to Evaluate Peanut Seed
Quality. Front. Plant Sci. 2022, 13, 849986. [CrossRef]

6. Campos, L.V.; Rodrigues, A.A.; Sales, J.d.F.; Rodrigues, D.A.; Filho, S.C.V.; Rodrigues, C.L.; Vieira, D.A.; de Castro, S.T.; Neto, A.R.
Radiographic Imaging as a Quality Index Proxy for Brachiaria brizantha Seeds. Plants 2022, 11, 1014. [CrossRef] [PubMed]

7. Cheng, E.; Song, P.; Wang, B.; Hou, T.; Wu, L.; Zhang, W. Determination of Rice Seed Vigor by Low-field Nuclear Magnetic
Resonance Coupled with Machine Learning. INMATEH-Agric. Eng. 2022, 67, 533–542. [CrossRef]

8. Zhang, S.; Zeng, H.; Ji, W.; Yi, K.; Yang, S.; Mao, P.; Wang, Z.; Yu, H.; Li, M. Non-destructive Testing of Alfalfa Seed Vigor Based
on Multispectral Imaging Technology. Sensors 2022, 22, 2760. [CrossRef]

9. Javorski, M.; Carrara Castan, D.O.; da Silva, S.S.; Gomes-Junior, F.G.; Cicero, S.M. Image Analysis to Evaluate the Physiological
Potential and Morphology of Pearl Millet Seeds. J. Seed Sci. 2018, 40, 127–134. [CrossRef]

10. de Freitas, M.N.; Dias, M.A.N.; Gomes-Junior, F.G.; Abud, H.F.; de Araújo, L.B.; de Moraes, T.F. Discrimination of Urochloa seed
genotypes through image analysis: Morphological features. Agron. J. 2021, 113, 4930–4944. [CrossRef]

11. Domingues, R.C.; Fruet, G.; Abud, H.F.; Gomes, D.G. Imagens de Raios X e YOLOv8 para Avaliação Automatizada, Precisa e
Não Destrutiva da Qualidade de Sementes Braquiária (Urochloa brizantha). In Congresso Brasileiro de Agroinformática (SBIAGRO);
Sociedade Brasileira de Computação: Natal, Brazil, 2023; pp. 167–174, ISSN 2177-9724. [CrossRef]

12. Cioccia, G.; de Morais, C.P.; Babos, D.V.; Pereira Milori, D.M.B.; Alves, C.Z.; Cena, C.; Nicolodelli, G.; Marangoni, B.S. Laser-
induced Breakdown Spectroscopy Associated with the Design of Experiments and Machine Learning for Discrimination of
Brachiaria brizantha Seed Vigor. Sensors 2022, 22, 5067. [CrossRef] [PubMed]

13. Cui, H.; Bing, Y.; Zhang, X.; Wang, Z.; Li, L.; Miao, A. Prediction of Maize Seed Vigor Based on First-order Difference Characteristics
of Hyperspectral Data. Agronomy 2022, 12, 1899. [CrossRef]

14. Xu, P.; Sun, W.; Xu, K.; Zhang, Y.; Tan, Q.; Qing, Y.; Yang, R. Identification of Defective Maize Seeds Using Hyperspectral Imaging
Combined with Deep Learning. Foods 2022, 12, 144. [CrossRef] [PubMed]

15. Simak, M. Testing of forest tree and shrub seeds by X-radiography. In Tree and Shrub Seed Handbook; Gordon, A.G., Gosling, P.,
Wang, B.S.P., Eds.; ISTA: Zurich, Switzerland, 1991; pp. 1–28.

16. Wu, N.; Weng, S.; Chen, J.; Xiao, Q.; Zhang, C.; He, Y. Deep Convolution Neural Network with Weighted Loss to Detect Rice
Seeds Vigor Based on Hyperspectral Imaging Under the Sample-imbalanced Condition. Comput. Electron. Agric. 2022, 196, 106850.
[CrossRef]

17. Glenn, J. Ultralytics YOLOv8. 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 1 March 2024).
18. Brasil Ministério da Agricultura, Pecuária e Abastecimento. Regras para Analise Sementes, 1st ed.; Mapa: Brasilia, Brazil, 2009.

Available online: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/arquivos-publicacoes-insumos/
2946_regras_analise__sementes.pdf (accessed on 1 March 2024).

19. Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis. In Wiley Series in Probability and Statistics;
Wiley: Hoboken, NJ, USA, 2013; pp. 172–175, ISBN 0470542810.

20. O’Rourke, J.; Aggarwal, A.; Maddila, S.; Baldwin, M. An optimal algorithm for finding minimal enclosing triangles. J. Algorithms
1986, 7, 258–269. [CrossRef]

21. Klee, V.; Laskowski, M.C. Finding the smallest triangles containing a given convex polygon. J. Algorithms 1985, 6, 359–375.
[CrossRef]

22. Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [CrossRef]

http://doi.org/10.1016/j.envint.2019.105078
http://www.ncbi.nlm.nih.gov/pubmed/31400601
http://dx.doi.org/10.3390/s20154319
http://www.ncbi.nlm.nih.gov/pubmed/32756355
http://dx.doi.org/10.1016/j.foodcont.2023.109930
http://dx.doi.org/10.3389/fpls.2023.1127108
http://www.ncbi.nlm.nih.gov/pubmed/36923124
http://dx.doi.org/10.3389/fpls.2022.849986
http://dx.doi.org/10.3390/plants11081014
http://www.ncbi.nlm.nih.gov/pubmed/35448742
http://dx.doi.org/10.35633/inmateh-67-52
http://dx.doi.org/10.3390/s22072760
http://dx.doi.org/10.1590/2317-1545v40n2176904
http://dx.doi.org/10.1002/agj2.20839
http://dx.doi.org/10.5753/sbiagro.2023.26555
http://dx.doi.org/10.3390/s22145067
http://www.ncbi.nlm.nih.gov/pubmed/35890747
http://dx.doi.org/10.3390/agronomy12081899
http://dx.doi.org/10.3390/foods12010144
http://www.ncbi.nlm.nih.gov/pubmed/36613360
http://dx.doi.org/10.1016/j.compag.2022.106850
https://github.com/ultralytics/ultralytics
https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/arquivos-publicacoes-insumos/2946_regras_analise__sementes.pdf
https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/arquivos-publicacoes-insumos/2946_regras_analise__sementes.pdf
http://dx.doi.org/10.1016/0196-6774(86)90007-6
http://dx.doi.org/10.1016/0196-6774(85)90005-7
http://dx.doi.org/10.1093/biomet/52.3-4.591


AgriEngineering 2024, 6 880

23. O’Neill, M.E.; Mathews, K. Theory & Methods: A Weighted Least Squares Approach to Levene’s Test of Homogeneity of Variance.
Aust. N. Z. J. Stat. 2000, 42, 81–100.

24. Stuart, A.L.; William, J. Conover. Practical Nonparametric Statistics. Int. Stat. Rev. Int. De Stat. 1972, 40, 393. [CrossRef]
25. Nucci, H.H.P.; de Azevedo, R.G.; Nogueira, M.C.; Costa, C.S.; de Oliveira Guilherme, D.; Hirokawa Higa, G.T.; Pistori, H. Use

of computer vision to verify the viability of guavira seeds treated with tetrazolium salt. Smart Agric. Technol. 2023, 5, 100239.
[CrossRef]

26. Qiao, J.; Liao, Y.; Yin, C.; Yang, X.; Tú, H.M.; Wang, W.; Liu, Y. Vigour testing for the rice seed with computer vision-based
techniques. Front. Plant Sci. 2023, 14, 1194701. [CrossRef]

27. de Oliveira, E.R.; Bugatti, P.H.; Saito, P.T.M. Assessment of clustering techniques to support the analyses of soybean seed vigor.
PLoS ONE 2023, 18, e0285566. [CrossRef]

28. Jin, B.; Qi, H.; Jia, L.; Tang, Q.; Gao, L.; Li, Z.; Zhao, G. Determination of viability and vigor of naturally-aged rice seeds using
hyperspectral imaging with machine learning. Infrared Phys. Technol. 2022, 122, 104097. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2307/1402479
http://dx.doi.org/10.1016/j.atech.2023.100239
http://dx.doi.org/10.3389/fpls.2023.1194701
http://dx.doi.org/10.1371/journal.pone.0285566
http://dx.doi.org/10.1016/j.infrared.2022.104097

	Introduction
	Materials and Methods
	Seeds
	Dataset
	YOLOv8
	Human Analysis of Seed Vigor
	Proposed Method
	Experiment Analysis

	Results
	Segmentation Performance
	Seed Classification and Vigor Prediction

	Discussion
	Conclusions
	References

