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Abstract: Integrating deep learning for crop monitoring presents opportunities and challenges, partic-
ularly in object detection under varying environmental conditions. This study investigates the efficacy
of image preprocessing methods for olive identification using mobile cameras under natural light.
The research is grounded in the broader context of enhancing object detection accuracy in variable
lighting, which is crucial for practical applications in precision agriculture. The study primarily
employs the YOLOv7 object detection model and compares various color correction techniques,
including histogram equalization (HE), adaptive histogram equalization (AHE), and color correction
using the ColorChecker. Additionally, the research examines the role of data augmentation methods,
such as image and bounding box rotation, in conjunction with these preprocessing techniques. The
findings reveal that while all preprocessing methods improve detection performance compared to
non-processed images, AHE is particularly effective in dealing with natural lighting variability. The
study also demonstrates that image rotation augmentation consistently enhances model accuracy
across different preprocessing methods. These results contribute significantly to agricultural technol-
ogy, highlighting the importance of tailored image preprocessing in object detection models. The
conclusions drawn from this research offer valuable insights for optimizing deep learning applications
in agriculture, particularly in scenarios with inconsistent environmental conditions.
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1. Introduction

Olive oil production is a significant economic activity in many countries, with a
global market value estimated at over €14 billion in 2022 [1]. To ensure high-quality olive
oil production, it is essential to identify and classify olives accurately according to their
ripeness. Establishing the “right time” to harvest is of the utmost significance [2].

In agriculture, accurate detection and evaluation of olive ripeness is crucial for deter-
mining the quality and yield of extracted oil [3]. Traditional methods of assessing olive
ripeness rely on experts’ visual inspection, which can be subjective and time-consuming [4].

The literature includes similar initiatives for a range of crops. In fact, the literature has
computer vision proposals for in-the-field fruit recognition for a variety of cases, including
orchard crops like apples [5], mangoes [6], sweet peppers [7], almonds [8], and tomatoes [9],
and in vineyards [10,11].

Regarding olive fruit, there have also been earlier studies [12,13] that addressed deter-
mining the size and mass of the fruits, as well as those [14–16] that addressed categorizing
the fruits according to their surface condition. While Ponce et al. [17] achieved this dis-
tinction by examining the fruits’ external features, [4,18] used endocarp image analysis to
identify different varieties of olive fruit. A neural-network-based image analysis algorithm
for identifying olive fruits in tree brunches was demonstrated by Gatica et al. [19]. Also,
post-harvest research is available [20–22], in which maturity is determined in-line, right
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before milling [23]. The work of Aljaafreh et al. [24], who used CNN in natural light, is one
noteworthy exception.

In our study, we explored image preprocessing techniques like histogram equaliza-
tion and adaptive histogram equalization, widely recognized in precision agriculture [25].
Notably, we observed their efficacy in controlled environments, such as watershed prepro-
cessing and HSV in olive identification [12], and histogram equalization for plant disease
detection [26]. Additionally, the usage of Gaussian filters, HSV color space [12], OTSU [17],
LAB color space [18], thin-plate spline interpolation [20], and Kuwahara filters [22] were
noted for assessing maturity indexes. Under varying lighting conditions, adaptive his-
togram equalization (AHE) has shown promise [27,28].

Computer vision and image processing techniques have emerged as promising so-
lutions for automating olive detection and ripeness assessment. Object detection in agri-
cultural settings faces unique challenges. Variations in lighting conditions, camera optics,
and image quality can significantly hinder the accuracy of detection systems. Traditional
image processing methods and earlier iterations of object detection algorithms, including
the YOLO (You Only Look Once) series, have shown limitations in effectively addressing
these challenges [29]. The accuracy of fruit detection based on color is affected by variations
in fruit color due to its maturity level, fruit variety, uncertain and varying background
features, and variable lighting conditions [30].

To overcome these limitations, this study aims to enhance YOLOv7’s performance
in detecting olive fruits through advanced image preprocessing techniques. A key focus
is color correction using ColorChecker—considering each image includes use of a color
chart—enabling precise calibration and correction [31]. This method is compared with
images without any color correction and other color correction methods, like adaptive
histogram processing and histogram equalization, to assess their efficacy in addressing
color imbalances and imaging condition variations. Additionally, data augmentation
methods, including image rotation and bounding box rotation, are utilized to improve the
model’s adaptability to diverse olive fruit orientations and backgrounds.

The primary objective is to assess the impact of these image-preprocessing techniques
on the accuracy of YOLOv7 for olive fruit detection. The hypothesis is that implementing
these preprocessing and data augmentation techniques will significantly enhance the mean
average precision (mAP) of YOLOv7-based object detection systems in diverse imaging
conditions [32].

2. Materials and Methods
2.1. Experimental Set-Up

The study utilized the built-in cameras of various cell phone models, namely the iPhone
6 ™ (8-megapixel) (manufactured by Apple, Zhengzhou, China), iPhone X ™ (12-megapixel)
(manufactured by Apple, Zhengzhou, China), iPhone SE ™ (12-megapixel) (manufactured
by Apple, Zhengzhou, China), and Motorola e4 ™ (8-megapixel) (manufactured by Motorola,
Tianjin, China), along with the Xrite ColorChecker PASSPORT ™color chart (Figure 1). The
focus of the investigation was the Arbequina variety of olive, captured under natural light
between 10:00 a.m. and 4:00 p.m. in four distinct locations across Brazil. The locations were as
follows: Farm São Sepé Prosperado, São Sepé, RS, coordinates 30º21’56.68” S, 53º30’41.98” W,
notable for producing the acclaimed Prosperato olive oil; Azeite Don Jose, Caçapava do Sul,
RS, coordinates 30º37’25.00” S, 53º20’44.19” W, recognized for the production of Don Jose olive
oil; Olivas do Sul—Pomar, Cachoeira do Sul, RS, coordinates 30º00’33.23” S, 52º51’59.51” W,
known for producing Olivas do Sul olive oil, and Fazenda Oliq, São Bento do Sapucaí, SP,
coordinates 22º37’19.70” S, 45º41’25.72” W, home to the producer of Oliq olive oil.

The image collection occurred in February 2023 on different days, resulting in a
comprehensive dataset comprising approximately 2400 images for training and 180 for
validation (90 for cross-validation 1 and 90 for cross-validation 2). It is important to note
that all images were meticulously acquired with a color-checker integrated into the frame,
ensuring consistency and accuracy in the dataset.



AgriEngineering 2024, 6 157

Figure 1. Image acquisition sample.

2.2. Image Color Correction
2.2.1. Color Correction Based on ColorChecker

Color correction based on ColorChecker aligns with best practices by considering
ColorChecker reference information, including D65 illuminant details. Each image under-
goes processing, incorporating ColorChecker detection techniques as a key step in color
decoding [33,34]. This ensures precise calibration and adherence to industry standards for
consistent and accurate color representation. Crucially, the CAT02 chromatic adaptation
transform was used to convert between different illuminants, an advanced feature of color
management systems and critical in maintaining color consistency across different lighting
conditions [35]. This is performed during the conversion from RGB to xyY color spaces,
ensuring accurate color representation [36]. In the following step, Finlayson’s 2015 [37]
method is utilized for color correction, a respected technique in color constancy [37]. After
correcting the colors, we converted the images back to sRGB.

2.2.2. Adaptive Histogram Equalization (AHE)

The thinking behind AHE comes from our eyes, which adapts to the local context of
the image to evaluate the contents. The procedure to accomplish it is the image divided into
a grid of rectangular contextual regions in which the optimal contrast must be calculated.
The optimal number of contextual regions depends on the type of input image.

The histogram of the contained pixels is calculated for each of these contextual regions.
Calculating the corresponding cumulative histogram results in an assignment table that
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optimizes the contrast in each contextual region [38]. AHE is an algorithm that aims to
enhance the contrast in an image by compensating for the differences between the various
regions in the image. Unlike other methods, it operates locally. It considers the pixel’s
location to perform the enhancement. This method allows adapting to the various features
of an image to preserve details better and enhance local contrast. One disadvantage is that
it can over-enhance noise in the image’s almost uniform regions [33,39].

2.2.3. Histogram Equalization

HE is a computer image processing technique that redistributes the intensity values
of an image to enhance contrast [40]. This method operates by transforming the image’s
intensity distribution. The image histogram is relatively flat by enhancing the peak portion’s
contrast and reducing the valley portions’ contrast on both sides. The fundamental concept
is to ensure that each grey level appears with the same frequency so that the probability of
each grey level is evenly distributed, leading to a flat histogram, and the image also becomes
clear [41]. In essence, histogram equalization aims to achieve a balanced representation of
intensity levels, thereby improving the overall visual quality of the image (Figure 2).

(a) (b)

(c) (d)

Figure 2. (a) Original image, (b) Color correction based on ColorChecker, (c) Adaptive histogram
equalization, (d) Histogram equalization.

2.3. Data Augmentation

Data augmentation is one of the crucial approaches in object detection, which en-
compasses adjusting the picture that contains objects to increase the size of the dataset.
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This helps to increase the generality of a model and application of the model for practical
problem-solving. This study employed two types of geometric [42] data augmentation:
bounding box and image rotations [43]. Bounding box rotation involves rotating the bound-
ing boxes of the olive fruits by 90 degrees in three directions: vertical flipping, horizontal
flipping, and vertical and horizontal flipping. This allows the neural network to learn in
different orientations [44]. This geometric rotation was applied to the image rotation level,
vertical flipping, horizontal flipping, and vertical and horizontal flipping. This technology
introduces rotations on the olive tree fruit’s perspective, changing the background for their
object learning [45]. The dataset is augmented with an added bounding box rotation and a
rotated image to ensure that the olive fruits are captured under different scenes.

2.4. Model

Deep learning methods have significantly advanced the object detection field, with the
YOLO algorithm emerging as a notable development [32]. The YOLO, an acronym for “You
Only Look Once”, algorithm works by dividing the input image into a grid and predicting
the object classes and bounding box coordinates for each grid cell. This approach enables
YOLO to detect multiple objects in a single pass, making it more efficient than other object
detection algorithms [46]. YOLOv7 represents a continuation and refinement of the YOLO
series YOLOv2 [47], YOLOv3 [48], YOLOv4 [49], and YOLOv5, renowned for its innovative
approach to object detection.

This approach, involving a single-stage process for the simultaneous prediction of
bounding boxes and object classification, marks a significant departure from conventional
methods that adapted classifiers for object detection. YOLOv7 is celebrated for its state-
of-the-art (SOTA) performance [50]; YOLOv7 achieved the highest mAP when compared
to YOLOv3, YOLOv5, and Faster RCNN in the detection of Camellia oleifera fruit in
field environments. Also, for marine creature detection, YOLOv7 outperformed previ-
ous YOLO versions [51]. This advancement has been well-documented in several key
publications [52–54]. Wang et al. [32] and Liu et al. [55] describe the YOLOv7 as comprising
an input, backbone, and head network, and a prediction network, as explained below
(Figure 3):

Figure 3. Yolov7 architecture [55].

Input module: To ensure that the input color images are uniformly scaled to a
640 × 640 size and meet the requirements for the input size of the backbone network,
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the preprocessing stage of the YOLOv7 model uses mosaic and hybrid data enhance-
ment techniques. It also uses the adaptive anchor frame calculation method established
by YOLOv5.

Backbone network: The three primary parts of the YOLOv7 network are MP1, E-ELAN,
and CBS. The CBS module comprises SiLU activation functions, batch normalization, and
convolution. The E-ELAN module preserves the original gradient path and helps the network
learn more features by directing various feature group computational blocks to learn more
varied features. This improves the network’s capacity for learning. MP1 is split into upper
and lower branches and comprises CBS and MaxPool. The upper branch reduces the image’s
length and width by half using MaxPool and reduces the image’s channels by half using CBS
with 128 output channels. The lower branch utilizes a concatenation (Cat) operation to combine
the features extracted from both branches, halving the image length and breadth. It also uses
the picture channels using a CBS with a 1 × 1 kernel and stride. The network’s capacity to
extract features is enhanced by MaxPool, which extracts the maximum value information from
tiny local areas, and CBS, which extracts all the value information from small local areas.

Head network: The head network of YOLOv7 is organized using the PANet-based feature
pyramid network (FPN) architecture. This network includes the extended efficient layer
aggregation network (E-ELAN), MaxPool-2 (MP2), several convolutional, batch normalization,
and SiLU activation (CBS) blocks, as well as the introduction of a spatial pyramid pooling
and convolutional spatial pyramid pooling (Sppcspc) structure. Adding a convolutional
spatial pyramid (CSP) structure within the spatial pyramid pooling (SPP) structure and a
large residual edge to facilitate optimization and feature extraction, the Sppcspc structure
enhances the perceptual field of the network. The ELAN-H layer, a combination of multiple
E-ELAN-based feature layers, further improves feature extraction. With a minor change to the
number of output channels, the MP2 block’s structure is similar to that of the MP1 block.

Prediction network: YOLOv7’s prediction network uses a Rep structure to modify how
many image channels the head network’s features output should have. Then, it applies a
1 × 1 convolution to predict the confidence, category, and anchor frame. RepVGG [56] serves
as the model for the Rep structure, which adds a unique residual design to facilitate training.
In practical predictions, this special residual structure reduces to simple convolution, which
reduces network complexity without compromising predictive performance.

2.5. YOLOv7 Training

The training of YOLOv7 was conducted on the Google Colab platform with NVIDIA
A100 GPU with 40 GB of memory (manufactured by NVIDIA, Hsinchu, Taiwan). Unlike the
original broader configuration, this setup was specifically tailored to identify two classes: “olive
fruit” and “not olive fruit”. The training was set to run for 100 epochs since multiple epochs
can be found in the literature, like 100, 50, and 45 [57–59]. The input image resolution was set
to 1280 × 1280 pixels, adapting the YOLOv7-E6 model through transfer learning. This decision
was based on optimizing the model’s performance for the specific task at hand without any
adjustments to the default configuration of hyp.scratch.p5.yaml [32].

2.6. Metrics
2.6.1. Precision

Precision can be considered as the model’s ability to identify all the detected olives
correctly. It measures the accuracy of the system’s detections for identifying olives in
images. It is calculated by dividing the true positives (TP) by the sum of TP and the false
positives (FP), as expressed by Equation (1).

Precision =
TP

TP + FP
(1)

where for true positives (TP), olives are present in the image, and the model predicts their
presence correctly; for false positives (FP), olives are not in the image but are falsely detected.
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2.6.2. Recall

Recall reflects the system’s ability to detect all actual olives in the images. It measures
how many of the actual olives in an image were correctly identified by the system. It is
calculated as the ratio of the true positives (TP) to the sum of TP and the false negatives
(FN) in Equation (2):

Recall =
TP

TP + FN
(2)

where for true positive (TP), olives are present in the image, and for false negative (FN),
an olive is present in the image but is not detected by the model.

2.6.3. mAP

The mean average precision (mAP) is a metric in object detection tasks that measures
the system’s accuracy in detecting objects, such as olives, across images. It is derived from
the precision and recall values for olives at a certain threshold or over a range of thresholds.
The mAP is typically computed as the area under the precision–recall curve for olives, as
expressed by Equation (3):

mAP =
1
C

C

∑
i=1

APi (3)

where, APi is the average precision for olives, and C represents the number of image sets
or categories where olives are to be detected. In the case of a single category, such as olives,
the mAP would be equal to the average precision (AP) for that category [60].

2.6.4. Paired t-Test

A paired t-test was used to compare the mAP of two related treatments. A p-value
below 0.05 indicates a statistically significant difference between the control group (no
treatment) and the corresponding treatment group [61]. The paired t-test is appropriate
because the two mAP groups are related [62], as expressed by Equation (4).

t =
d̄

sd/
√

n
(4)

where t is the t-value, d̄ is the mean of the differences between the paired observations, sd
is the standard deviation of the differences, and n is the number of pairs.

2.6.5. ANOVA

In the case of augmentation and preprocessing, we used ANOVA (analysis of variance),
a statistical method used to determine whether there are statistically significant differences
between the means of two or more groups [63]. The total sum of squares (TSS) is the sum of all
the squared differences between the mean of a sample and the individual values in that sample:

TSS =
k

∑
i=1

ni

∑
j=1

(Yij −Y)2, (5)

where Yij is the observation, Y is the overall mean, k is the number of groups, and ni is the
number of observations in the ith group.

Sum of squares between (SSB): For each subject, compute the difference between its
group mean and the grand mean.

SSB =
k

∑
i=1

ni(Yi −Y)2, (6)



AgriEngineering 2024, 6 162

where Yi is the mean of the ith group, Y is the overall mean, k is the number of groups, and
ni is the number of observations in the ith group. Sum of squares within (SSW) is the sum
of the squared differences between a value and its sample mean for all values.

SSW =
k

∑
i=1

ni

∑
j=1

(Yij −Yi)
2, (7)

where Yi is the mean of observations within the ith group, Y is the overall mean, k is the
number of groups, and ni is the number of observations in the ith group.

MSB is the mean sum of squares between the groups.

MSB =
SSB
k− 1

, (8)

where k− 1 is the degrees of freedom for groups, and SSB is the sum of squares between.
MSW, the mean sum of squares, is calculated by dividing the sum of squares within the
groups by the error degrees of freedom.

MSW =
SSW
N − k

, (9)

where N is the total number of observations and k is the number of groups, and SSW is the
sum of squares within.

To obtain the F-statistic, we want to compare the “average” variability between the
groups to the “average” variability within the groups. We take the ratio of the between
mean sum of squares to the error mean sum of squares.

F =
MSB
MSW

, (10)

where MSB and MSW are the mean squares between and within groups.

2.6.6. Tukey

The Tukey test, also known as Tukey’s honest significant difference (HSD), is a post hoc
test used after an ANOVA has been conducted and found to be significant. The Tukey test
is a multiple comparison procedure which controls the family-wise error rate (FWER) [64],
as expressed by Equation (11):

Q = qα(k, d f )×
√

MSE
n

(11)

where qα is the studentized range statistic q for a given alpha level α, number of groups
k, and degrees of freedom d f . MSE, is the mean square error from the ANOVA. n, is the
number of observations in each group.

3. Results

This study evaluated four treatments in the building dataset, namely: H1—no pre-
processing and no augmentation; H1.1—no preprocessing and image rotate augmentation;
H1.2—no preprocessing and bound box augmentation; H2—color correction based on
ColorChecker preprocessing and no augmentation; H2.1—color correction based on Col-
orChecker preprocessing and image rotate augmentation; H2.2—color correction based on
ColorChecker preprocessing and bound box augmentation; H3—AHE preprocessing and
no augmentation; H3.1—AHE preprocessing and image rotate augmentation; H3.2—AHE
preprocessing and bound box augmentation; H4—HE preprocessing and no augmentation;
H4.1—HE preprocessing and image rotate augmentation; H4.2—HE preprocessing and
bound box augmentation (Table 1).
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A paired t-test was used to compare the mAP of two related treatments. A p-value
below 0.05 indicates a statistically significant difference between the control group (no
treatment) and the corresponding treatment group [61]. The paired t-test is appropriate
because the two mAP groups are related [62]. For this, it could be used to compare the mAP
metric from H1 versus H2, H3, and H4 to test which color adjustment improves the mAP
metrics (Table 2). In this comparison, they have the same number of images. The study
comprehensively evaluates color correction as a preprocessing step for olive identification
using cell phones under natural light. The results align with the findings, highlighting the
challenges and importance of color correction in agricultural image analysis [65,66].

Table 1. Cross-validation (CV) evaluation of each treatment.

Treatment CV1 CV1 CV1 CV2 CV2 CV2

No preprocessing Precision Recall mAP Precision Recall mAP

H1 0.593 0.672 0.641 0.572 0.756 0.686
H1.1 0.762 0.786 0.84 0.738 0.794 0.848
H1.2 0.651 0.872 0.821 0.669 0.828 0.814

ColorChecker preprocessing Precision Recall mAP Precision Recall mAP

H2 0.6651 0.872 0.821 0.663 0.759 0.726
H2.1 0.718 0.842 0.847 0.78 0.78 0.86
H2.2 0.69 0.757 0.785 0.662 0.835 0.774

AHE Precision Recall mAP Precision Recall mAP

H3 0.74 0.81 0.78 0.772 0.79 0.84
H3.1 0.633 0.729 0.713 0.66 0.736 0.744
H3.2 0.701 0.669 0.725 0.675 0.738 0.745

HE Precision Recall mAP Precision Recall mAP

H4 0.676 0.793 0.775 0.664 0.814 0.785
H4.1 0.72 0.829 0.832 0.723 0.817 0.839
H4.2 0.647 0.785 0.752 0.661 0.809 0.784

Table 2. H1 X H2, H3 and H3.

H1 H2 H3 H4

p-value 0.3608 0.0326 0.0949

The paired t-test results revealed that AHE (hypothesis H3) preprocessing is statisti-
cally significantly different compared to the other methods, providing empirical evidence
for its efficacy in this specific application. AHE separates an image into several sub-blocks,
and each sub-block is processed by histogram equalization. It creates a local equalization,
making it more interesting for natural light images, wherein the same image in many
regions might be darker or lighter. Moreover, the HE performs this for the entire image
without considering each region [67]. Color correction, even when using a sophisticated
matrix-based method to adjust the colors in an image, often applies corrections uniformly
across the entire image [68]. In the case of augmentation and preprocessing, we used
ANOVA or variance analysis. The ANOVA p-value was 1.3318434825276204× 10−5, show-
ing statistically significant differences in the mean mAP scores among the different color
correction methods and augmentations. To investigate this, we proceeded with the Tukey
test (Table 3).
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Table 3. Tukey HSD Test.

Group1 Group2 Meandiff p-adj Lower Upper Reject

H1 H1.1 0.1805 0 0.1155 0.2455 True
H1 H1.2 0.154 0.0001 0.089 0.219 True
H1 H2.1 0.19 0 0.125 0.255 True
H1 H2.2 0.116 0.0011 0.051 0.181 True
H1 H3.1 0.065 0.0501 0 0.13 False
H1 H3.2 0.0715 0.0294 0.0065 0.1365 True
H1 H4.1 0.172 0 0.107 0.237 True
H1 H4.2 0.1045 0.0024 0.0395 0.1695 True

H1.1 H1.2 0.0265 0.7794 0.0915 0.0385 False
H1.1 H2.1 0.0095 0.9993 0.0555 0.0745 False
H1.1 H2.2 0.0645 0.0522 0.1295 0.0005 False
H1.1 H3.1 0.1155 0.0012 0.1805 0.0505 True
H1.1 H3.2 0.109 0.0018 0.174 0.044 True
H1.1 H4.1 0.0085 0.9997 0.0735 0.0565 False
H1.1 H4.2 0.076 0.0205 0.141 0.011 True
H1.2 H2.1 0.036 0.4779 0.029 0.101 False
H1.2 H2.2 0.038 0.4197 0.103 0.027 False
H1.2 H3.1 0.089 0.0074 0.154 0.024 True
H1.2 H3.2 0.0825 0.0123 0.1475 0.0175 True
H1.2 H4.1 0.018 0.9609 0.047 0.083 False
H1.2 H4.2 0.0495 0.1785 0.1145 0.0155 False
H2.1 H2.2 0.074 0.024 0.139 0.009 True
H2.1 H3.1 0.125 0.0006 0.19 0.06 True
H2.1 H3.2 0.1185 0.001 0.1835 0.0535 True
H2.1 H4.1 0.018 0.9609 0.083 0.047 False
H2.1 H4.2 0.0855 0.0097 0.1505 0.0205 True
H2.2 H3.1 0.051 0.1583 0.116 0.014 False
H2.2 H3.2 0.0445 0.2634 0.1095 0.0205 False
H2.2 H4.1 0.056 0.1053 0.009 0.121 False
H2.2 H4.2 0.0115 0.9974 0.0765 0.0535 False
H3.1 H3.2 0.0065 1 0.0585 0.0715 False
H3.1 H4.1 0.107 0.002 0.042 0.172 True
H3.1 H4.2 0.0395 0.379 0.0255 0.1045 False
H3.2 H4.1 0.1005 0.0032 0.0355 0.1655 True
H3.2 H4.2 0.033 0.5719 0.032 0.098 False
H4.1 H4.2 0.0675 0.0408 0.1325 0.0025 True

The results of the Tukey HSD test provide a detailed comparison of the mean dif-
ferences between the various groups using different augmentation techniques. Here is a
summary of the key findings:

H1 vs. Others:

• Significant differences were found between H1 and several other groups (H1.1,
H1.2, H2.1, H2.2, H3.2, H4.1, H4.2), indicating that the use of any augmentation
or preprocessing method generally improves performance compared to no augmenta-
tion/preprocessing.

H1.1 vs. Others:

• H1.1 (no preprocessing with image rotation augmentation) significantly differs from
H3.1, H3.2, and H4.2, indicating differences in performance when comparing image
rotation augmentation with various preprocessing methods.

H1.2 vs. H3.1 and H1.2 vs. H3.2:

• These comparisons show significant differences, suggesting that the type of prepro-
cessing used with bbox rotation augmentation can impact performance.
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H2.1 vs. H2.2:

• A significant difference exists, indicating that the choice between image rotation and
bbox rotation in color correction preprocessing can impact the results.

H3.1 vs. H4.1:

• This comparison reveals a significant difference, suggesting that histogram equaliza-
tion preprocessing combined with image rotation performs better than histogram
adaptive preprocessing with the same augmentation.

H4.1 vs. H4.2:

• A significant difference is noted here, highlighting the impact of the type of augmenta-
tion (image rotation vs. bbox rotation) in histogram equalization preprocessing.

Based on the Tukey HSD test results, the best treatment in terms of mAP@.5 perfor-
mance among the ones tested can be identified by looking for the groups that consistently
showed superior performance. The key is to find the group that was significantly better
than most others and was not significantly outperformed by any other group. Here is a
summary based on our results:

• H1.2 (No preprocessing with image rotation): While it showed significant improve-
ments over H1, it was outperformed by H3.1, H3.2, and H4.2.

• H2.1 (Color correction with image rotation): This group did not show significant
differences when compared to H1.1, H3.1, and H4.1, and it was only significantly
better than H2.2, H3.1, H3.2, and H4.2.

• H4.1 (Histogram equalization with image rotation): H4.1 stands out as no other group
significantly outperformed it in our test, and it showed significant improvements over
several groups, including H3.1 and H3.2.

4. Discussion

Aljaafreh et al. [24] conducted a similar test using an RGB camera to collect data from
10 olive farms in Jordan under natural light. Methodologically, they employed YOLOv5
and tested four hyperparameters to determine the best olive fruit detection performance.
Hyperparameter D (with four anchors, a learning rate of 0.01, and a weight decay of 0.05)
used with YOLOv5x, which accepts images of 640 × 640 pixels, achieved the highest mAP
of 0.7708. All the mAP metrics are available in Table 4.

Table 4. Aljaafreh et al., 2023 [24], YOLOv5 olive fruit object detection under natural light mAP.

Name Hyperparameter mAP

YOLOv5x D 0.7708
YOLOv5s D 0.7265
YOLOv5x C 0.7116
YOLOv5s C 0.6827
YOLOv5x B 0.733
YOLOv5s B 0.7384
YOLOv5x A 0.7559
YOLOv5s A 0.7413

In this study, the mAP (mean average precision) metrics are compared with those
reported by Aljaafreh et al. [24]. Our results demonstrate a significant improvement: an
increase of 7.94% in CV1 (H4.1: 0.832 compared to 0.7708 mAP (Equation (12)) and an
increase of 8.8% in CV2 (H4.1: 0.839 compared to 0.7708 mAP (Equation (13)).(

0.832− 0.7708
0.7708

)
× 100 ≈ 7.94% (12)

(
0.839− 0.7708

0.7708

)
× 100 ≈ 8.85% (13)
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We observed a significant improvement when comparing our H2.1 results with the
best mAP achieved by Aljaafreh et al. [24]. Specifically, in CV1, H2.1 surpassed their results
by 9.9% (Equation (14)), and in CV2, the improvement was even more pronounced at
11.57% (Equation (15)). (

0.847− 0.7708
0.7708

)
× 100 ≈ 9.90% (14)

(
0.86− 0.7708

0.7708

)
× 100 ≈ 11.57% (15)

This finding would allow farmers to use mobile devices to identify the olives for count-
ing and later research for maturity index and disease identification. Such an approach does
not require experience or skills with a camera for image acquisition, therefore becoming
an ally for farmers. Since the light condition is a challenge, artificial light can be used to
improve the results. In [69], which used Yolov5 with 500 epochs for peach recognition, it
was concluded that artificial light resulted in better results when compared to natural light,
with an F1 score of 0.81, highlighting that natural light presents issues like excessive and
shade sun fleck conditions. Aquino et al. [18], using artificial light to identify olives at night
and convolution neural network (CNN)-based models, reached F1 scores of 0.83 and 0.84
for precision using Inception-ResNetV2 with 64 epochs.

In the study which focused on using deep learning for olive fruit detection, particularly
employing the YOLOv7 model, notable limitations emerge that warrant attention for
future research. Firstly, the study’s findings are inherently tied to specific conditions,
notably the use of cell phones for image capture under natural lighting, which may not
be representative of internal areas and controlled light environments. Additionally, while
exploring a range of preprocessing techniques, including histogram equalization and
image rotation, the research may not have encompassed the entire spectrum of available
or potentially more effective methods. This limited scope may have resulted in overlooking
other innovative techniques that might enhance detection accuracy. Furthermore, the reliance
on the YOLOv7 model as the sole CNN tool raises questions about the generalizability of the
findings across different object detection models, each potentially responding differently to the
same preprocessing and augmentation techniques. These limitations highlight the need for
more extensive research to validate and extend these findings under varying conditions, with
different olive varieties, with diverse resolutions, and across multiple deep learning models.

The study comprehensively evaluated color correction as a preprocessing technique
for olive identification using cell phones in natural light conditions. Various methods
were compared, including histogram equalization (HE), adaptive histogram equalization
(AHE), and color correction based on use of ColorChecker. The findings indicated that
any preprocessing or augmentation method generally improved performance compared to
scenarios without such treatments.

5. Conclusions

Based on the results of the Tukey test, it can be concluded that using histogram
equalization preprocessing with image rotation augmentation (H4.1) performs the best in
terms of mAP@.5 performance compared to the other tested preprocessing methods and
augmentation techniques. The results in terms of image augmentation agree with [70], with
the method also performing better on the image level as opposed to the box level.

Notably, the AHE preprocessing method (H3) demonstrated statistically significant dif-
ferences over the other methods, highlighting its suitability for image capture under natural
light with diverse lighting conditions. The study revealed that different preprocessing and
augmentation techniques impact the performance of the YOLOv7 model in olive detection.

Among the treatments, the combination of histogram equalization preprocessing and
image rotation (H4.1) emerged as the most effective. While sophisticated color correction
methods were effective, they were less impactful than AHE preprocessing. This study high-
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lights the importance of carefully selecting image preprocessing and augmentation techniques,
with AHE preprocessing and image rotation augmentation identified as key contributors to
enhancing olive detection accuracy using YOLOv7 in natural lighting conditions.

In addition, our comprehensive analysis and comparative study with Aljaafreh et al.
(2023) [24] have led to notable advancements in olive fruit detection using YOLOv5. We
achieved significant improvements in the mean average precision (mAP) when using
YOLOv5 [24], with increases of 7.94% and 8.8% in CV1 and CV2 for H4.1, and even
more substantial gains of 9.9% and 11.57% in CV1 and CV2 for H2.1, respectively. These
results demonstrate the efficacy of our methodological enhancements and provide valuable
insights for future research in precision agriculture using deep learning techniques.
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