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Abstract: Precision agriculture for coffee production requires spatial knowledge of crop yield. How-
ever, difficulties in implementation lie in low-sampled areas. In addition, the asynchronicity of this
crop adds complexity to the modeling. It results in a diversity of phenological stages within a field
and also continuous production of coffee over time. Big Data retrieved from remote sensing can
be tested to improve spatial modeling. This research proposes to apply the Sentinel-2 vegetation
index (NDVI) and the Sentinel-1 dual-polarization C-band Synthetic Aperture Radar (SAR) dataset
as auxiliary variables in the multivariate geostatistical modeling of coffee yield characterized by the
presence of outliers and assess improvement. A total of 66 coffee yield points were sampled from
a 4 ha area in a quasi-regular grid located in southeastern Brazil. Ordinary kriging (OK) and block
cokriging (BCOK) were applied. Overall, coupling coffee yield with the NDVI and/or SAR in BCOK
interpolation improved the accuracy of spatial interpolation of coffee yield even in the presence of
outliers. Incorporating Big Data for improving the modeling for low-sampled fields requires taking
into account the difference in supports between different datasets since this difference can increase
uncontrolled uncertainty. In this manner, we will consider, for future research, new tests with other
covariates. This research has the potential to support precision agriculture applications as site-specific
plant nutrient management.

Keywords: Coffea arabica L.; precision agriculture; cokriging; variogram

1. Introduction

Coffee yield can be affected by climate [1], the occurrence of pests [2], plant phys-
iology [3], water use, plant density and population [4], slope [5], and other factors [6].
Also, coffee plots present higher and lower yield levels at different locations of the plot in
alternate years, a characteristic named “biennial yield” [7]. Many different combinations of
tools can be used to deal with this highly heterogeneous scenario [8].

In 2019, the International Society of Precision Agriculture [9] defined precision agri-
culture (PA) as a management strategy based on the combination of temporal (different
seasons, years, etc.), spatial (varying across the farmland), and individual (agronomical
knowledge) data to support decision making. This site-specific treatment seeks to optimize
the use of resources in terms of agronomic efficiency and financial profits. This means
that PA is based on spatial variability to make decisions. Soil and its properties are highly
complex; therefore, any sampling at a finite number of sites inevitably gives an incomplete
description of natural variation. The recognition of spatial variability takes into account
the spatial heterogeneity of soil attributes, ranging from global to micro-scales. Taking
into account this range of potential factors, uniform management based on the assumption
of spatial homogeneity across the field disregards this wide range of influences. In this
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manner, spatial modeling approaches are needed to guide site-specific management [10].
This includes geostatistical methods, such as the different types of kriging [11–16].

Geostatistics refers to the statistical analysis of phenomena that change in a continuous
spatial manner. It can be defined as the tools that study and predict the spatial structure
of georeferenced variables. Geostatistics has been widely applied in agricultural science
to solve the problem of estimating soil and plant properties in unsampled locations from
sample data [17,18]. Measurement techniques hardly work on the same scale as the process
of interest. Therefore, some small-scale variability may be lost because sampling at a lower
scale is necessary and can rarely be achieved. Yost [19] suggests 30 pairs of points as the
minimum number of pairs of points to structure a variogram, while Webster [13] suggests
100–140 points as the minimum range.

However, when a field is low-sampled, outliers may occur, making the performance
of univariate kriging techniques problematic [20]. In some situations, the information is
multivariate: samples are collected from several locations, and several measurements are
taken for each one. The tools used in multivariate geostatistical analysis are analogous to
those in univariate analysis and include intrinsic hypothesis, covariance, and cokriging [14].
In addition, multivariate geostatistical methods are suited for Big Data applications, since
this allows for the use of auxiliary datasets for improving interpolation over unsampled
areas, especially when dealing with the presence of outliers and irregular grids [10]. More
sophisticated geostatistical models, like cokriging [13], can include auxiliary data.

Big Data are massive volumes of unstructured and structured datasets considered dif-
ficult to process, analyze, and manage using traditional data-processing techniques [21,22].
With the increasing number of remotely sensed data provided by sensors coupled on
orbital satellites at various spatial and temporal resolutions, the number of data gener-
ated has grown exponentially, making multispectral imagery for calculating vegetation
indices [21,23] and SAR satellite imagery [24–26] significant sources of Big Data [22].

The present research problem is how to model the spatial dependence (or autocorre-
lation) of specialty coffee yield in an accurate way since it is an asynchronous crop that
tends to have outliers when it is low-sampled. Therefore, the research hypothesis is that the
use of Big Data as covariates, integrated with multivariate geostatistics, provides models
capable of successfully interpolating the yield of specialty coffee crops, as well as helping
to increase the accuracy of this modeling compared with a univariate approach.

In this context, the objective of this study was to evaluate the use of remotely sensed
data as auxiliary variables in the block cokriging (BCOK) modeling of coffee yield charac-
terized by the presence of outliers.

2. Materials and Methods
2.1. Description of the Study Site and Agronomic Practices

The experimental site was located in Paraguaçu (southern Minas Gerais, Brazil; 21° 39′

13′′ S and 45° 48′ 07′′ W), as shown in Figure 1 together with the soil sampling distribution
in May 2021. This is a 4 ha area for coffee cultivation (Coffea arabica L.) with the cultivar
Catucai Amarelo, transplanted in 2012. There are 2000 plants ha−1 separated by distances
of 2.5 m between rows and 1 m between plants. This coffee plot has an altitude of 894.3 m.
The sampling plan was defined across the coffee plot using a GPS (mean error of 2–5 m),
totaling 40 georeferenced sampling points. Samples of coffee yield were collected in May
2021 by obtaining subsamples from each group of 2 coffee trees composing the sampling
point. In this area, the soil is classified as Argisols. This is characterized as soil with higher
natural fertility (eutrophic), good physical conditions, and more gentle terrain that has
greater potential for agricultural use. Its limitations are more related to its low fertility,
acidity, high aluminum content, and susceptibility to erosion processes, especially on
rougher terrain [27]. Uniform fertilization over the entire coffee plot was conducted directly
on the soil in 2021 by applying around 42, 10, and 42 kg·ha−1 of N, P, K.
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Figure 1. UAV image of the study area with coffee yield sampling points in May 2021.

The climatic conditions of the municipality of Paraguaçu are shown in Figure 2 in
terms of monthly accumulated rainfall and average monthly air temperature. According
to data from the National Meteorological Institute (INMET) [28], since 1961, the absolute
minimum temperature recorded was on 9 June 1985, with a minimum of −1.8 ◦C, followed
by −0.8 ◦C on 21 July 1981 and −0.6 ◦C on 18 July 2000. The historical maximum is 37.1 ◦C
on 3 October 2020, with the previous record being October 2014, on the 14th and 15th,
when the maximum reached 37 ◦C. The record for accumulated rainfall in 24 h was 140 mm
on 8 November 1970. According to the Köppen–Geiger climatic classification, this area is
classified as subtropical humid climate (Cwa) [29].

Figure 2. Climatic conditions (rainfall and average air temperature) of the municipality of Paraguaçu
(state of Minas Gerais, southeastern Brazil).

2.2. Multivariate Geostatistics

To perform multivariate geostatistical analysis, a previous support check is needed [30],
followed by support regularization if the variables have different supports, in other words,
if they are of widely differing spatial resolutions, sizes, or depths [31]. Here, we performed
descriptive and exploratory statistics on all variables. We wanted to regularize the variables
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in a manner that presented mean zero and unit standard deviation. To achieve this distribu-
tion, we performed Gaussian anamorphosis transformation [32] and then fitted the linear
model of co-regionalization (LMC) and used it for block kriging (BCOK) interpolation. A
step-by-step flowchart (Figure 3) synthesizes the methodology.

Coffee yield sampled from field 
and covariates

Data 
Fusion

Gaussian
Anamorphosis
Transformation

Linear Model of 
Corregionalization

(LMC) Fitting

Block Cokriging 
(BCOK)

Is the 
variable 
skewed?

YES NO Different
combinations of coffee

yield and covariates

Performance 
evaluation

Block 
Cokriging

▪ Mean error 
(ME)

▪ Mean squared 
error        
(MSE)

▪ Kriged 
reduced mean 
error (KRME)

▪ Kriged 
reduced mean 
squared error    
(KRMSE)

▪ Ordinary kriging
(as control)

▪ Coffee yield and
NDVI

▪ Coffee yield and
SAR

▪ Coffee yield, SAR 
and NDVI

Figure 3. Overview of the methodology.

2.2.1. Preprocessing with Gaussian Anamorphosis Transformation

Gaussian anamorphosis transformation is used to convert skewed and non-Gaussian
statistically distributed variables into new ones with mean zero and unit standard devi-
ation [30]. BCOK variance and standard deviation using transformed variables instead
of the original ones are closer to the linear and optimal situation [17]. This transforma-
tion is based on the fitting of a polynomial expansion, as shown in Equation (1), named
Hermite polynomials.

Φ = ∑ Ψi Hi(Y) (1)

where Hi(Y) are Hermite polynomials, Ψi are Hermite coefficients. This function is re-
versible and able to convert a non-Gaussian variable into a new variable with mean zero
and unit standard deviation, as shown in Equation (2).

Y = Φ−1(Z) (2)

Then, we performed a geostatistical analysis on the new standardized variables. After
that, we back-transformed the predictions into the raw distribution by using the same
reversible anamorphosis function.

2.2.2. Fitting of Linear Model of Co-Regionalization (LMC)

The linear model of co-regionalization (LMC) is a unified model which considers the
experimental direct and cross-variograms of all the n variables and then performs weighted
least squares (WLS) on the pairs of samples at each lag [33]. To perform WLS well, the
variables need to be highly correlated. The n (n + 1)/2 experimental direct and cross-
variograms of all the n variables are fitted with a linear combination of the NS standardized
variograms of unit sill, gu(u). In matrix notation, the LCM follows Equation (3):

Γ(h) =
NS

∑
u=1

Bugu(h) (3)

where Γ(h) = [γij(h)] is a symmetric matrix (order of n × n) where diagonal elements
contain direct variograms and out-of-diagonal elements contain cross-variograms; Bu = [bu

ij]
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(the co-regionalization matrix) is a symmetrical semi-definite matrix (order of n × n)
containing the sampled values bu

ij for spatial support u [34,35].

2.2.3. Block Cokriging (BCOK)

The basis for geostatistical modeling is the variogram [13,14,17,18]. This is the math-
ematical description of the spatial autocorrelation (or spatial dependence) between a
sampled value and its neighboring sampled values. Equation (4) shows the empirical
variogram, γ(h), which is a discrete variation based on the difference between sampled
values separated by a distance h.

Z(B) =
N

∑
i=1

λiZi (4)

where Zi is the observed value at location i, Z(B) is the predicted value at a block, N is the
number of pairs of observations, B is the block, and λ is the weight.

A variogram shows the spatial structure and variability of a variable over an area.
High spatial dependence means that spatial similarity can be found by analyzing the
sampled values using Equation (5):

γ(h) =
1

2N(h)

N(h)

∑
i=1

[Z(xi)− Z(xi + h)]2 (5)

where γI(h) is the estimated variogram; Z(xi) and Z(xi + h) are the observed values at
locations xi and xi + h; N(h) is the number of observation pairs separated by distance h.

Variograms have three main parameters to consider when evaluating the spatial
structure of samples: nugget (C0), sill (C + C0), and range (R) (Figure 4). The variance
increases with distance and stabilizes at a constant value (C + C0) at a given separation
distance, the so-called range of spatial dependence (or range, R). The sill approximates the
variance of the samples for stationary data. Samples that have a distance between them
greater than the range are not spatially autocorrelated, because the variance is equal to
a random variation with no spatial correlation. If the variogram reaches a plateau (sill)
at a distance, the variable is stationary. If the variance increases continuously, without
reaching a plateau, it indicates the presence of trend effects and non-stationarity. Under
ideal conditions, the experimental variogram (from Equation (5)) should start at the origin
(0,0); therefore, its variation should be equal to zero. However, usually, soil attributes in
the real world have non-zero variance only when h tends to zero. This discontinuity at
the origin is called the nugget effect and is represented by unexplained spatial variation
(microvariability at a shorter distance than the shortest sampling distance) or purely random
variance (such as measurement or sampling error).

Figure 4. Example of a variogram model.
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The experimental variogram must be calculated at different angles to check the exis-
tence of anisotropy. If there is no sign of anisotropy (different behaviors in different direc-
tions), an “omnidirectional” empirical variogram is calculated (usually at angle 0◦) [17].
Then, a theoretical continuous model of the variogram is fitted over the discrete empirical
variogram. The most common models are the spherical, Gaussian, exponential, power-law,
and linear functions [36].

When using BCOK, the main difference consists in the calculation of the point-to-block
covariance [35], according to Equation (1):

C(B, xi) = cov(Z(B), Z(xi)) =
∫

B

C(v, xi)

|B| du′ (6)

where C is point-to-block covariance, |B| is the volume of the block, and C is point-to-point
covariance [35].

The punctual LMC for different combinations of variables requires regularization
over the same block support (here, it is 10 m by 10 m by 0.2 m) by applying block cok-
riging (BCOK) over the selected block grid. The BCOK method can be understood as the
summation of points in the block grid, and for this reason, the coarsest pixel size is the
final spatial resolution. We considered the depth (0.2 m) of soil samples when designing
the block grid. In other words, applying BCOK is a solution to the problem of change in
support [10,33,37,38].

2.3. NDVI and SAR Mosaic Derivation from Sentinel-1 and -2

Remotely sensed data are quite often used as covariates in precision agriculture appli-
cations, since they can be correlated as proxies of key soil-forming factors [39–42]. Quite
often used covariates are vegetation indices such as the normalized difference vegetation
index (NDVI) [43–45], and recently, Synthetic Aperture Radar (SAR) was also correlated as
a covariate for geostatistical modeling in water–soil sciences [46–48].

The NDVI from Sentinel-2 satellite imagery was used as the auxiliary variable for
BCOK and was calculated using Equation (7):

NDVI =
NIR − red
NIR + red

(7)

where NIR is the percent near-infrared reflectance (0.83 to 0.88 µm) and red is the percent
red reflectance (0.64 to 0.67 µm). Both are bands from Sentinel-2 satellite imagery. The
possible values of the NDVI range from −1 to 1, where the pixels with values higher than
0.6 and closer to 1 indicate dense vegetation and greater vegetative vigor [49].

SAR C-band regular imaging from the Sentinel-1 mission over the coffee plot during
the year before harvesting was retrieved. Different from Sentinel-2 optical imagery, SAR
images can penetrate clouds and, for this reason, are widely used for emergency detection
during and after flooding and storms.

NDVI and SAR time series were retrieved using Google Earth Engine (GEE). GEE
is an intrinsically parallel, high-performance computing service platform for large-scale
spatial analysis using Google’s computational capabilities to perform the processing of
spatialized socio-environmental data, such as satellite imagery, deforestation, drought,
disasters, diseases, and environmental protection [50–52].

2.4. Performance Evaluation

Different variogram models were evaluated, and for each, the values of mean error
(ME) (Equation (8)), mean squared error (MSE) (Equation (9)), kriged reduced mean error
(KRME) (Equation (10)), and kriged reduced mean squared error (KRMSE) (Equation (11))
were calculated

ME =
1
N

N

∑
i=1

(Z(xi)− Z(B, xi)) (8)



AgriEngineering 2024, 6 87

MSE =
1
N

N

∑
i=1

(Z(xi)− Z(B, xi))
2 (9)

KRME =
1
N

N

∑
i=1

Z(xi)− Z(B, xi)

s
(10)

KRMSE =
1
N

N

∑
i=1

[
Z(xi)− Z(B, xi))

s

]2

(11)

where Z(xi) is the value sampled at location i, Z(xi) is the predicted value for location i, N
is the number of pairs of sampled and predicted values, and s is the standard deviation of
the sampled values.

ME and KRME values close to zero indicate good model performance. MSE indicates
good model performance when its value is lower than the variance of the sample values.
KRMSE should be inside the range 1 ± (2

√
2)/N [53].

Finally, the spatial dependence ratio (DD) [54] was calculated with Equation (12).
According to Cambardella [54], this index can classify the dataset as indicating (a) strong
spatial dependence, <25%; (b) moderate spatial dependence, 25 to 75%; and (c) weak
spatial dependence, >75%.

DD =
C0

C0 + C
× 100 (12)

where C0 is the nugget effect and C0 + C is the sill.
Finally, BCOK interpolation can have its local accuracy measured using a kriging

standard deviation metric named interpolation variance (S2(x0)) [55]. S2(x0) is the average
of the squared differences between data values and the retained estimates. Yamamoto [55]
presents this metric as Equation (13):

S2(x0) =
N

∑
i=1

λi[Z(xi)− Z(B, x0))]
2 (13)

where λi are the BCOK weights. This interpretation is valid only if all weights are positive
or constrained to be such [55] .

All geostatistics analyses were preformed using the software Geovariances Isatis.neo
2023.08.01 (www.geovariances.com/en/software/isatis-neo-geostatistics-software/,
accessed on 21 October 2023).

3. Results and Discussion

A total of 34 images from the Sentinel-2 dataset with TOA (Top-of-Atmosphere)
atmospheric correction were imported. These images were captured between 1 June 2020
and 10 May 2021 and presented a cloud percentage lower than 20%. The average value of
each pixel was used. A total of 11 images from the SAR datasets from the Sentinel-1 satellite
were imported. These images were captured between 22 June 2020 and 29 April 2021.

Descriptive statistics of coffee yield, NDVI, and SAR datasets are shown in Table 1.
Notably, the number of NDVI and SAR values (N = 1757 pixels) was 44 times larger than
the coffee yield values (N = 40 points), indicating that covariates were exhaustively more
abundant than the primary variable and also indicating that covariates were characterized
as Big Data compared with the primary variable.

Coffee yield showed outliers in its upper values (when the distance between the aver-
age value and the maximum value is higher than double their standard deviation). High
skewness indicates a non-normal distribution [16,35]. Therefore, all variables were trans-
formed using Gaussian anamorphosis. The kurtosis value of coffee yield showed a leptokur-
tosis distribution, while the covariates showed a platykurtic distribution. Medium-to-high
correlation existed between coffee yield measurements and either the NDVI (ρ = −0.56) or

www.geovariances.com/en/software/isatis-neo-geostatistics-software/
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SAR (ρ = 0.61). These high correlations indicate the reliability of using these remote sensing
measurements for applying BCOK.

Table 1. Descriptive statistics for coffee yield and NDVI.

Attribute N Min Mean ± SD Max Kurtosis Skewness

Coffee yield (kg trees−1) 40 0.27 3.05 ± 2.60 16.34 −0.40 0.16
NDVI 1757 0.33 0.56 ± 0.058 0.64 8.0 −2.04
SAR 1757 −10.79 −8.27 ± 0.60 −6.79 3.95 −0.75

Figure 5 shows the values transformed with Gaussian anamorphosis (x-axis) against
the original values (y-axis). The larger the dataset (Figure 5B,C), the lower the sinuos-
ity of the Hermite polynomials on the extreme sides. Skewed distributions could be
more controlled after this data transformation. One can see how different distributions
could be squeezed into a Gaussian distribution centered on zero. Of course, this transfor-
mation was performed before calculating the experimental variograms and fitting their
theoretical models, and it was back-transformed after finishing geostatistical modeling.
Considering that several authors showed how data transformation improves variogram
modeling [16,30,31,34,56–60], we did not perform tests without data transformation.

(A) Coffee yield (B) NDVI (C) SAR

M = 3.425
σ² = 11.03

M = 0.5643
σ² = 3.47 x 10³

M = - 8.271
σ² = 0.3650

Figure 5. Gaussian anamorphosis of coffee yield (A), NDVI (B), and SAR (C).

Anisotropic variograms were calculated for directions separated by angular differences
of 45◦ and 25◦ (not shown) and ± angular tolerance of 22.5◦. No relevant anisotropy sign
was found in the variograms. A relevant anisotropy sign can be found when the sill,
range, and nugget are different in different directions. Isotropic variogram parameters are
presented in Table 2. In the variogram fits (Table 2, Figure 6), the range increased when
we used BCOK instead of OK. This indicates that the BCOK method estimates values for a
larger range of yield. Because of this, it works for a larger number of neighbors than kriging,
in spatial dependence, with greater spatial correlation. According to Gontijo et al. [61],
variograms that present greater ranges indicate more spatially homogeneous fields. Also,
DD increased from medium to very high values after adding covariates. The nugget
value was generally small, even under low-sampling conditions. Here, we only show the
interpolated maps and uncertainty from the BCOK application using the NDVI and SAR,
since it showed the best evaluation metrics.

The variograms for BCOK application using the NDVI and SAR are shown in Figure 6.
The cross-variogram with SAR shows negative cross-covariance, meaning that the primary
and auxiliary variables were negatively spatially correlated, as expected because of the
negative Pearson correlation coefficient.
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Table 2. Parameters of isotropic variogram models for the coffee plot in May 2021.

Scenario C0 C0 + C R DD (%)

OK 0.11 0.24 24.76 31.43
BCOK using NDVI 0.06 0.42 56.20 12.51
BCOK using SAR 0.07 0.61 59.78 10.30
BCOK using NDVI and SAR 0.01 0.70 74.98 2.78
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)
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Figure 6. Linear model of co-regionalization (LMC) with experimental variograms and cross-
variograms of transformed variables (dashed red with red points) and the theoretical continuous
model of the variogram (red lines).

Direct relationships between coffee yield and remotely sensed measurements may
not be captured by spatial autocorrelation because of the interactions among soil fac-
tors [13,61–65]. Only basing the analysis on the comparisons between OK maps and
evaluating the Pearson correlation values may be not sufficient to provide insights about
coffee yield spatial variability. In this manner, multivariate geostatistical analysis can
be more useful in disclosing the spatial-scale-dependent correlations between remotely
sensed data and yield and consequently provide better coffee yield maps if a relationship
between the primary variable and covariates is found. Figure 7 shows the coffee yield map
interpolated using BCOK with the NDVI and SAR.

Figure 7. BCOK-interpolated map of coffee yield sampled in May 2021.
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The assessment metrics are presented in Table 3. OK presented bad results, while
BCOK showed better results, with ME, MSE, and KRME closer to zero and KRMSE close
to one. This indicates an improvement when using BCOK. The final interpolated maps
are not linearly dependent on the bivariate Pearson correlation coefficients but are highly
dependent on the structural coefficients (sill, range, and nugget effect), as in any geosta-
tistical analysis. In this sense, different metrics should be jointly analyzed to evaluate the
results, because any analysis may be subjective if a single metric is used. In addition, the
interpolation variance (Figure 8) showed uncertainty across the coffee plot, with an area in
the southern part of the plot having a higher variance.

Table 3. Cross-validation evaluation with the transformed values.

Scenario ME MSE KRME KRMSE

OK 2.75 3.79 3.93 0.713
BCOK using NDVI 2.71 2.24 2.88 0.777
BCOK using SAR 2.61 1.91 1.86 0.884
BCOK using NDVI and SAR 1.11 1.01 1.12 0.984

Figure 8. BCOK interpolation variance (S2(x0)) map of coffee yield sampled in May 2021.

The results shown here demonstrate how the application of a multivariate cokriging
technique can be used to improve the estimation of coffee yield, even when impacted by
outliers and biennial behavior. For this reason, when using a covariate in a model for
improving the spatial interpolation of a primary variable, quite different combinations can
be used if there is a high correlation between them is found.

Data fusion methods for interpolation are increasingly being used to enhance the
estimation of agronomical attributes for PA applications, as the availability of accurate and
large observation datasets is limited. This study investigated and assessed the performance
of applying BCOK with a primary variable containing outliers. The case study was based
on the spatial prediction of coffee yield in a plot in southeastern Brazil and was more
accurate when the block cokriging (BCOK) method was used, with coffee yield as the main
variable and the satellite-derived NDVI and SAR as auxiliary variables, compared with
both ordinary kriging (OK) and BCOK but with NDVI or SAR only. BCOK application
using the two covariates available achieved a smaller nugget with a larger range in the
cross-variogram model compared with the direct variogram.

Improvement in coffee yield predictability using the combination of sampled data
and remotely sensed data can be particularly advantageous when the observed dataset is
small (less than 75 sampling points). However, careful preparation needs to be conducted
for using multi-sensor datasets together, especially when different sources of data are
based on different support sizes (spatial resolutions), shapes, and configurations. This
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difference among supports is a classic problem in the area of spatial modeling [63–66]. This
problem of change in support needs to be dealt with, because using data with different
supports without regularization results in wrong results [10]. Here, we dealt with the
support difference by applying the BCOK method for regularizing the variables to the same
block support.

4. Conclusions and Recommendation

The study demonstrated that exhaustively remotely sensed Big Data variables can be
incorporated into low-sampled experiments to improve their accuracy and effectiveness for
practical use. Also, taking the support differences into account can help control uncertainty
when incorporating Big Data for improving interpolation over low-sampled fields.

It can be concluded that assessing spatial variability cokriging can be used for precision
agriculture applications as site-specific management. However, the use of multivariate
geostatistics is limited by the correlation between covariates and the primary variable. In
this sense, taking advantage of the current high availability of remotely sensed datasets over
the Earth’s surface and the new facility for retrieving large datasets is crucial to boosting
computer applications in agriculture, thus consuming fewer resources and improving the
environmental and financial management of farming.

Based on our results, we recommend considering using the BCOK approach for
improving spatial interpolation for precision agriculture applications when sampled data
present outliers and covariates with high correlation with the sampled data are available.
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Abbreviations
The following abbreviations are used in this manuscript:

PA Precision agriculture
R Range
C0 Nugget effect
DD Spatial dependence degree
C0 + C Sill or structural component
OK Ordinary kriging
BCOK Block cokriging
LMC Linear model of co-regionalization
NDVI Coefficient of variation
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SAR Synthetic Aperture Radar
SD Standard deviation
KRMSE Kriged reduced mean squared error
KRME Kriged reduced mean error
MSE Mean squared error
ME Mean error
Min Minimum value
Max Maximum value
N Number of observations
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