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Abstract: The adoption of artificial intelligence tools can improve production efficiency in the 
agroindustry. Our objective was to perform the predictive modeling of carrot yield and quality. The 
crop was grown in two commercial areas during the summer season in Brazil. The root samples 
were taken at 200 points with a 30 × 30 m sampling grid at 82 and 116 days after sowing in both 
areas. The total fresh biomass, aerial part, and root biometry were quantified for previous crop har-
vesting to measure yield. The quality of the roots was assessed by sub-sampling three carrots by the 
concentration of total soluble solids (°Brix) and firmness in the laboratory. Vegetation indices were 
extracted from satellite imagery. The most important variables for the predictive models were se-
lected by principal component analysis and submitted to the Artificial Neural Network (ANN), Ran-
dom Forest (RF), and Multiple Linear Regression (MLR) algorithms. SAVI and NDVI indices stood 
out as predictors of crop yield, and the results from the ANN (R2 = 0.68) were superior to the RF (R2 
= 0.67) and MLR (R2 = 0.61) models. Carrot quality cannot be modeled by the predictive models in 
this study; however, it should be explored in future research, including other crop variables. 
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1. Introduction 
Carrot (Daucus carota L.) is an important vegetable among the top 10 vegetables 

grown worldwide [1]. It is a geocarpic vegetable crop established underground and is 
abundant in biologically active substances, such as vitamins, anthocyanins, and carote-
noids. Such compounds have antioxidant, antitumor, and antihypertensive capabilities 
and other beneficial characteristics for human health [2]. In addition to these components, 
carrots contain fermentable sugars to produce bioethanol and can contribute to energy 
security. 

The genetic factors of the cultivars, growing season, environmental conditions, and 
management practices in the field affect the quality of the roots [3]. Among the factors 
associated with crop quality, in decreasing order of importance, are cultivar, environmen-
tal conditions, and practices of cultivation [4]. These factors interact with each other to 
optimize crop yield and root quality. The quality of the table carrots (in natura), the focus 
of this study, is a characteristic that is even more required for food consumption. The 
visual aspects of uniformity, such as size, shape, and flavor, define the market value and 
consumer preference. There are numerous alternatives to evaluate the general quality of 
the roots, such as the flavor and texture for consumption, the size of the classes, and the 
lack of defects on the final product to the market. The morphology of carrots is influenced 
by its genetic components, which impact the relationship between shoot biomass and stor-
age root biomass [5]. Over the period of cultivation, there is a deformation of the roots, 
associated with the accumulation of biomass, according to the environmental and soil 
conditions of the agricultural area. The carrot has a pivoting root system, with a main, 
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long, and conical primary root, generally orange in color. The aerial part of the plant is 
composed of leaves that are compound and pinnate, with lanceolate or ovate segments, 
serrated margins, and a dark green color. During the second year of cultivation, the plant 
produces an umbel-type inflorescence, with numerous small white or slightly pink flow-
ers. 

The content of total soluble solids (sweetness or °Brix) and firmness are directly re-
lated to the quality of the carrots for the food sector. The °Brix is commonly evaluated in 
the laboratory by quantifying the amount of free sugars in its composition. Firmness is 
measured by the resistance of the food to the penetration of an equipment, inferring the 
crispness of the food when consumed fresh. These characteristics make up essential ap-
pearance, flavor, and texture factors that indicate the freshness and ripeness of the prod-
uct. 

Flavor, sweetness, and texture are organoleptic variables of appreciation during con-
sumption. Mpemba et al. [6] evaluated the soluble solid content of fresh carrots with a 
refractometer, obtaining values of 9.33 °Brix and a firmness of 23.58 N. This is in accord-
ance with the average of 7.82 °Brix and a firmness of 31.81 N obtained in this study. Tem-
perature affects the sweetness of carrot roots. Colder temperatures (about 9 °C) increase 
the glucose and fructose contents of the root, while normal temperatures (21 °C) favor the 
accumulation of sucrose and carotene in the product [7]. Carrots under climatic conditions 
in this study, around 25 °C, favored greater color despite their sweetness. Small changes 
in the biochemical composition of plants, closely linked to the plant’s physiology, make it 
possible to evaluate the crop quickly and non-destructively in relation to its physiological 
stage. In carrot germplasm, total sugar varies more than ten-fold [8], and terpenoids are 
genetically controlled by 30 quantitative trait loci (QTLs) [9]. The sugar content also affects 
the level of sweetness, and volatile terpenoids affect the product’s flavor [10]. 

Some contributions of this study to agricultural engineering include innovative tools 
for monitoring carrot yield and quality characteristics, essential for agronomical decision-
making processes in the field. Investigating locally the variation in the yield and quality 
of the carrots would enable us to define management zones and even define locations with 
higher yield potential for the crop. Agricultural areas with a greater potential for produc-
tion can increase the efficient use of resources such as fertilization, pesticides, seed popu-
lation, and sowing period. Areas of carrots with higher sugar contents can be directed 
towards energy production or greater value in the consumer market. 

Different predictive approaches to crop parameters leveraging remote sensing (RS) 
and artificial intelligence (AI) are being explored in the literature [11–13]. RS involves col-
lecting data on the Earth’s surface using sensors installed on satellites or remotely piloted 
aircraft to monitor large areas at low costs [14], control in-season weeds, identify the 
health of the crop, and predict crop yield in a non-destructive way. 

Vegetation indices (VIs) are calculated by equations from the spectral bands [15], 
which makes it possible to map the dynamics of the crop to better understand the field 
conditions and practices that interfere with the yield and its desired qualitative attributes. 
Wei et al. [11] did not observe a linear relationship between 88 spectral bands and carrot 
yield. Therefore, the application of machine learning methods is favorable for modeling 
this variable (non-linear behavior). The authors identified that the reflectance of the NIR 
(near-infrared) spectral band increased during crop growth, and the RGB bands decreased 
at 40 days after sowing (DAS) due to the root phenological stage. The accuracy of crop 
yield prediction varies depending on the climatic conditions during the development of 
the plants. The correlation between VIs and yield changes throughout the crop cycle, so it 
would not be ideal to only use a fixed period to model crop yield through remote sensing 
[12-14]. Monitoring geocarpic crops, such as carrots, is more complex because the organ 
of interest is established underground [15-16], and its extraction is necessary for sampling 
[17]. 

Agricultural systems based on machine learning (ML) methods can become more ef-
ficient and sustainable in the different scenarios of production [18-19]. ML is fundamental 
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for improving the growth of crop yield in a sustainable manner, helping to interpret and 
correlate field data with computational techniques that can contribute to supporting deci-
sion making in agriculture [20-21]. Yield and quality modeling for underground crops, 
such as carrots, is limited, as the product of interest is evaluated indirectly through its 
aerial part, which reduces the accuracy of predicting its parameters [22-23]. There are still 
no studies that have jointly explored the yield and quality of the carrots in commercial 
conditions. This study aims to establish a relationship between the variables of total fresh 
mass, aerial part, and roots, as well as the variables of length, diameter, °Brix, and firmness 
of the roots, together with crop reflectance data on a large scale. 

2. Materials and Methods 
2.1. Experimental Areas 

This work was carried out in two irrigated commercial areas in São Gotardo, Minas 
Gerais, Brazil. Encrusted seeds of the carrot hybrid EX 4098 (Tropical Nantes Group) were 
sown in the summer season (2022/2023) at two different periods: 29 August (Site 1, coor-
dinates 19°24′33.3″ S 46°15′58.0″ W, UTM23S), and October 24 (Site 2, coordinates 
19°25′45.7″ S 46°16′46.6″ W, UTM23S), with a final population of 466,700 plants per hectare 
after thinning (Figure 1). 

 
Figure 1. Experimental sites 1 (A) and 2 (B) and their respective areas of data collection. 

The soil condition of the pivots is a red-yellow Oxisol with a smooth wavy relief 
(LVd4). The soils at the experimental sites have a history of agricultural cultivation span-
ning over 30 years with annual crops and are destined most of the time for vegetable crops. 
The soil profile was prepared with a subsoiler (0.06 m deep) and a rotary hoe with a tiller 
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(0.015 m deep) for sowing hybrid encrustations. The choice of the areas followed the cri-
teria of accessibility to the cultivation site and logistics of transporting the carrot samples 
to the laboratory. 

2.2. Root Sampling and Biometric Assessment 
Root sampling consisted of two data collection periods: 82 and 116 DAS, with 50 

points at each data collection in both experimental areas (total: 200 sampling points). 
These periods were chosen according to the best time for crop modeling according to Sua-
rez et al. [13], corresponding to the full radial filling (82 DAS) and the date before crop 
harvesting (116 DAS). The climatic conditions were 1600 degree-days and 2260 degree-
days (base temperature of 3 °C) for 82 and 116 DAS, respectively (Figure 2). 

 
Figure 2. Meteorological data from both experimental sites over the crop season. Source: NASA 
Power, 2022–2023 (https://power.larc.nasa.gov/data-access-viewer/), accessed on: 8 January 2024. 

Irrigation and cultural treatments were carried out according to the needs of the crop, 
which were monitored daily by a regional station. A hailstorm event occurred in Site 1 
between 82 and 116 DAS, momentarily interfering with the aerial part of the plants. One 
week after rainfall, with a nutritional management strategy, the plants were recovered. 

All sampling points were georeferenced with a GNSS (Global Navigation Satellite 
System) receiver. The sampling points were spaced using a grid of 30 m × 30 m, which 
was defined to reduce the interference between the sampling points and satellite imagery 
for obtaining the VIs. The collection of carrot roots was carried out manually within the 
beds containing four double-sowing lines. A metal template of 1.60 m × 0.155 m was used 
to delimit the sampling area of 0.25 m2. This sampling area was chosen by observing the 
mass of the carrots and to facilitate the data collection in the field (Figure 3). 
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Figure 3. Manual data collection of the carrots. 

Based on the carrots collected in the delimited area, the total fresh biomass and the 
biomass of the aerial part and roots were determined separately. The aerial part and roots 
were detached close to the base of the root using a knife at the field. A semi-analytical 
balance was used with an accuracy of 0.01 g (grams) to measure crop biomass. The crop 
yield was extrapolated from the mass in grams over the area of 0.25 m2 determined for 
boxes per hectare (29 kg box, commercial standardization of the carrots before washing 
process). Then, three carrots were subsampled per sampling point for the biometric anal-
ysis of the root length and diameter. These roots were sent to the laboratory for qualitative 
analysis. 

2.3. Qualitative Analysis of the Roots 
The subsampled carrots were sanitized and placed in identified plastic bags and 

stored under refrigeration at 2 °C to prevent the loss of their characteristics. Total soluble 
solids (°Brix) and firmness readings for quality analysis were taken two days after collect-
ing the three carrots per sampling point to obtain an average °Brix per sampling point. 
For the analysis of total soluble solids (SST or °Brix), the refractive index method was used 
[24]. °Brix determination was carried out using the VX0-90 portable digital refractometer 
model (accuracy of 0.2%) with automatic temperature compensation to 20 °C. The pure 
and undiluted carrot liquid was measured after maceration and expressed in the form of 
a percentage [25]. The assessment of root firmness also used a direct method with a port-
able MOD model penetrometer PTR-300 (accuracy of 0.5%) equipped with an 8 mm di-
ameter tip [26]. Three readings were taken near the base of the roots to calculate the aver-
age firmness per sample point, and the results were expressed in Newton (N). 

2.4. The Acquisition and Processing of Satellite Imagery 
Satellite images were required to establish the relationship between biometric and 

qualitative variables of the plant roots and vegetation indices during the data collection 
period. The satellite images were acquired using the PlanetScope CubeSat platform, which 
consists of 148 different types of nanosatellites in orbit with high spatial and temporal 
resolutions that capture images at wavelengths of spectrum: 618 to 780 nm (red), 497 to 
570 nm (green), 427 to 476 nm (blue), and above 700 nm (NIR) with a spatial resolution of 
3.0 m and a spectral resolution equal to four [27]. The images from the experimental areas 
were requested and subsequently downloaded for the calculation of the selected vegeta-
tion indices based on the spectral bands available. 

An interval of a maximum of three to five days was recommended before collecting 
samples in the field to extract vegetation indices due to the occurrence of clouds. The VIs 
that were calculated and analyzed were the NDVI (normalized difference vegetation in-
dex [28]), SAVI (soil adjusted vegetation index [29]), EVI (enhanced vegetation index [30]), 
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and RDVI (re-normalized difference vegetation index [31]). These VIs were chosen be-
cause they are widely used in agronomic studies, mainly for underground crops. The VI 
values were extracted from each georeferenced sampling point for each experimental area 
and processed in QGIS 3.4. The constants in each equation from the VIs were determined 
as L = 1.0; G = 2.5; C1 = 6; and C2 = 7.5. 

2.5. Development of Predictive Models 
Principal component analysis (PCA) is based on multivariate statistics to analyze and 

interpret the interrelationships between variables according to their dimensions. Each var-
iable considered in the analysis becomes a component. The components can be extracted 
using a covariance matrix or correlation matrix. PCA is a non-parametric linear statistic 
most used to understand and orthogonalize the dataset [32-33]. This analysis was carried 
out to filter the most important variables, aiming to find the smallest set of these with a 
minimal loss of information. PCA was performed in R 4.3.2 and selected the variables that 
were used in the multiple output regression algorithms to predict carrot yield and quality 
individually. 

Before submitting the dataset to the predictive models, the outliers were removed 
and scattered in data points observed on the PCA for the subsequent analyzes of correla-
tion between the variables. The dataset was normalized for training and testing in model-
ing. To predict the carrot yield and quality by vegetation indices, three regression methods 
were used: an Artificial Neural Network (ANN), Random Forest (RF), and Multiple Linear 
Regression (MLR). For the training and testing of the predictive models, the data were 
split by sampling period (82 and 116 DAS), which were subsequently randomly divided 
into 70% and 30% of the dataset, respectively, as a manner of reducing bias and overfitting 
the models. This procedure was carried out to have points of calibration on modeling for 
both periods of sampling. A cross-validation was carried out to test and verify the perfor-
mance of prediction in the training process of all regression methods. 

An ANN is a supervised machine learning technique that uses artificial neurons that 
are capable of learning patterns in a dataset from examples by adjusting the weights be-
tween connections of neurons according to the training data [34]. The RF algorithm is also 
a supervised model commonly used to improve the accuracy of the predictive models by 
joining other simpler models. In this model, the number of trees and prediction variables 
at each node are defined according to the minor error observed [35]. MLR is considered a 
technique that considers the relationship of predictor variables with a single criterion var-
iable, being successful in modeling biological processes. Its structure is described by 
equating a regression in the estimation of regression coefficients, measures of overall 
model fit, and the contribution of individual predictor variables [36-37]. The performance 
of the predictive models was evaluated by means of accuracy (R2), root-mean-squared er-
ror (RMSE), and mean absolute error (MAE). All processes of modeling were performed 
on Python 3.12.0 (JupyterLab interface) using the Numpy, Pandas, Scipy Stats, and Scikit-
learn libraries. 

A synthesis of the proposed methodology is depicted in Figure 4. It includes the (i) 
manual data collection of 200 sampling points in the field (ground-truth); (ii) acquisition 
of orbital images with multispectral data; (iii) statistical correlation among the sampling 
points and calculated VIs and the selection of variables by the PCA; (iv) splitting the da-
tabase into the training and test datasets; (v) developing predictive models for carrot yield 
and quality; and (vi) comparing the performance of each modeling by the selected metrics 
(R2, MAE, and RMSE). 
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Figure 4. Flowchart of the experimental process and data processing. 

3. Results and Discussion 
3.1. Normality of the Dataset 

The total fresh mass of the carrot plants was within the normal curve, with an R2 
value of 0.94 (Figure 5). The PCA showed that the data collected in the experimental areas 
for the qualitative and quantitative variables on the different dates explained 89.4% of the 
carrot variation in the field, being above the critical limit of 80% for PCAs [38] (Figure 6). 

 
Figure 5. Comparison of the total crop mass data in relation to the normal distribution. 
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Figure 6. Principal component analysis at 82 and 116 DAS. MT-total mass; MA-air mass; MR-root 
mass; C-root length; D-root diameter; B-°Brix; and F-firmness; E1-experimental site 1; E2-experi-
mental site 2. 

The variables that are correlated with CP1 and CP2 are the most important in ex-
plaining the variability in the dataset. The PCA also highlighted the temporal influence 
on the arrangement and structuring of eigenvalues and eigenvectors according to the pe-
riod of data collection. For component 1, there was a strong correlation for the NDVI at 
116 DAS in Site 2, where it contributed more effectively to the characterization of the root 
mass. The SAVI obtained the best results at 116 DAS for Site 2 for the quantitative varia-
bles, such as the total mass and root length of the crop. 

In component 2, the EVI had a strong positive correlation at 82 DAS for Site 2. The 
RDVI, root diameter, °Brix, and firmness had little explanatory power, regardless of the 
period of data collection. 

The better performance of the variables in Site 2 can be explained by the fact that in 
Site 1, there was a hailstorm between 82 and 116 DAS, which may have compromised the 
modeling of the quality of the roots. Concerning the °Brix and firmness variables in the 
results generated by the PCA, none of the machine learning models were able to accu-
rately predict root quality in this study. Future studies can be developed, including the 
collection of samples at the end of the crop cycle and the assessment of the root mass with 
automated solutions, such as data sampling using multispectral sensors on robotic plat-
forms over the field. 

The descriptive statistics of all the measured data by experimental area is shown in 
Table 1. The numerical values of the VIs were obtained from orbital images by image pro-
cessing, and the crop variables were measured in the laboratory prior to harvesting. It was 
observed that there was a higher variation in the values of SAVI compared to other VIs 
that could be attributed to the influence of soil reflectance and low vegetation cover at the 
initial stages of crop development, which implicated a high coefficient of variation on Site 
1 (CV = 32%). The variable air mass had a higher CV compared to the other crop variables, 
indicating that the aerial part of the vegetable was not uniform over the experimental site. 
It can occur due to the different levels of solar radiation over the field and the maturation 
processes of the crop. 
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Table 1. Descriptive statistics of the database. 

 Minimum Maximum Mean SD CV (%) 
Variables Site 1 Site 2 Site 1 Site 2 Site 1 Site 2 Site 1 Site 2 Site 1 Site 2 

NDVI 0.68 0.68 0.91 0.88 0.78 0.81 0.05 0.04 7 6 
RDVI 0.32 0.41 0.92 0.60 0.87 0.55 0.04 0.01 5 3 
SAVI 0.31 0.42 0.88 0.63 0.52 0.58 0.17 0.02 32 3 
EVI 0.60 0.44 0.93 0.72 0.76 0.63 0.10 0.03 13 5 

Total mass (g) 693 1400 6412 4466 3326 3003 734 525 22 17 
Air part (g) 281 434 3192 2436 1164 1224 393 334 34 27 

Root mass (g) 174 595 3357 3598 1234 1883 343 412 28 22 
Root length (cm) 14 16 24 22 18 1883 1 1 7 5 

Root diameter (cm) 19 25 31 43 25 32 1.53 3 6 10 
°Brix 7.65 6.50 7.87 9 7.76 7.88 0.03 0.41 0.35 5 

Firmness (N) 29.79 26.15 32.38 39.78 31 32.56 0.33 1.76 1 5 
SD: standard deviation; CV: coefficient of variation. 

3.2. Correlations between Variables 
The results of the statistical correlations (Table 2) indicated that the SAVI and NDVI 

stood out significantly in relation to the variables of carrot yield (root mass) and quality 
(firmness). It was observed that carrot yield showed high values of correlation with the 
SAVI and NDVI. The total mass was correlated by 78 and 68%, respectively. The SAVI and 
NDVI correlated with root mass at 67 and 78%, respectively. Root length had a low corre-
lation for measuring the crop yield and quality for all variables studied. The qualitative 
attributes °Brix and firmness were not correlated with each other and showed a low rela-
tionship with the root mass of the crop. An inverse negative relationship was observed 
between the RDVI and root diameter (r = −0.67). The diameter of the roots is directly and 
linearly proportional to the carrot’s total biomass and root yield [39]. In this study, root 
mass and diameter correlated by 49%. 

Table 2. Correlations between predictor variables. 

 NDVI RDVI SAVI EVI 
Total mass 0.68 0.24 0.78 0.64 
Aerial mass 0.14 0.03 0.54 0.48 
Root mass 0.78 −0.21 0.67 0.09 

Root length 0.25 0.03 0.26 0.12 
Root diameter 0.38 −0.67 0.21 −0.55 

°Brix 0.23 −0.33 0.23 −0.17 
Firmness 0.56 −0.15 0.31 −0.05 

Bold numbers mean r > 0.65. 

The SAVI also stood out in other studies with crops that have a low area of vegetative 
coverage at the beginning of the cycle and organs positioned below the ground. The good 
performance of the SAVI correlation with the total mass and root mass assessments is 
linked to the correction of soil reflectance, which can mask the real reflectance of the crop’s 
vegetation [40]. Other methodologies to determine °Brix and firmness should be tested to 
improve the capacity to understand the in-field variations in total soluble solid content 
and root texture. Reading the °Brix value on the refractometer is simple and quick. How-
ever, there must be a standardization of the time of collection of the food to be analyzed 
and checking the calibration of the equipment. This standardization is already recom-
mended for fruits and other foods [41], but there is no clear and specific methodology for 
carrots. 
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The measurement of crop biometrics, as well as qualitative characteristics, should be 
carried out to determine the phase indicated after half of the cycle as it is more related to 
the real yield of the crop. After the slow phase of germination and emergence of carrot 
seedlings, the root develops in length in relation to the soil surface until around 45 DAS. 
Soon after this growth in depth, the roots grow radially and increase their diameter. The 
aerial part stabilizes at this stage, while the roots grow in diameter. The closer to the end 
of the crop cycle, the greater the accuracy of the predictive models will be, because the 
crop has already defined its potential for production (maximum accumulation of reserve 
substances and ideal size required by the commercial classification). 

Carrot cultivation lacks modeling methods focused on root quality parameters. We 
brought some answers for the continuity of the qualitative modeling of the crop. It was 
observed that no regression model was able to predict the quality of the roots. Although 
carrot quality modeling was not obtained in this study, the use of simple and accessible 
AI tools can make them more applicable in the field for decision-making purposes regard-
ing the management of the crop. New studies with intensive data collection at the end of 
the crop cycle could accurately predict root quality before commercial harvest. 

3.3. Assesement of Model Performance 
The ANN algorithm proved to be accurate in predicting carrot yield. The model’s 

performance after training had an R2 value of 0.68 and a RMSE of 23.80 boxes ha−1 (Figure 
7A). For training and testing the model, the SAVI and NDVI were selected previously, 
which obtained a better correlation with crop yield. These Vis are considered capable of 
deriving relationships between the intrinsic characteristics of crop physiology and moni-
toring variations in underground crops in the field [42]. The performance of the regression 
based on the RF algorithm comprised an R2 value of 0.67 and a RMSE of 23.93 boxes ha−1 
(Figure 7B) using the same Vis. The results from RF modeling are also in agreement with 
the coefficients found in the literature for underground crops [43, 44]. The results from the 
MLR model, after training, had a performance comprising an R2 value of 0.61 and a RMSE 
of 24.21 boxes ha−1 (Figure 7C). The advantage of this model is its simple structuring of the 
predictor variables for developing the regression that explains the outputs. However, it 
has the disadvantage of the occurrence of multicollinearity, which implies a high degree 
of correlation between the independent variables and impacts the estimation of the regres-
sion coefficients. 

 
Figure 7. Performance of the predictive models by method: ANN (A); RF (B); and MLR (C). 

Machine learning algorithms are continually employed to build models that predict 
crop yield. There are no definitive conclusions about the best fitting model; however, more 
complex models, such as ANNs, stand out [45, 46]. The ANN model was superior in terms 
of its accuracy and minor error to predict carrot yield at the field level, followed by the RF 
and MLR models (Table 3). Although the ANN algorithm is considered ineffective on a 
sub-regional scale with a relatively limited database [46]. The results found in this work 
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showed that the model was able to model crop yield with greater accuracy compared to 
the RF and MLR methods. R2 values above 0.5 in underground crop modeling are not 
always found in the literature using Vis to predict underground crop yield, even with the 
application of ML methods [11]. 

Table 3. Metrics of the performance of ANN, RF, and MLR modeling from the test dataset. 

Model R2 MAE RMSE 
ANN 0.68 566.64 23.80 

RF 0.67 572.47 23.93 
MLR 0.61 591.22 24.21 

MAE: mean absolute error (boxes ha−1). RMSE: root-mean-squared error (boxes ha−1). 

ANNs and MLR were used in a study on three types of carrots by the authors of [47] 
to understand the relationship between root volume and agroclimatic factors on yield. 
These authors found adjustments of 0.80 to 0.90 for modeling carrot yield. Tedesco et al. 
[18] modeled the yield of sweet potato with RF regression and obtained errors ranging 
from 2.50 to 2.90 t ha−1, regardless of the stage of the crop-growing season. The SAVI also 
resulted in better performance in the RF model for this underground crop in this study. 
Wei et al. [11] modeled carrot yield with the RF algorithm using raw spectral bands and 
obtained an R2 value of 0.82 and an average error of 2.64 t ha−1. Madugundu et al. [21] 
concluded that the SAVI correlated satisfactorily with carrot yield in their regression mod-
els with an error of 4.50 t ha−1. Abbas et al. [48] studied ML algorithms to predict potato 
yield with a RMSE ranging from 5.97 to 6.17 t ha−1. The MLR model of this study is similar 
to that reported by Suarez et al. [12]. The authors had optimal regression adjustments be-
tween the VIs and total carrot root production and its size [49], such as the EVI (R2 0.58), 
RDVI (R2 0.78), and SAVI (R2 0.77). 

The findings of this study could be used in regional cooperatives of agriculture to 
share the estimate of carrot production, avoid crop damage by the tendency of meteoro-
logical data, and manage field conditions to obtain a higher quality of the product (added 
value to the agroindustry chain). It is common to share this kind of information among 
farmers in Brazil by means of regional or local agricultural cooperatives. 

The potential ethical and social implications of the adoption of AI tools in the agroin-
dustry is related to some principles, such as transparency, privacy, sustainability, and re-
sponsibility [50]. So, the development of the proposed methodology from this study re-
quires attending to those principles to enable sharing data (imagery, meteorological, and 
crop variables) and performing computational modeling to validate it on national condi-
tions of production on a large scale. 

The implications of this study for the future of agricultural production are related to 
the integration of multiple sources of data to optimize crop yield and quality, manage the 
input applications in the field (water, macronutrients, and energy) to reduce the negative 
impact on the environment, and prove the mechanized operations based on historical da-
tabases for sustainability purposes. 

4. Conclusions 
This study tested different AI algorithms to predict carrot yield and quality based on 

tropical conditions and previous harvesting, using reflectance data and ground-truth data 
as input variables in predictive modeling. The satellite imagery was selected according to 
the crop’s phenology, which enables us to observe the crop’s response and its spectral 
reflectance by the days after sowing for both experimental areas. The total mass under 
both field conditions demonstrated higher variability, indicating a non-uniformity of the 
cover plants despite having the same agricultural practices related to the plant’s nutrition 
and irrigation management. The SAVI and NDVI indices from orbital images showed 
promising results on predicting carrot yield, demonstrated by the results of correlation 
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and relevance as input variables in modeling. Principal component analysis revealed the 
temporal influence on predictor variables, which can be useful for optimizing crop moni-
toring over the fields. The ANN algorithm demonstrated greater accuracy and lower error 
on crop yield prediction in relation to the RF and MLR methods. Although crop quality 
did not achieve satisfactory results in this study, it was possible to provide methodological 
contextualization for future research and data analysis. This study enables us to imple-
ment AI modeling on agricultural scenarios as an alternative manner of field management 
based on data-driven solutions and integrating multiple sources of georeferenced data. 
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