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Abstract: The integration of aerial monitoring, utilizing both unmanned aerial vehicles (UAVs) and
satellites, alongside sophisticated machine learning algorithms, has witnessed a burgeoning preva-
lence within contemporary agricultural frameworks. This study endeavors to systematically explore
the inherent potential encapsulated in high-resolution satellite imagery, concomitantly accompanied
by an RGB camera seamlessly integrated into an UAV. The overarching objective is to elucidate the
viability of this technological amalgamation for accurate maize plant height estimation, facilitated by
the application of advanced machine learning algorithms. The research involves the computation of
key vegetation indices—NDVI, NDRE, and GNDVI—extracted from PlanetScope satellite images.
Concurrently, UAV-based plant height estimation is executed using digital elevation models (DEMs).
Data acquisition encompasses images captured on days 20, 29, 37, 44, 50, 61, and 71 post-sowing.
The study yields compelling results: (1) Maize plant height, derived from DEMs, demonstrates a
robust correlation with manual field measurements (r = 0.96) and establishes noteworthy associations
with NDVI (r = 0.80), NDRE (r = 0.78), and GNDVI (r = 0.81). (2) The random forest (RF) model
emerges as the frontrunner, displaying the most pronounced correlations between observed and
estimated height values (r = 0.99). Additionally, the RF model’s superiority extends to performance
metrics when fueled by input parameters, NDVI, NDRE, and GNDVI. This research underscores the
transformative potential of combining satellite imagery, UAV technology, and machine learning for
precision agriculture and maize plant height estimation.
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1. Introduction

Maize (Zea mays L.) stands as one of the foremost globally cultivated and adaptable
crops, serving as a nutritional sustenance for both human populations and animals [1].
Nevertheless, variables like canopy vitality, nutritional status, adaptability, and plant
growth exert substantial influence on ultimate yield outcomes. The interplay of these
factors, coupled with environmental and genetic diversity, can wield significant sway over
plant height dynamics [2].

Efficient and accurate assessment of plant height is paramount in appraising maize’s
growth potential, furnishing agronomists with essential insights into plant development
for well-informed decision-making regarding field management practices. In recent years,
innovative methodologies encompassing remote sensing techniques, unmanned aerial
vehicle (UAV) imagery, and the power of machine learning (ML) have been steadily gaining
prominence in modern agricultural paradigms [3–6]. In this context, achieving swift
and accurate large-scale estimations of maize plant height and enabling dynamic growth
monitoring [7] play a pivotal role in amplifying crop management strategies [8], facilitating
evaluations of cultivars in the fields, and empowering informed decision-making among
agricultural stakeholders.
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In recent studies, UAVs equipped with red-green-blue (RGB) sensors [9,10], multi-
spectral sensors [11], hyperspectral sensors [12], and LiDAR systems [13] have been utilized
to estimate plant height in various crops. The adoption of RGB cameras is particularly
interesting due to their accessibility and operational simplicity [8], enabling the generation
of digital surface models that provide insights into vegetation height [14,15]. However,
the underexplored potential in vegetation indices, which directly correlate with canopy
structural inputs and spectral responses [16], has been relatively underutilized in maize
plant height estimation. Another significant advancement in agriculture is the integration
of machine learning, which has substantially enhanced the processing of extensive data
sets and demonstrated precision in estimating critical agronomic parameters [6,17,18].

Numerous regression techniques, including conventional linear regression, can en-
counter challenges when applied to a specific set of input data due to data complexity
and multicollinearity among predictor variables [19,20]. In contrast, regressions founded
on machine learning algorithms, such as random forest (RF), K-nearest neighbor (KNN),
support vector machine (SVM), and decision trees (DT), offer enhanced precision and
are tailored to address intricate interactions. These algorithms prove valuable in estimat-
ing critical agronomic parameters across diverse crops [2,21–24]. Nonetheless, machine
learning algorithms rely on a single estimation model and may tend to overfit when
confronted with limited training data, as observed with KNN, SVM, and RF [8]. To allevi-
ate such concerns, pre-processing input data through normalization, utilizing extensive
databases [25], and applying data partitioning methods like K-fold [26] can effectively miti-
gate the risks of overfitting and underfitting during the training process, thereby bolstering
the models’ capacity for generalization. Integrating machine learning with data from UAVs
and satellites stands as a promising strategy for monitoring plant height dynamics at a
large experimental scale. This method not only meets the demand for remote assessment
but also provides cost-effective implementation, enhanced flexibility, reduced labor, and
heightened precision.

This study leveraged vegetation indices extracted from PlanetScope images and digital
elevation models generated from UAV imagery. These data were harnessed alongside
machine learning algorithms implemented in Python to accurately estimate plant height
within field settings. The study aimed to achieve three key objectives: (1) to employ
machine learning for plant height estimation; (2) to evaluate the viability of vegetation
indices and digital elevation models as input parameters for machine learning algorithms;
and (3) to ascertain the most effective algorithm for precise plant height estimation.

2. Materials and Methods

Figure 1 provides a graphical overview of the workflow utilized in this study, incorpo-
rating an UAV equipped with an RGB sensor and high-resolution satellite imagery. The
acquisition of maize crop images coincided with on-site field assessments, and UAV flights
were strategically conducted around midday to reduce potential image distortions. Lever-
aging the UAV data, digital elevation models were generated to derive plant heights, while
vegetation indices were extracted from orbital imagery from PlanetScope. Subsequently,
a machine learning model was implemented to facilitate the estimation of plant height
within the field context.
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Figure 1. Summary of the study to estimate plant height using VI and DEM based on UAV in maize.

2.1. Study Area

The study was conducted in Ijaci, Minas Gerais, Brazil, situated at coordinates
21◦09′40′′ S, 44◦55′03′′ W (Figure 2). The region inputs a subtropical climate classified
as Cwa, characterized by dry winters and warm summers, with an average temperature of
20.9 ◦C and an annual precipitation of 1325 mm according to classification [27]. The study
site is located at an average elevation of 842 m. The research focused on data collected dur-
ing the agricultural season of 2021/2022, specifically targeting the maize crop (Zea mays L.).
The experimental area was subdivided into 40 plots, each measuring 10 × 10 m (100 m2).
The maize was sown on 11 October 2021 using an early cycle variety with semi-erect leaves.
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2.2. Data Acquisition in the Field

Field measurements of plant height were conducted manually using a measuring
tape at specific intervals: 20, 29, 37, 44, 50, 61, and 71 days after sowing (DAS). The
imaging captures were conducted on 1, 9, 17, 24, and 30 November, as well as on 11
and 21 December 2022. The experimental plots comprised 16 rows with a row-to-row
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spacing of 60 cm. To minimize border effects, height measurements were focused on the
central four rows. The measurements were taken for 15 individual plants within each
experimental plot, from the soil surface up to the insertion point of the flag leaf [28]. This
methodology yielded a substantial dataset, comprising 600 samples for each observation
date across the 40 experimental plots. In total, 4200 samples were collected, spanning
from the emergence of the crop to its initial reproductive stage (R1). These comprehensive
assessments were conducted not only to monitor the growth progression of maize but also
to validate the viability of employing a vegetation index and digital elevation model for
the precise estimation of plant height by implementing machine learning methodologies.

2.3. Image Acquisition and Processing

The images were acquired using two platforms: a Phantom 4 UAV (SZ DJI Technology
Co., Shenzhen, China) equipped with an RGB camera (model FC330, DJI, Shenzhen, China),
and the sensor from the PlanetScope CubeSat platform (Planet Labs Inc., San Francisco,
CA, USA) for satellite images. Orbital imagery was harnessed to extract vegetation indices,
whereas UAV imagery was used to generate digital elevation models.

Both the UAV flights and the acquisition of satellite images were synchronized with
manual field assessments of plant height. The UAV flight plan was meticulously or-
chestrated using Pix4D Capture software (Version 4.13.1, Pix4d SA, Prilly, Switzerland),
incorporating an 80% frontal and 75% lateral overlap, with a flight altitude of 40 m. The
RGB camera, oriented orthogonally to the ground, yielded a ground sample distance (GSD)
of 1.09 cm per pixel. Nine ground control points (GCPs) were strategically positioned
within the study area to ensure precise geographic referencing [29], thereby augmenting
the fidelity of crop information extraction. Geographical coordinates for these points
were gathered using GPS equipment, with Real Time Kinematic (RTK) signal-correction-
enhancing accuracy.

Digital elevation model generation entailed Pix4D Mapper software (Version 4.5,
Pix4d SA, Prilly, Switzerland), encompassing a systematic workflow encompassing image
alignment, dense point cloud generation, orthomosaic development, and the creation of
digital surface models for each assessment date.

In relation to the orbital imagery, the PlanetScope platform facilitated daily data
acquisition, characterized by a spatial resolution range of 3 to 5 m, encompassing eight
spectral bands: Coastal Blue (431–452 nm), Blue (465–515 nm), Green I (513–549 nm), Green
(547–583 nm), Yellow (600–620 nm), Red (650–680 nm), Rededge (697–713 nm), and Near-
infrared (NIR) (845–885 nm) [30]. The platform offered the PlanetScope analytic ortho scene
surface reflectance (SR—Level 3B) product, ensuring orthorectification, geometric and
radiometric correction, Universal Traverse Mercator (UTM) projection, and atmospheric
radiance calibration. The resultant imagery was provided with radiance, surface reflectance,
and a GeoTiff format [31]. To reduce the impact of varying weather conditions, particu-
larly cloud cover, PlanetScope images were selected within a maximum interval of three
days variation.

2.4. Extraction of Vegetation Indices and Digital Elevation Model

The vegetation indices were derived from reflectance values obtained from Plan-
etScope orbital images (Table 1) using the QGIS software (Version 3.22.15, QGIS Develop-
ment Team, Trondheim, Norway). To minimize edge effects on plant reflectance, a negative
buffer of 1.0 m was applied within each 100 m2 parcel. Subsequently, 15 random sam-
pling points were generated within this buffer area, and the Point Sampling Tool (Version
0.5.4) [32] plugin was utilized to associate raster values of each vegetation index with
the sampled points in the parcels. The selection of these indices was motivated by their
established correlation with key biophysical traits of crops, including biomass, canopy
health, and chlorophyll content [33,34].
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Table 1. Vegetation indices for PlanetScope orbital images.

VI Equation Reference

NDVI 1 (NIR—Red)/(NIR + Red) [35]
NDRE (NIR—Rededge)/(NIR + Rededge) [36]

GNDVI (NIR—Green)/(NIR + Green) [37]
1 NDVI: normalized difference vegetation index; NDRE: normalized difference red edge index; GNDVI: green
normalized difference vegetation index.

To derive plant height values from UAV data, the digital elevation model (DEM)
(Equation (1)) was computed for each assessment date. The initial UAV flight performed on
the day of maize sowing was utilized as the reference digital terrain model (DTM). For the
subsequent time points (20, 29, 37, 44, 50, 61, and 71 days after sowing), image processing
led to the creation of digital surface models (DSMs) [14,15,38–40]. These DSMs were then
input into QGIS software, where Equation (1) was applied to generate the DEM values
corresponding to each assessment date.

DEM = DSM − DTM (1)

The segmentation of the ground and vegetation portions from the orthomosaic was
conducted through a supervised classification approach using the Dzetsaka Classification
Tool plugin [41] within the QGIS software, following the methodology utilized in the
study by [42]. Subsequently, focusing solely on the vegetative component, a vectorized
representation was generated, which in turn was employed to extract the corresponding
section from the raster DEM, effectively eliminating the ground component from the digital
elevation model. Within the confines of each experimental plot, the identical set of 15 points
was consistently employed to facilitate the acquisition of height values by utilizing the
Point Sampling Tool plugin.

2.5. Machine Learning Algorithms for Plant Height Estimation

The study employed a range of machine learning algorithms to estimate field plant
height, utilizing inputs such as vegetation indices (NDVI, NDRE, and GNDVI) and UAV-
derived plant height (UAV height) from the DEM. The algorithms evaluated included
linear regression (LR) [43], random forest (RF) [44], K-nearest neighbor (KNN) [45], support
vector machine (SVM) [46], and decision trees (DT) [47]. The application of these machine
learning algorithms in the agricultural sector is commonplace owing to their adaptability
to complex datasets, capacity to capture non-linear interrelationships among variables, and
aptitude for generalizing acquired patterns to novel datasets.

To ensure robust analysis, three distinct data input configurations were established:
Input 1 (UAV height), Input 2 (UAV height + NDVI + NDRE + GNDVI), and Input 3 (NDVI
+ NDRE + GNDVI). Cross-validation using the K-fold method was employed, distributing
the dataset into K subgroups for thorough comparison, a strategy to enhance estimation
precision while minimizing the risk of overfitting [48].

The K-fold technique divided the data randomly into K subsets of equal size, with
each subset being used for training and validation. In our study, K was set to five, leading
to five iterations of training and validation. Implementation of these machine learning
algorithms was carried out using Python (Version 3.11, PYTHON Software Foundation).

2.6. Pre-Processing of Data and Statistical Analysis

Data normalization is a pivotal pre-processing step that aims to harmonize variables
with varying magnitudes and distributions. Its purpose is to ensure uniformity in scale
and value distribution across all variables, thereby promoting equitable contributions to
model development and diminishing potential bias stemming from variable dominance.
In this context, the data underwent a transformation to attain a mean of zero and a stan-
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dard deviation of 1, employing the StandardScaler method available in the Scikit-learn
library [25,49,50].

To assess the efficacy of algorithms in estimating plant height, two statistical metrics
were employed: the coefficient of determination (R2) (Equation (2)) and root-mean-square
error (RMSE) (Equation (3)). All statistical analyses conducted throughout this study were
executed using Python 3.11.

R2 = 1 − ∑n
i=1(yi − yi)2

∑n
i=1(yi − ŷ)2 (2)

RMSE =

√
1
n∑n

i=1(yi − yi)2 (3)

3. Results
3.1. Correlation between Observed and Estimated Height Values

The Pearson correlation coefficient (r) was employed to assess the relationships be-
tween data acquired from both the UAV and satellite platforms, revealing a positive corre-
lation with manually collected plant height measurements in the field. The estimated plant
heights generated by the models exhibited statistically significant correlations (p < 0.05)
across all three input configurations, with particularly relevant outcomes observed in the
RF and KNN models (Figure 3).
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Figure 3. Pearson correlation coefficients (r) between observed and estimated values of plant height
for each algorithm and input.

The Pearson coefficient ranged from 0.96 to 0.98 in the first input configuration and
from 0.97 to 0.99 in the second input while varying from 0.86 to 0.99 for the third input
configuration. The correlation values demonstrated consistency among the RF, KNN, and
DT models, with SVM models displaying a slight reduction in correlation (r = 0.94) and
LR models yielding the lowest correlation values (r = 0.86). The linear regression model is
well-suited for scenarios featuring linear relationships in the data, and its reduced precision
in input configuration 3 could be attributed to the presence of vegetation indices.
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Significantly, the RF (r = 0.99) and KNN (r = 0.99) models exhibited the strongest
correlations in input configuration 3. Overall, the correlation analysis underscores the
superior performance of RF models in estimating field plant height. By scrutinizing the
linear dependence between estimated and observed height values, it becomes evident that
the most effective models for accurate plant height estimation leverage UAV-derived height
data and vegetation indices as input parameters for the machine learning process.

3.2. Comparison and Performance of Machine Learning Algorithms

To evaluate the effectiveness of machine learning algorithms in estimating field plant
height, three distinct input configurations (Inputs 1, 2, and 3) were established and evalu-
ated (Table 2). Incorporating both UAV height and vegetation indices as input variables
notably enhanced model performance. Among the machine learning approaches, the RF
and KNN models emerged as superior performers, exhibiting heightened precision and
accuracy compared to other algorithms for plant height estimation, albeit with minor
variance in RMSE.

Table 2. Precision (R2) and accuracy (RMSE) of training and testing models for estimating plant
height in maize.

Training Test

Algorithms Input 1 R2 RMSE (cm) R2 RMSE (cm)

Linear Regression
1 0.93 24.56 0.93 23.56
2 0.93 22.71 0.94 21.33
3 0.74 45.01 0.74 44.13

Random Forest
1 0.94 24.49 0.94 22.02
2 0.97 16.49 0.97 15.07
3 0.97 15.76 0.97 14.62

K-Nearest Neighbor
1 0.95 18.74 0.95 20.59
2 0.97 14.10 0.97 16.55
3 0.97 11.84 0.97 14.66

Support Vector Machine
1 0.95 17.81 0.95 19.39
2 0.95 15.86 0.95 18.76
3 0.87 30.86 0.88 32.02

Decision Trees
1 0.94 19.76 0.94 22.29
2 0.98 15.60 0.97 16.98
3 0.97 14.84 0.97 16.26

1 Input 1: UAV height; Input 2: UAV height + NDVI + NDRE + GNDVI; Input 3: NDVI + NDRE + GNDVI.

Specifically, the SVM model (R2 = 0.95 and RMSE = 19.39 cm) demonstrated superior
accuracy with Input 1, while the RF model displayed the highest accuracy for Inputs 2
and 3. The DT model exhibited performance akin to RF and KNN and notably improved
accuracy with Input 3 (R2 = 0.97 and RMSE = 16.26 cm). Conversely, the conventional
linear regression model exhibited suboptimal accuracy and precision with Input 3 due to
the inherent limitation of a linear trend line to effectively capture the complexities inherent
in vegetation index data. Notably, in this investigation, models derived from RF, KNN,
and DT algorithms showcased greater accuracy and precision in estimating field plant
height, integrating insights from orbital remote sensing and UAV-derived digital models.
Remarkably, the RF and KNN models displayed minimal errors when utilizing Input 3.

Furthermore, assessing the models’ performance in estimating maize plant height
using three input configurations involved analyzing RMSE and R2 values (Figure 4). The RF
and KNN models exhibited superior performance with input configuration 3, highlighting
the efficacy of incorporating vegetation indices (NDVI, NDRE, and GNDVI) in accurately es-
timating maize plant height. Input configuration 1 (UAV Height) demonstrated optimal per-
formance with the SVM model, whereas Input 2 (UAV height + NDVI + NDRE + GNDVI)
yielded favorable outcomes with the RF model.
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of the ML algorithms implemented in the study.

The RF model consistently demonstrated superior precision and accuracy across
input configurations 3 and 2 (R2 = 0.97), resulting in RMSE values of 14.62 and 15.07 cm,
respectively. Similarly, the KNN model exhibited comparable performance with Input
3, yielding an R2 value of 0.97 and an RMSE of 14.66 cm. These outcomes underscore
the feasibility of leveraging vegetation indices in conjunction with ML algorithms for
accurate maize plant height estimation. Contrastingly, the linear regression models yielded
good results for inputs 1 (R2 = 0.93) and 2 (R2 = 0.94), particularly considering their
reliance on UAV-based height as an input feature. However, in the context of input
configuration 3, encompassing all three vegetation indexes, the linear regression model
exhibited reduced precision, obtaining an R2 value of 0.74 and an RMSE of 44.13 cm. This
decline in accuracy, amounting to a 21% reduction, underscores the limited suitability of the
traditional linear regression approach for capturing non-linear data trends, a phenomenon
confirmed by earlier findings such as those of [51]. Furthermore, the superior precision
demonstrated by the RF, SVM, and KNN models over linear regression can be attributed
to their adeptness at effectively extracting insights from datasets characterized by non-
linearity and multicollinearity among predictor variables.

3.3. Estimation of Plant Height in the Field

Considering the precision and accuracy values of the plant height estimation models
based on the four input variables (UAV height, NDVI, NDRE, and GNDVI), it is evident that
the RF and KNN algorithms exhibit prominent similarities and a notable ability to estimate
plant height in the field, while maintaining comparable errors (Figure 5). The RF model
was the best in terms of performance for input configurations 2 and 3. Similarly, the KNN
model demonstrated a precision close to that of RF for input configuration 3. A noteworthy
aspect is the improvement in precision and accuracy compared to estimator models, as
exemplified by the RF model achievement of R2 = 0.97 and RMSE = 14.62 cm. Moreover,
these algorithms showcased analogous performance when leveraging the vegetation indices
(Input 3), displaying only a 0.04 cm RMSE difference between the two.

Broadening our perspective, the observed plant height 71 days after sowing (R1
stage) in the field stood at 255.48 cm. Conversely, the height estimated using the RF and
KNN models was recorded at 255.39 cm and 256.89 cm, respectively. This comprehensive
analysis (Figure 5) underscores that estimation models using the NDVI, NDRE, and GNDVI
variables achieved a higher precision and accuracy compared to their counterparts. As
such, the estimation of maize plant height proves to be effectively conducted through the
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adept utilization of the RF and KNN algorithms through a general model, particularly
during the R1 stage, characterized by the plant’s attainment of maximal growth potential.
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Figure 5. Plant height estimation for RF and KNN models. These refer to the input con-
figurations: (1) UAV height (A,B), (2) UAV height + NDVI + NDRE + GNDVI (C,D), and
(3) NDVI + NDRE + GNDVI (E,F).

4. Discussion

In recent years, the utilization of UAV imagery, orbital remote sensing, vegetation
indices, and machine learning techniques has garnered significant attention as a technol-
ogy capable of reducing the need for destructive assessments. This approach not only
saves time and effort but also proves interesting for monitoring the growth dynamics of
crops [7,17,40,52].

Machine learning algorithms, including RF, KNN, SVM, and DT, have emerged as
promising tools for optimizing plant height estimation. This is especially relevant in large-
scale maize fields, where the efficient use of resources is paramount. The dataset employed
encompassed height information derived from UAV-based digital elevation models and
vegetation indices obtained from the PlanetScope satellite, collected at intervals of 20, 29,
37, 44, 50, 61, and 71 days following crop sowing.

The resulting models, generated from three distinct input configurations (Input 1, 2,
and 3), underwent evaluation based on R-squared values, root-mean-square error, and
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Pearson correlation coefficients between observed and estimated plant height. The RF
model performed better (R2 = 0.97, RMSE = 14.62 cm), closely followed by the KNN
model (R2 = 0.97, RMSE = 14.66 cm) (Figure 4), leveraging the NDVI, NDRE, and GNDVI
vegetation indices as input parameters. This underscores the pivotal role of vegetation
indices in enhancing the accuracy of estimating this critical agronomic variable [11].

The RF model demonstrated the highest degree of accuracy (RMSE = 14.66 cm) com-
pared to other algorithms, highlighting the necessity of fomenting a diversified dataset
to enhance the model’s robustness and generalizability. This study revealed that both the
RF and KNN algorithms yielded precise outcomes for height estimation, which aligns
with findings from other scholarly inquiries that harnessed these algorithms to estimate
the heights of maize and soybean crops using LiDAR and UAV data [2], maize height
estimation via a three-dimensional model [9], estimation of summer maize growth using
digital models [53], biomass estimation based on UAV data [54], determination of leaf area
index [1], and estimation of bean production using UAV RGB images [8]. Furthermore, in
addition to the RF algorithm, the integration of the multilayer perceptron (MLP) shows
promise in estimating plant height based on UAV RGB images [7].

UAVs have garnered widespread attention as remote sensing platforms owing to their
inherent advantages, including flexibility, high spatial and temporal resolution, extensive
overlap rates, cost-effectiveness, and enhanced accessibility [55]. As a result, this study
proposes the extraction of height information using UAV-based digital elevation models on
seven different periods, thereby encompassing data from the early vegetative stages to the
R1 stage.

Photogrammetric techniques are employed to construct digital models of the Earth’s
surface and perform precise geometric measurements from UAV images, as noted
by [10,12,56,57]. After the aerial image processing, DEM is derived by calculating the
difference between the DSM and DTM. This DEM is then utilized to extract essential infor-
mation about the height of maize crops. The results of this study’s plant height estimations
align with the findings of [15,58], illustrating that the DEM serves as a consistent and
reliable variable for vegetation height estimation. However, a disparity emerges during
the early growth stages of maize, where field-measured plant height surpasses the height
extracted from the DEM.

This discrepancy could potentially be attributed to the methodology employed in
manual assessments, which considers canopy height as the vertical distance between the
insertion point of the flag leaf and the ground surface. Moreover, the dense point cloud
generated from UAV images may capture a comprehensive range of height information
on the surface, including lower morphological structures of the plant. This observation
was also found by [59], who employed UAV RGB images to estimate maize plant heights,
indicating that the estimated values were relatively lower when contrasted with field
observations. This discrepancy could stem from the limited accuracy of the dense point
cloud in capturing the uppermost point of the maize plant, as indicated by [60]. To enhance
the quality of information extracted from the DEM, a potential solution is to strategically
distribute more ground control points within the study area, thereby mitigating model
errors and refining spatial accuracy, as suggested by [29].

It is crucial to underscore that in this study, during the initial developmental phases
of the crop, UAV-derived plant height values did not precisely mirror the field-observed
heights, signifying that the general model may exhibit limited efficacy when applied in
the early stages of maize growth. However, as the crop progresses to later stages, up to
the reproductive stage R1, the model precision and accuracy in height estimation tend to
improve. This is underpinned by the comprehensive data collection period, spanning from
20 to 71 days after sowing. This trend aligns with the findings of [39], where the model
exhibited superior performance when utilizing data collected up to and encompassing the
flowering stage, estimating black oat height through digital surface models and RGB-based
vegetation indices. Additionally, the absence of full canopy closure during the early stages
might account for underestimated plant height values, as the digital model must factor
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in information at the leaf level. Thus, images with lower spatial resolutions might yield
values that do not adequately represent the area, as elucidated by [61].

The considerable challenge in estimating plant height on a large scale necessitates the
development of an efficient and accurate methodology. In response, this study proposed
an innovative approach by integrating vegetation index data, digital elevation models, and
a range of machine learning algorithms for precise plant height estimation. The outcomes
derived from the RF model (R2 = 0.97, RMSE = 14.62 cm, and r = 0.99) offer a promising
avenue to potentially supplant traditional manual field measurements, commonly exe-
cuted using rudimentary tools like rulers or tape measures, particularly for short-statured
commercial crops such as maize, soybean, rice, and wheat [58].

When concentrating solely on vegetation index data (Input 3) as inputs for the models,
both the RF and KNN models exhibited lower RMSE values than the other two input
configurations. This pattern aligns with and extends the results found in [11], where the
RF (RMSE = 16.7 cm) and KNN (RMSE = 19.4 cm) models displayed strong performance
when utilizing only the vegetation index dataset. Similarly, this trend is consistent with
the research conducted by [62], who investigated soybean plant height estimation using
machine learning techniques. Their work reinforces the superiority of the RF model over
other algorithms (SVM and LR) when incorporating solely vegetation indices as input
parameters, a framework consistent with the NDVI, NDRE, and GNDVI indices employed
in our present study.

Hence, upon combining UAV-derived plant height with vegetation indices (Input 2), a
light increase of 3% and 11% in RMSE values was noted for the RF and KNN algorithms,
respectively (Figure 5). Correspondingly, a decline of 33% (RF) and 29% (KNN) in accuracy
was observed when solely utilizing UAV plant height as the input (Input 1). The RF and
KNN algorithms exhibited considerable performance owing to their adeptness in handling
complex and non-linear data patterns. Particularly, RF demonstrated reduced susceptibility
to overfitting [23].

The outcomes derived from the linear regression models outperformed those re-
ported by [63], who employed UAV imagery and linear regression for field measurements
(R2 = 0.88) and established a robust correlation between observed and estimated heights.
Nevertheless, when incorporating vegetation indices as inputs in the present study, LR
exhibited the lowest precision and accuracy (R2 = 0.74 and RMSE = 44.13 cm) relative to
the other algorithms. This divergence could be attributed to the inherent rigidity of the
LR model with respect to non-parametric data, thereby impeding its capacity to capture
the nuanced non-linearity and intricacy of the data [14], ultimately leading to suboptimal
performance in height estimation.

5. Conclusions

In a broader context, this study has effectively demonstrated the applicability of
UAV imagery, orbital remote sensing, and machine learning algorithms to accurately es-
timate plant height within field conditions. The investigation focused on two specific
machine learning algorithms, random forest, and k-nearest neighbors, showcasing bet-
ter performance. Notably, the RF algorithm exhibited a superior outcome (R2 = 0.97,
RMSE = 14.62 cm), closely followed by the KNN algorithm (R2 = 0.97, RMSE = 14.66 cm)
when utilizing the vegetation indices NDVI, NDRE, and GNDVI as inputs parameters.

This trend persisted when incorporating UAV height in conjunction with the afore-
mentioned vegetation indices, where the RF algorithm showcased commendable precision
and accuracy (R2 = 0.97, RMSE = 15.07 cm). An important observation emerges from the
significant correlation of the derived NDVI, NDRE, and GNDVI indices from PlanetScope
imagery with maize plant height (r = 0.80, r = 0.78, and r = 0.81, respectively), further
reinforcing the utility of these indices in height estimation.



AgriEngineering 2024, 6 31

Author Contributions: Conceptualization, M.A.J.F. and A.F.S.; methodology, M.A.J.F.; software,
M.A.J.F.; validation, M.A.J.F. and A.F.S.; formal analysis, M.A.J.F., R.G.V.P. and A.F.S.; investigation,
M.A.J.F. and A.F.S.; resources, R.G.V.P. and A.F.S.; data curation, M.A.J.F. and A.F.S.; writing—original
draft preparation, M.A.J.F.; writing—review and editing, M.A.J.F. and A.F.S.; visualization, T.O.C.B.,
P.S.A., R.G.V.P. and A.F.S.; supervision, A.F.S.; project administration, R.G.V.P.; funding acquisition,
R.G.V.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Research Support Foundation of the State of Minas Gerais
(FAPEMIG) through project 11680.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors are grateful to the Federal University of Lavras for all its support of
this research, and for the Research Support Foundation of the State of Minas Gerais (FAPEMIG), and the
National Council for Scientific and Technological Development (CNPq) for the students’ scholarship.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Du, L.; Yang, H.; Song, X.; Wei, N.; Yu, C.; Wang, W.; Zhao, Y. Estimating leaf area index of maize using UAV-based digital

imagery and machine learning methods. Sci. Rep. 2022, 12, 24. [CrossRef] [PubMed]
2. Luo, S.; Liu, W.; Zhang, Y.; Wang, C.; Xi, X.; Nie, S.; Ma, D.; Lin, Y.; Zhou, G. Maize and soybean heights estimation from

unmanned aerial vehicle (UAV) LiDAR data. Comput. Electron. Agric. 2021, 182, 106005. [CrossRef]
3. Jung, J.; Maeda, M.; Chang, A.; Bhandari, M.; Ashapure, A.; Landivar-bowles, J. The potential of remote sensing and artificial

intelligence as tools to improve the resilience of agriculture production systems. Curr. Opin. Biotechnol. 2021, 70, 15–22. [CrossRef]
[PubMed]

4. Li, F.; Miao, Y.; Chen, X.; Sun, Z.; Stueve, K.; Yuan, F. In-Season Prediction of Maize Grain Yield through PlanetScope and
Sentinel-2 Images. Agronomy 2022, 12, 3176. [CrossRef]

5. Schwalbert, R.A.; Amado, T.; Corassa, G.; Pott, L.P.; Prasad, P.V.V.; Ciampitti, I.A. Satellite-based soybean yield forecast:
Integrating machine learning and weather data for improving crop yield prediction in southern Brazil. Agric. For. Meteorol. 2020,
284, 107886. [CrossRef]

6. Souza, J.B.C.; de Almeida, S.L.H.; de Oliveira, M.F.; dos Santos, A.F.; de Brito Filho, A.L.; Meneses, M.D.; da Silva, R.P. Integrating
Satellite and UAV Data to Predict Peanut Maturity upon Artificial Neural Networks. Agronomy 2022, 12, 1512. [CrossRef]

7. Liu, W.; Li, Y.; Liu, J.; Jiang, J. Estimation of Plant Height and Aboveground Biomass of Toona sinensis under Drought Stress
Using RGB-D Imaging. Forests 2021, 12, 1747. [CrossRef]

8. Ji, Y.; Liu, R.; Xiao, Y.; Cui, Y.; Chen, Z.; Zong, X.; Yang, T. Faba bean above-ground biomass and bean yield estimation based on
consumer-grade unmanned aerial vehicle RGB images and ensemble learning. Precis. Agric. 2023, 28, 1439–1460. [CrossRef]

9. Che, Y.; Wang, Q.; Xie, Z.; Zhou, L.; Li, S.; Hui, F.; Wang, X.; Li, B.; Ma, Y. Estimation of maize plant height and leaf area index
dynamics using an unmanned aerial vehicle with oblique and nadir photography. Ann. Bot. 2020, 126, 765–773. [CrossRef]

10. Gilliot, J.M.; Michelin, J.; Hadjard, D.; Houot, S. An accurate method for predicting spatial variability of maize yield from
UAV-based plant height estimation: A tool for monitoring agronomic field experiments. Precis. Agric. 2020, 22, 897–921.
[CrossRef]

11. Osco, L.P.; Marcato Junior, J.; Ramos, A.P.M.; Furuya, D.E.G.; Santana, D.C.; Teodoro, L.P.R.; Gonçalves, W.N.; Baio, F.H.R.;
Pistori, H.; da Silva Junior, C.A.; et al. Leaf Nitrogen Concentration and Plant Height Prediction for Maize Using UAV-Based
Multispectral Imagery and Machine Learning Techniques. Remote Sens. 2020, 12, 3237. [CrossRef]

12. Tao, H.; Feng, H.; Xu, L.; Miao, M.; Yang, G.; Yang, X.; Fan, L. Estimation of the Yield and Plant Height of Winter Wheat Using
UAV-Based Hyperspectral Images. Sensors 2020, 20, 1231. [CrossRef] [PubMed]

13. Guo, T.; Fang, Y.; Cheng, T.; Tian, Y.; Zhu, Y.; Chen, Q.; Qiu, X.; Yao, X. Detection of wheat height using optimized multi-scan
mode of LiDAR during the entire growth stages. Comput. Electron. Agric. 2019, 165, 104959. [CrossRef]

14. Yu, J.; Wang, J.; Leblon, B. Evaluation of Soil Properties, Topographic Metrics, Plant Height, and Unmanned Aerial Vehicle
Multispectral Imagery Using Machine Learning Methods to Estimate Canopy Nitrogen Weight in Maize. Remote Sens. 2021,
13, 3105. [CrossRef]

15. Zhang, H.; Sun, Y.; Chang, L.; Qin, Y.; Chen, J.; Qin, Y.; Du, J.; Yi, S.; Wang, Y. Estimation of Grassland Canopy Height and
Aboveground Biomass at the Quadrat Scale Using Unmanned Aerial Vehicle. Remote Sens. 2018, 10, 851. [CrossRef]

16. Qiao, L.; Gao, D.; Zhao, R.; Tang, W.; An, L.; Li, M.; Sun, H. Improving estimation of LAI dynamic by fusion of morphological
and vegetation indices based on UAV imagery. Comput. Electron. Agric. 2022, 192, 106603. [CrossRef]

17. Liakos, K.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A review. Sensors 2018, 18, 2674.
[CrossRef]

18. Yoosefzadeh-Najafabadi, M.; Earl, H.J.; Tulpan, D.; Sulik, J.; Eskandari, M. Application of Machine Learning Algorithms in Plant
Breeding: Predicting yield from hyperspectral reflectance in soybean. Front. Plant Sci. 2021, 11, 9–99. [CrossRef]

https://doi.org/10.1038/s41598-022-20299-0
https://www.ncbi.nlm.nih.gov/pubmed/36153395
https://doi.org/10.1016/j.compag.2021.106005
https://doi.org/10.1016/j.copbio.2020.09.003
https://www.ncbi.nlm.nih.gov/pubmed/33038780
https://doi.org/10.3390/agronomy12123176
https://doi.org/10.1016/j.agrformet.2019.107886
https://doi.org/10.3390/agronomy12071512
https://doi.org/10.3390/f12121747
https://doi.org/10.1007/s11119-023-09997-5
https://doi.org/10.1093/aob/mcaa097
https://doi.org/10.1007/s11119-020-09764-w
https://doi.org/10.3390/rs12193237
https://doi.org/10.3390/s20041231
https://www.ncbi.nlm.nih.gov/pubmed/32102358
https://doi.org/10.1016/j.compag.2019.104959
https://doi.org/10.3390/rs13163105
https://doi.org/10.3390/rs10060851
https://doi.org/10.1016/j.compag.2021.106603
https://doi.org/10.3390/s18082674
https://doi.org/10.3389/fpls.2020.624273


AgriEngineering 2024, 6 32

19. Corte, A.P.D.; Souza, D.V.; Rex, F.E.; Sanquetta, C.R.; Mohan, M.; Silva, C.A.; Zambrano, A.M.A.; Prata, G.; de Almeida, D.R.A.;
Trautenmuller, J.W.; et al. Forest inventory with high-density UAV-Lidar: Machine learning approaches for predicting individual
tree attributes. Comput. Electron. Agric. 2020, 179, 105815. [CrossRef]

20. Li, M.; Zhao, J.; Yang, X. Building a new machine learning-based model to estimate county-level climatic yield variation for maize
in Northeast China. Comput. Electron. Agric. 2021, 191, 106557. [CrossRef]

21. Feng, L.; Zhang, Z.; Ma, Y.; Du, Q.; Williams, P.; Drewry, J.; Luck, B. Alfalfa Yield Prediction Using UAV-Based Hyperspectral
Imagery and Ensemble Learning. Remote Sens. 2020, 12, 2028. [CrossRef]

22. Garcia, E.M.; Alberti, M.G.; Álvarez, A.A.A. Measurement-While-Drilling Based Estimation of Dynamic Penetrometer Values
Using Decision Trees and Random Forests. Appl. Sci. 2022, 12, 4565. [CrossRef]

23. Liu, B.; Liu, Y.; Huang, G.; Jiang, X.; Liang, Y.; Yang, C.; Huang, L. Comparison of yield prediction models and estimation of
the relative importance of main agronomic traits affecting rice yield formation in saline-sodic paddy fields. Eur. J. Agron. 2023,
148, 126870. [CrossRef]

24. Rodriguez-Puerta, F.; Ponce, R.A.; Pérez-Rodríguez, F.; Águeda, B.; Martín-García, S.; Martínez-Rodrigo, R.; Lizarralde, I.
Comparison of Machine Learning Algorithms for Wildland-Urban Interface Fuelbreak Planning Integrating ALS and UAV-Borne
LiDAR Data and Multispectral Images. Drones 2020, 4, 21. [CrossRef]

25. Zamri, N.; Pairan, M.A.; Azman, W.N.A.W.; Abas, S.S.; Abdullah, L.; Naim, S.; Tarmudi, Z.; Gao, M. A comparison of unsupervised
and supervised machine learning algorithms to predict water pollutions. Procedia Comput. Sci. 2022, 204, 172–179. [CrossRef]

26. Phinzi, K.; Abriha, D.; Szabó, S. Classification Efficacy Using K-Fold CrossValidation and Bootstrapping Resampling Techniques
on the Example of Mapping Complex Gully Systems. Remote Sens. 2021, 13, 2980. [CrossRef]

27. Köppen, W. Climatologia: Com un Estúdio de los Climas de la Tierra; Fondo de Cultura Economica: Mexico, Mexico, 1948; 478 p.
28. Foloni, J.S.S.; Calonego, J.C.; Catuchi, T.A.; Belleggia, N.A.; Tiritan, C.S.; De Barbosa, A.M. Cultivares de milho em diferentes

populações de plantas com espaçamento reduzido na safrinha. Rev. Bras. Milho E Sorgo 2014, 13, 312–325. Available online:
https://ainfo.cnptia.embrapa.br/digital/bitstream/item/128140/1/cultivares-de-milho.pdf (accessed on 9 April 2023). [CrossRef]

29. He, F.; Zhou, T.; Xiong, W.; Hasheminnasab, S.; Habib, A. Automated Aerial Triangulation for UAV-Based Mapping. Remote Sens.
2018, 10, 1952. [CrossRef]

30. Esa, European Space Agency. PlanetScope. 2023. Available online: https://earth.esa.int/eogateway/missions/planetscope
(accessed on 27 February 2023).

31. Planet. Planet Imagery Product Specification. 2020. Available online: https://assets.planet.com/marketing/PDF/Planet_
Surface_Reflectance_Technical_White_Paper.pdf (accessed on 27 February 2023).

32. Jurgiel, B. Point Sampling Tool [Github Repository]. Available online: https://github.com/borysiasty/pointsamplingtool
(accessed on 27 February 2023).

33. Barboza, T.O.C.; Ardigueri, M.; Souza, G.F.C.; Ferraz, M.A.J.; Gaudencio, J.R.F.; Dos Santos, A.F. Performance of Vegetation
Indices to Estimate Green Biomass Accumulation in Common Bean. Agriengineering 2023, 5, 840–854. [CrossRef]

34. Tedesco, D.; De Oliveira, M.F.; Dos Santos, A.F.; Silva, E.H.C.; De Rolim, G.S.; Da Silva, R.P. Use of remote sensing to characterize
the phenological development and to predict sweet potato yield in two growing seasons. Eur. J. Agron. 2021, 129, 126337.
[CrossRef]

35. Rouse, J.W.; Haas, R.H.; Scheel, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. In Proceedings
of the Third Earth Resource Technology Satellite (ERTS) Symposium, Washington, DC, USA, 10–14 December 1974.

36. Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn
chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [CrossRef]

37. Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS.
Remote Sens. Environ. 1996, 58, 289–298. [CrossRef]

38. Letsoin, S.M.A.; Guth, D.; Herak, D.; Purwestri, R.C. Analysing Maize Plant Height Using Unmanned Aerial Vehicle (UAV) RGB
based on Digital Surface Models (DSM). IOP Conf. Ser. Earth Environ. Sci. 2023, 1187, 012028. [CrossRef]

39. Trevisan, L.R.; Brichi, L.; Gomes, T.M.; Rossi, F. Estimating Black Oat Biomass Using Digital Surface Models and a Vegetation
Index Derived from RGB-Based Aerial Images. Remote Sens. 2023, 15, 1363. [CrossRef]

40. Wang, X.; Zhang, R.; Song, W.; Han, L.; Liu, X.; Sun, X.; Luo, M.; Chen, K.; Zhang, Y.; Yang, H.; et al. Dynamic plant height QTL
revealed in maize through remote sensing phenotyping using a high-throughput unmanned aerial vehicle (UAV). Sci. Rep. 2019,
9, 3458. [CrossRef]

41. Karasiak, N. Dzetsaka: Classification Tool [Github Repository]. 2020. Available online: https://github.com/nkarasiak/dzetsaka/
(accessed on 27 February 2023).

42. Cavalcanti, V.P.; Dos Santos, A.F.; Rodrigues, F.A.; Terra, W.C.; Araujo, R.C.; Ribeiro, C.R.; Campos, V.P.; Rigobelo, E.C.; Medeiros,
F.H.V.; Dória, J. Use of RGB images from unmanned aerial vehicle to estimate lettuce growth in root-knot nematode infested soil.
Smart Agric. Technol. 2023, 3, 100100. [CrossRef]

43. Nutt, A.T.; Batsell, R.R. Multiple linear regression: A realistic reflector. Data Anal. 1973, 19, 21.
44. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
45. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]
46. Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]

https://doi.org/10.1016/j.compag.2020.105815
https://doi.org/10.1016/j.compag.2021.106557
https://doi.org/10.3390/rs12122028
https://doi.org/10.3390/app12094565
https://doi.org/10.1016/j.eja.2023.126870
https://doi.org/10.3390/drones4020021
https://doi.org/10.1016/j.procs.2022.08.021
https://doi.org/10.3390/rs13152980
https://ainfo.cnptia.embrapa.br/digital/bitstream/item/128140/1/cultivares-de-milho.pdf
https://doi.org/10.18512/1980-6477/rbms.v13n3p312-325
https://doi.org/10.3390/rs10121952
https://earth.esa.int/eogateway/missions/planetscope
https://assets.planet.com/marketing/PDF/Planet_Surface_Reflectance_Technical_White_Paper.pdf
https://assets.planet.com/marketing/PDF/Planet_Surface_Reflectance_Technical_White_Paper.pdf
https://github.com/borysiasty/pointsamplingtool
https://doi.org/10.3390/agriengineering5020052
https://doi.org/10.1016/j.eja.2021.126337
https://doi.org/10.1016/1011-1344(93)06963-4
https://doi.org/10.1016/S0034-4257(96)00072-7
https://doi.org/10.1088/1755-1315/1187/1/012028
https://doi.org/10.3390/rs15051363
https://doi.org/10.1038/s41598-019-39448-z
https://github.com/nkarasiak/dzetsaka/
https://doi.org/10.1016/j.atech.2022.100100
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1007/BF00994018


AgriEngineering 2024, 6 33

47. Rokach, L.; Maimon, O. Decision Trees. Data Mining and Knowledge Discovery Handbook; Springer: Berlin/Heidelberg, Germany,
2005; pp. 165–192. [CrossRef]

48. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R, 1st ed.; Springer:
Berlin/Heidelberg, Germany, 2013.

49. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Müller, A.; Nothman, J.; Louppe, G.
Scikit-learn: Machine learning in python. arXiv 2012, arXiv:1201.0490. [CrossRef]

50. Scikit-Learn. 2011. Available online: https://scikit-learn.org/stable/ (accessed on 27 February 2023).
51. Yu, D.; Zha, Y.; Sun, Z.; Li, J.; Jin, X.; Zhu, W.; Bian, J.; Ma, L.; Zeng, Y.; Su, Z. Deep convolutional neural networks for estimating

maize above-ground biomass using multi-source UAV images: A comparison with traditional machine learning algorithms.
Precis. Agric. 2022, 24, 92–113. [CrossRef]

52. Rueda-Ayala, V.; Pena, J.; Hoglind, M.; Bengochea-Guevara, J.; Andojar, D. Comparing UAV-Based Technologies and RGB-D
Reconstruction Methods for Plant Height and Biomass Monitoring on Grass Ley. Sensors 2019, 19, 535. [CrossRef] [PubMed]

53. Zhao, J.; Pan, F.; Xiao, X.; Hu, L.; Wang, X.; Yan, Y.; Zhang, S.; Tian, B.; Yu, H.; Lan, Y. Summer Maize Growth Estimation Based on
Near-Surface Multi-Source Data. Agronomy 2023, 13, 532. [CrossRef]

54. Wang, D.; Wan, B.; Liu, J.; Su, Y.; Guo, Q.; Qiu, P.; Wu, X. Estimating aboveground biomass of the mangrove forests on northeast
Hainan Island in China using an upscaling method from field plots, UAV-LiDAR data and Sentinel-2 imagery. Int. J. Appl. Earth
Obs. Geoinf. 2020, 85, 101986. [CrossRef]

55. Zhou, L.; Gu, X.; Cheng, S.; Yang, G.; Shu, M.; Sun, Q. Analysis of Plant Height Changes of Lodged Maize Using UAV-LiDAR
Data. Agriculture 2020, 10, 146. [CrossRef]

56. Bai, D.; Li, D.; Zhao, C.; Wang, Z.; Shao, M.; Guo, B.; Liu, Y.; Wang, Q.; Li, J.; Guo, S.; et al. Estimation of soybean yield parameters
under lodging conditions using RGB information from unmanned aerial vehicles. Front. Plant Sci. 2022, 13, 1012293. [CrossRef]

57. Kraus, K.; Waldhausl, P. Manuel de Photogrammétrie: Principes et Procédés Fondamentaux; Hermes: Paris, France, 1998.
58. Hu, P.; Chapman, S.C.; Wang, X.; Potgieter, A.; Duan, T.; Jordan, D.; Guo, Y.; Zheng, B. Estimation of plant height using a high

throughput phenotyping platform based on unmanned aerial vehicle and self-calibration: Example for sorghum breeding. Eur. J.
Agron. 2018, 95, 24–32. [CrossRef]

59. Niu, Y.; Zhang, L.; Zhang, H.; Han, W.; Peng, X. Estimating Above-Ground Biomass of Maize Using Inputs Derived from
UAV-Based RGB Imagery. Remote Sens. 2019, 11, 1261. [CrossRef]

60. Walter, J.D.C.; Edwards, J.; Mcdonald, G.; Kuchel, H. Estimating Biomass and Canopy Height With LiDAR for Field Crop
Breeding. Front. Plant Sci. 2019, 10, 1145. [CrossRef]

61. Geipel, J.; Link, J.; Claupein, W. Combined Spectral and Spatial Modeling of Maize Yield Based on Aerial Images and Crop
Surface Models Acquired with an Unmanned Aircraft System. Remote Sens. 2014, 6, 10335. [CrossRef]

62. Teodoro, P.E.; Teodoro, L.P.R.; Baio, F.H.R.; Da Silva Junior, C.A.; Dos Santos, R.G.; Ramos, A.P.M.; Pinheiro, M.M.F.; Osco, L.P.;
Gonçalves, W.N.; Carneiro, A.M.; et al. Predicting Days to Maturity, Plant Height, and Grain Yield in Soybean: A machine and
deep learning approach using multispectral data. Remote Sens. 2021, 13, 4632. [CrossRef]

63. Li, W.; Niu, Z.; Chen, H.; Li, D.; Wu, M.; Zhao, W. Remote estimation of canopy height and aboveground biomass of maize using
high-resolution stereo images from a low-cost unmanned aerial vehicle system. Ecol. Indic. 2016, 67, 637–648. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/0-387-25465-x_9
https://doi.org/10.48550/ARXIV.1201.0490
https://scikit-learn.org/stable/
https://doi.org/10.1007/s11119-022-09932-0
https://doi.org/10.3390/s19030535
https://www.ncbi.nlm.nih.gov/pubmed/30696014
https://doi.org/10.3390/agronomy13020532
https://doi.org/10.1016/j.jag.2019.101986
https://doi.org/10.3390/agriculture10050146
https://doi.org/10.3389/fpls.2022.1012293
https://doi.org/10.1016/j.eja.2018.02.004
https://doi.org/10.3390/rs11111261
https://doi.org/10.3389/fpls.2019.01145
https://doi.org/10.3390/rs61110335
https://doi.org/10.3390/rs13224632
https://doi.org/10.1016/j.ecolind.2016.03.036

	Introduction 
	Materials and Methods 
	Study Area 
	Data Acquisition in the Field 
	Image Acquisition and Processing 
	Extraction of Vegetation Indices and Digital Elevation Model 
	Machine Learning Algorithms for Plant Height Estimation 
	Pre-Processing of Data and Statistical Analysis 

	Results 
	Correlation between Observed and Estimated Height Values 
	Comparison and Performance of Machine Learning Algorithms 
	Estimation of Plant Height in the Field 

	Discussion 
	Conclusions 
	References

