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Abstract: The primary strategy for mitigating lost productivity entails promptly, accurately, and
efficiently detecting plant pests. Although detection by humans can be useful in detecting certain
pests, it is often slower compared to automated methods, such as machine learning. Hence, this
study employs a Convolutional Neural Network (CNN) model, specifically GoogleNet, to detect
pests within mobile applications. The technique of detection involves the input of images depicting
plant pests, which are subsequently subjected to further processing. This study employed many
experimental methods to determine the most effective model. The model exhibiting a 93.78% accuracy
stands out as the most superior model within the scope of this investigation. The aforementioned
model has been included in a smartphone application with the purpose of facilitating Indonesian
farmers in the identification of pests affecting their crops. The implementation of an Indonesian
language application is a contribution to this research. Using this local language makes it easier
for Indonesian farmers to use it. The potential impact of this application on Indonesian farmers is
anticipated to be significant. By enhancing pest identification capabilities, farmers may employ more
suitable pest management strategies, leading to improved crop yields in the long run.
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1. Introduction

Food is one of the most fundamental requirements for maintaining human health
and vitality. Almost anywhere in Indonesia, a wide variety of crops may be grown due to
the country’s abundance of arable land [1]. When it comes to plant exports, Indonesia is
a major player [2]. Due to its tropical location, Indonesia frequently experiences floods,
droughts, and other forms of severe weather. The changing patterns of precipitation and
temperature brought on by global warming also threaten plant growth and crop output.
Traditional, inefficient farming practices are still used by some Indonesian farmers. Another
factor that might prevent farmers from boosting output is a lack of access to cutting-edge
agricultural technologies like organic fertilizer, improved seeds, enough irrigation, and safe
pesticides. Social disparities in Indonesian society, which may be experienced by farmers
in particular locations, may also have an impact on agricultural output. Small farmers’
inability to run their farms efficiently is largely attributable to their lack of knowledge. Poor
harvest outcomes are to be expected under these conditions.

The situation of farmers in Indonesia is strongly connected to the challenge of identi-
fying pests in agricultural settings, which in turn can have an effect on crop yields that are
not at their full potential [3]. The education level of many farmers in Indonesia is rather
poor, and they have limited access to agricultural training and knowledge [4–6]. As a
consequence of this, they might not have an appropriate understanding of how to properly
detect and control agricultural pests. Smaller farms may not have the financial means to
invest in or learn to utilize sophisticated software tools for pest identification. As a result, it
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may be challenging to see pests in their early stages. Without prompt and proper treatment,
a pest infestation on one plant will spread to others in the area [7–11]. In a typical crop,
a single rat may harm anywhere from 11 to 176 plants in a single night [12]. During the
breeding season, a single rat can destroy up to 26 stalks in a single night, leaving behind
only a few rows of plants. It takes a mouse only 21 days to have her own litter of 6–8 young.
Obviously, the severity of this problem might increase dramatically if it is not addressed
promptly and effectively. Depending on the surrounding environment and the care offered
to the plant, there may be a wide variety of pests that target a single plant type [13].

Several ancillary technologies [14] are already in use in the agriculture industry,
including drones. Farmers may utilize drones to keep an eye on crops from above and
protect them from pests by spraying pesticides over large areas [15–18]. However, without
special detecting equipment, drones cannot identify which pests are present on a farm, and
not every farmer can afford to buy them. Pest detection apps for smartphones that are
already ubiquitous in Indonesia are a necessity.

It is important to be able to identify the numerous plant pests that occur. Machine
learning using supervised model approaches is one approach [19–25]. This technique
needs data that already have a previous label. In machine learning, there are also various
methods of image classification. One effective method is the use of CNNs. The Pest
Region-CNN end-to-end detection model, otherwise known as Pest R-CNN, was created
by Du et al. for the maize pest Spodoptera frugiperda [26]. It tracks their consumption
of maize leaves using the Faster R-CNN model. The model classifies invasion intensity
into juvenile, minor, moderate, and severe using UAV-acquired high-spatial-resolution
RGB ortho-images. The model demonstrated the efficacy of deep learning object detection
in pest monitoring with a mean average accuracy of 43.6% on the test dataset. Their
model’s detection accuracy improved by 12% and 19% over Faster R-CNN and YOLOv5,
respectively. Jiao et al. developed a CNN-based multi-class pest identification approach
for complicated scenarios [27]. Their research introduces adaptive feature fusion within
feature pyramid networks to extract deeper pest characteristics. To reduce information
loss in the highest-level feature map, an adaptive augmentation module was designed.
Finally, a two-stage region-based CNN (R-CNN) refined the predicted bounding boxes to
determine the pest types and locations in each image. Compared to SSD, RetinaNet, FPN,
Dynamic R-CNN, and Cascade R-CNN, their method achieved 77.0% accuracy, which was
the highest.

The key to lowering the amount of produce that is lost is finding plant pests as early,
correctly, and effectively as possible. In this scenario, apps that run on mobile devices
provide a significant and pertinent solution. With the help of smartphone applications,
farmers are able to conveniently perform routine checks on their crops. They can capture
images of plants and detect pests using their mobile devices, making it simpler for them
to record and monitor everyday agricultural conditions. Mobile applications have been
developed with user interfaces that are straightforward and simple to operate. Because
of this, they may be used without trouble by farmers who have varied levels of education
and prior experience with technology. A number of applications have been developed to
help farmers detect pests. Prabha et al. developed an Android mobile application that
utilizes a Deep CNN (DCNN)-based artificial intelligence system for the purpose of insect
identification in maize production [28]. The utilization of CNN models on mobile devices
yields advantages for all stakeholders, with particular benefits being offered to farmers and
agricultural extension experts, since they enhance their accessibility. A mobile application
for Android was developed for the purpose of detecting fall armyworm infection in maize
crops. This application incorporated the advice provided by Tamil Nadu Agricultural
University’s Integrated Pest Management (TNAU IPM) capsules. This mobile software
offers guidance on effectively managing the issue of fall armyworm infestation. Chen et al.
presented an application for the identification of scale pests in Taiwan using image-based
methods [29]. The Coccidae and Diaspididae species, known as mealybugs, are the predom-
inant pests of scale insects in Taiwan. These species have the potential to cause significant
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harm to plants and pose a substantial threat to agricultural productivity. Therefore, the
identification of scale pests holds significant importance within the agricultural sector of
Taiwan. You Only Look Once v4 (YOLO v4), single-shot multi-box detectors (SSDs), and
faster region-based CNNs (Faster R-CNNs) are some of the deep learning algorithms used
to detect and precisely localize scale pests inside an image. A smartphone application
has been created that utilizes a trained scale pest detection model. This application aims
to assist in the identification of pests in agricultural settings, hence enabling farmers to
effectively apply targeted pesticides and minimize crop losses.

Despite the existence of several related applications in other countries, there is a dis-
tinct necessity for tailored mobile-based applications designed specifically for Indonesian
farmers. The compatibility between applications produced in other countries and the
local language may not always be guaranteed. The development of a mobile application
tailored to Indonesian farmers would facilitate the incorporation of local language into
the program’s content and user interface. This approach would enhance comprehension
and acceptance among farmers, hence facilitating their utilization of the application. There
is a poor general level of English proficiency in the whole population of Indonesia [30].
Farmers who have completed elementary and secondary schooling will also find this to
be a difficult situation [31]. As a result, developing a mobile application tailored to the
needs of Indonesian farmers has the potential to address the distinct obstacles encountered
within the agricultural sector in Indonesia.

This study also employs a CNN architecture, namely GoogleNet, for the purpose
of identifying pests within mobile applications. GoogleNet makes use of a technology
called Inception blocks, which integrate a variety of convolutional algorithms and filter
sizes into a single layer. This results in a reduction in the number of computing processes
and parameters that are necessary, making the model simpler. When compared to other
CNN architectures that were available at the time, such as AlexNet or VGG, this model
featured a significantly lower total number of parameters [32,33]. This enabled a more
effective utilization of the RAM of the mobile device. In addition, this model includes
methods such as L2 regularization and dropout to avoid overfitting [34]. This can assist
in retaining model performance on small datasets without the need for a high number
of parameters by reducing the likelihood of the model being overly accurate. The fact
that GoogleNet was developed with hardware capabilities in mind, such as the Single
Instruction Multiple Data (SIMD) instructions that are present on many recent mobile
devices [35], is another key aspect to take into consideration. This helps to maximize
the usage of the resources available in the hardware. Traditional convolution is rendered
obsolete as a result of the development of depth-wise separable convolution. Because
of this, the number of operations and parameters that are necessary is decreased, which
results in increased computing efficiency. The use of a large number of convolutional
layers of relatively modest size helps to extract information in an effective manner and
also enables dimensionality reduction. All of the aforementioned criteria contribute to
GoogleNet’s ability to achieve an optimal performance on mobile devices with limited
resource capacities. Because of this, it is an excellent option for mobile apps, which place
a premium on computing efficiency as well as model size. This aligns with the varied
agricultural landscape of Indonesia.

2. Materials and Methods
2.1. Data Collecting

Insects and other organisms that cause damage to plants are the focus of this research.
The information was obtained from the Kaggle website, which may be viewed at the fol-
lowing address on the internet: https://www.kaggle.com/simranvolunesia/pest-dataset
(accessed on 21 February 2022). The data that were used cover nine different kinds of
plant-destroying insects, including aphids, armyworm, beetles, bollworms, grasshoppers,
mites, mosquitoes, and sawflies. Stem borers were also included in the list. There are
two types of data in the dataset provided. The data included 2700 images, with each

https://www.kaggle.com/simranvolunesia/pest-dataset
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class contributing 300 images. These data were used to train the model, with 1800 data as
training data, and the remaining 900 data as validation data. The data were distributed
evenly in terms of number throughout each class so that the process of learning could go
more smoothly with the weighting model. The second data group comprised the taking of
450 images, with each class contributing 50 images. This second data group was used to
test the model.

2.2. Data Preprocessing

In the first step of the data preparation stage, the data were separated into two
categories: training data and validation data. Following the distribution of the data, the
images were subjected to preprocessing. Image preprocessing was performed so that the
model was able to detect characteristics in images with greater ease as a result of the work
that was performed. Image data relating to plants and pests were examined in this study.
The data were eventually utilized as input data in the classification process once they had
been processed via the preparation step. Data preprocessing consisted of two main stages,
namely image resizing and image augmentation. Image resizing was performed to change
the input image to a size of 224 × 224, with a size of 3 bits per pixel. Some deep learning
operations are more efficient when the size of the image is a multiple of certain numbers,
such as 32, 64, or 128. The GPU can process data more efficiently with an image size of
224 × 224 pixels [36]. Numerous deep learning models have been trained (pre-trained)
with datasets containing images of size 224 × 224 [37]. Utilizing pre-trained models is
facilitated by employing the same size during detection. Also, certain deep learning
frameworks, such as TensorFlow, have pre-trained models that support 224 × 224 image
sizes directly [38]. This facilitates the implementation of these models within applications.

Image augmentation was only carried out on the training data, because a lot of data
were needed for the model training process [39–42]. The process was carried out to expand
the variety of images that were used by the model using the module tf.image in TensorFlow.
This stage was carried out to increase the amount of data by changing the shape of the image.
The augmentation process carried out involved rotating the image, shifting the image based
on the width and height of the image, applying shearing to the image, enlarging the image,
and flipping the image horizontally.

• Width Shift

This was carried out to shift the image width to the left and right to provide variations
for the model to learn. The width shift range value given was 0.2.

• Height Shift

This was carried out to shift the image height up and down to provide variations for
the model to learn. The height shift range value given was 0.2.

• Shears

This was carried out to tilt the image regarding the x-axis and y-axis to provide
variations for the model to learn. The value of the shear range given was 0.2.

• Zoom

This was carried out to enlarge or reduce the image to provide variations for the model
to learn. The value of the given zoom range is 0.2.

• Horizontal Flip

This involved flipping an image vertically or horizontally to provide variations for
the model to learn. It was assisted using external tools in the form of an image
data generator library that had been previously provided by Tensorflow to make the
process easier.
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2.3. Classification

One deep learning approach is CNN, which is based on artificial neural networks
(ANN) [43–45]. The process data at both the input layer and the hidden layer then output
the results to the output layer. The difference between CNNs and ANNs is that the former
focuses more on recognition than the latter. A CNN has a structure consisting of various
layers that form a stacked network [46,47]. Convolutional layers, pooling layers, and fully
connected layers are the three main layers that produce a CNN after being combined. The
CNN layer is very important. This layer continuously uses filters on the data in the input
layer, and then produces the output. In the pooling layer process, the output convolutional
layer has its dimensions and parameters reduced [48–50]. Maximum pooling takes the
largest value from the pooling filter used. Average pooling takes the average value from
the pooling filter used. The pooling process helps reduce the computational complexity
of the model and prevents overfitting. Multilayer perceptron applications typically use
fully connected layers. The goal of convolutional or pooling layers is to increase the
dimensionality of data that can be classified linearly. To achieve this goal, data that have
been previously processed in this layer will be flattened first before being inserted into
this layer.

In 2014, Google collaborated with various universities to conduct research on GoogleNet,
also known as Inception V1. The winner of ILSVRC 2014 is this architectural design.
Compared to winning designs from previous years, this design is more accurate. This
architecture uses global average pooling and 1 × 1 convolution in the middle. The main
aim of this architecture is to determine how optimally the local sparse structure in a
convolutional vision network can be estimated and encompassed in easily accessible thick
components [51–55]. This architecture’s 1 × 1 convolution concept helps reduce the number
of parameters (loads and biases) present in the architecture significantly. At the end of
the network, this architecture uses an elative global average pooling method. Overall,
this structure consists of twenty-two layers. To maintain computational efficiency, this
architecture can be used on devices. It has low computing capabilities, as depicted in
Figure 1, which explains the details of the twenty-two architectural layers. This study used
the CNN method. The architecture used was GoogLeNet, which was a development of
LeNet and AlexNet and had twenty-two layers. The GoogLeNet model was implemented
by training the model using previously obtained data. By using a pre-existing dataset, this
model predicted images of plants.

Figure 1 demonstrates the GoogLeNet architecture that was utilized in the research.
The subsequent section provides an outline of the subsequent steps:

1. The input used is an image measuring 224 × 224.
2. The image data undergo five phases of convolution prior to reaching the fully con-

nected layer.
3. In the initial phase, the data are subjected to 7 × 7 convolution and 3 × 3 max pooling.
4. The data are then transit through two convolution layers with dimensions of 1 × 1

and 3 × 3, followed by a max pooling layer with dimensions of 3 × 3.
5. In the third stage, data enter the Inception model layer twice and are processed by

max pooling with 3 × 3 dimensions.
6. In the fourth stage, the data are first processed by an Inception model layer and then by

an auxiliary classifier. The data then pass through three layers of the inception model
and then the second auxiliary classifier. Then, the data pass through an Inception
model layer once more prior to max pooling with 3 × 3 dimensions.

7. In the fifth stage, the data travel through two layers of the Inception model and
then undergo 7 × 7-dimensional average pooling. The data then proceed to the
output after passing through the fully connected layer, which is also the sixth stage of
the architecture.

8. At stages 2 through 5, a 1 × 1 convolution layer is used to reduce the dimensions of
the output.
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Figure 1. Details of each layer on GoogleNet.

An inception model and auxiliary classifier were developed for the GoogLeNet ar-
chitecture in this study before creating the main model. Figure 2 illustrates the inception
model’s architecture. In addition, Figure 3 describes the auxiliary classifier, which was
utilized by the GoogleNet model.
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Before the model was implemented, hyperparameters were determined. The research
was conducted by experimenting with multiple hyperparameters to determine the optimal
pair of hyperparameters that yield the most accurate results from the model. This research
employed the number of dense layers in the fully connected layer and various dropout
values as hyperparameters. The research utilized these two categories of hyperparameters
to find the optimal solution. The dropout values evaluated were 0.3, 0.4, and 0.5, and
the number of dense layers was 1, 3, or 5. The hyperparameter determination procedure
involved varying the number of dense layers and the dropout value on the fully connected
layer to select the model with the highest accuracy. After determining the optimal hy-
perparameters, the GoogleNet model was applied to the applications created with the
hyperparameter pair that yielded the highest accuracy.

In addition to the hyperparameters that were investigated, this study also set ad-
ditional factors, including epochs, the batch size, optimizers, and the image size. The
number of epochs was set to 100. The batch size, which determined the number of samples
processed in each iteration, was specified as 8. The optimizer in this study was Stochas-
tic Gradient Descent (SGD). The learning rate, denoting the step size at each iteration,
was assigned a value of 0.00001. Lastly, the image size was 224 × 224. Hyperparameter
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changes involved a dense layer between the flatten layer and the output layer, as well as
modifications to the values inside the dropout layer.

2.4. Evaluation

Model testing was carried out using data that were different from the training and
validation data. This was to ensure that each model created made predictions on data
that the model had not previously studied. Model validation was carried out via K-fold
cross-validation (K = 3). This method helped the process of evaluating and determining
hyperparameters, especially on smaller datasets. This method divided k datasets randomly.
To determine the validation and training data, the rotation of each piece of data was
performed [56–58]. The aim of this training was to produce different evaluation results
for each fold performed. The hyperparameters were determined by taking the average
value of these assessments. In addition, a confusion matrix was displayed in this study
to simplify the test. The accuracy values were obtained using this matrix. This was the
amount of data that had been classified correctly. During this procedure for testing models,
the only model that was chosen was the one that had the highest quality validation values
for each hyperparameter. This method was used to check the model with new data. The
test results were used to assess the Android application system model created.

2.5. Implementation of Mobile Applications

The training process was carried out using Google Colab (Google LLC, Mountain View,
CA, USA). After the model evaluation process was complete, the conversion stage was
carried out. Of all the hyperparameter experiments carried out, only the best model was
implemented in the application. Because the application to be developed was smartphone-
based, this conversion process was necessary. Tensorflow Lite is a version of Tensorflow
specifically made for mobile-based applications used on the Android operating system, and
was used in this study. The disparities in the accuracy and duration of detection between
training in Google Colab and testing on a smartphone might arise from several sources.
Some examples include hardware disparities, deployment optimization, and dependencies
on frameworks and libraries. In order to address this issue, we employ frameworks such as
TensorFlow Lite, which is specifically developed to enhance the efficiency of models for
deployment on mobile devices. It provides tools and techniques particularly designed to
enhance the speed and efficiency of inference on mobile devices. It can strive to minimize
the disparities in precision and response time between the training environment in Google
Colab and the testing environment on a smartphone. This process was carried out to
change the format of the model obtained, which was previously in h5 format, into TFlite
format. After the conversion process was complete, the model was moved to the Android
application directory. It carried out the detection process using the application diagram
package that is presented in Figure 4. The system structure consisted of relationships
between directories in the application, as depicted in this diagram. Three main directories
comprised the created directory: res, Java, and the Machine Learning Model. The res
directory consisted of assets to support the visuals of the application that were used in
the Java directory later. The directory included the logic that regulated the application
path. Machine learning models were applied to the applications in this directory. The
deployment diagram in Figure 5 explains the physical settings of the application being
created. The Java classes were components that form the flow and logic of an application;
resources were the material that was shown to the user. Tflite was the model used for the
machine learning prediction process. This GoogleNet-installed mobile application requires
an Android operating system, a minimum of 2 GB RAM memory, and a minimum of 32 GB
internal storage. The camera’s resolution must be at least 4 megapixels for direct image
capture. When run, this application has a maximum size of 10 MB.
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3. Results

At this point, an evaluation of the hyperparameters that were employed is carried
out, and its findings are analyzed. The specified hyperparameters were utilized in a total
of 12 separate experiments. The metrics taken into consideration were the accuracy score
from the testing to ensure that there was no overfitting or underfitting. In the testing
process, the model with the best accuracy value was selected from the k-fold process that
was previously carried out. This was done because K-fold produced three models and
only used one of the models later to be implemented into the prototype to be made. The
hyperparameters to be tested were the number of dense layers and the dropout value. The
hyperparameters of dense layers had a total of 0, 1, 3, and 5, with some dropout values of
0.3, 0.4, and 0.5.

Table 1 shows that the experiment that produced the best model was the one that
had the addition of five dense layers and a dropout of 0.5. Even though it had the same
accuracy during testing as a model that did not experience the addition of a dense layer,
and even though the dropout value was 0.5, the accuracy of the model with the addition of
five dense layers during validation was 1% superior. The worst model from this experiment



AgriEngineering 2023, 5 2375

was the model with the addition of three dense layers, with a dropout value of 0.3% and an
accuracy of 89.33%. The best confusion matrix model is in Figure 6.

Table 1. Experimental results.

Dropout Number of Dense Layer Number of Neurons Accuracy

0.3 0 0 92.22%
0.3 1 256 91.33%
0.3 3 512; 256; 128 89.33%
0.3 5 512; 256; 128; 64; 32 93.11%
0.4 0 0 92.88%
0.4 1 256 91.77%
0.4 3 512; 256; 128 92.44%
0.4 5 512; 256; 128; 64; 32 92.22%
0.5 0 0 93.78%
0.5 1 256 93.33%
0.5 3 512; 256; 128 93.55%
0.5 5 512; 256; 128; 64; 32 93.78%
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In this case, almost all hyperparameters were stable in the range of 91–93% except for
the hyperparameter pair number with 3 dense layers and a dropout value of 0.3, which
had an accuracy of 89%. Models that experience the addition of five dense layers tend
to be stable, with an accuracy in the range of 92–93%. With an increase in the number of
dense layers, the model was able to take in deeper features in the image. However, if it
took too many features from an image, overfitting occurred. If the model was too focused
on a particular training dataset, it made predictions correctly when given another, similar
dataset. Furthermore, in this case, the dropout value had no significant effect on producing
an optimal model.

The stages of system implementation were carried out by making a prototype applica-
tion to detect pests on plants. The prototype of this application was based on the Android
operating system. In this application prototype, there are four main views: pages from
the main menu, pest detection, how to deal with pests, and application description. The
application was shown to farmers in Indonesia so that the language of instruction is the
national language, namely Indonesian. A detection page is a page containing the primary
application features that will be provided to end users, as shown in Figure 7. It exhibits
a preview of the detected images and their classification based on nine labels extracted
from the dataset. The detection page has two options to select the type of input that will be
used for detection. The two categories of input are direct capture with the mobile device’s
camera and taking images from the gallery. This page employs a pre-built deep-learning
model for detection.
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The purpose of this application is to answer the needs of Indonesian farmers, who predominantly
communicate in the Indonesian language, by presenting its content in Indonesian. (a) Illustrates
the user interface for inputting images to be detected. The “Kamera” function refers to the capability
of capturing images by utilizing the built-in camera on a mobile device. In contrast, the “Galeri”
feature facilitates the inclusion of images from the pre-existing collection into the user’s mobile gallery.
(b) Displays the program interface that exhibits the detected outcomes of the pests that were examined.

This study evaluated the application using a sample size of 36 participants. Table 2
displays the roster of inquiries. The participants in the study included 15 males and
21 females, ranging in age from 16 to 43 years old. The majority of participants were residing
in Java and Bali, which are two regions in Indonesia known for their extensive agricultural
areas. This survey utilized a Likert scale consisting of 10 assertions, each accompanied by a
range of response options that gauged the level of agreement or disagreement with a topic. A
rating of 1 signified a strong disagreement, while a rating of 5 signified a strong agreement.

Table 2. Survey results.

No Questions Mean Median Variation Min. Max.

1 Do you think this application will be effective in detecting pests? 4.36 4.00 0.13 3 5
2 Will this application help in identifying pest problems in plants? 4.31 4.00 0.15 3 5
3 Are you satisfied with the performance of this application in detecting pests? 4.08 4.00 0.19 2 5
4 Do you like the features of this app? 4.11 4.00 0.18 2 5
5 Is this application fast and accurate in detecting pests? 3.89 4.00 0.19 2 5
6 Can this app detect pests better than humans? 3.78 4.00 0.19 3 5
7 Will this application increase efficiency or productivity in agriculture? 4.31 4.00 0.17 3 5

8 Will this application make a positive contribution to overcoming pest
problems in plants or the surrounding environment? 4.36 4.50 0.16 3 5

9 Is this application easy to use? 4.36 5.00 0.17 3 5
10 Would you recommend this app to others, especially farmers? 4.33 5.00 0.19 3 5

The value 2 appears three times in all responses in the survey. The interviews with
the three individuals revealed, respectively, discontentment with the application being
available only on Android and a desire for the application to offer many more functionalities
to assist farmers in their work; furthermore, one respondent highlighted the lack of accuracy
in real-time testing. Nevertheless, the survey findings from the 36 participants indicated a
favorable outlook in terms of their contentment with the program. This is evidenced by the
fact that the average score falls between the range of 3.78 to 4.36.
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4. Conclusions

Using the GoogLeNet architecture, this research tries to apply the CNN method to
develop an application that can detect pests in plants. In its implementation, this research
showed that the convolution function, which extracted features pixel by pixel in the image,
allowed CNN to detect pests on plants. Adding a thick layer improved the accuracy of
the model; the number of thick layers made the model extract more features from the
dataset, but adding too many thick layers caused the overfitting of the model. The layer
dropout value of 0.5 was the most accurate but did not show significant changes between
models. The model with an accuracy of 93.78% was the best in this research. By entering
the GoogLeNet model into an application, an application can be created to detect pests
in plants on Android devices. This application was developed on a smartphone basis
so that Indonesian farmers could easily identify pests on their crops. This application is
also presented in Indonesian, which is the national language of Indonesia, so it is easy to
use. It is the main contribution of this research. It is hoped that this application will be a
breakthrough for Indonesian farmers. By identifying pests more easily, farmers can treat
pests more appropriately, which will ultimately result in better crop yields.

This research aims to help researchers and practitioners face the challenges that come
with real-world implementation by covering topics such as more heterogeneous data, a
focus on performance in limited-power devices, integration in end-to-end systems, security,
end-user evaluation, the development of custom algorithms, and ongoing evaluation. This
study has the potential to be extended further into applications that are more practical by
increasing the scale of the experiment. This is also supported by an interview conducted
with a respondent who is a staff member from the Plant Quarantine Agency of the Indone-
sian government. The suggestion is that the impact can be enhanced if the pests listed
for detection also encompass the sorts of pests that currently exist in Indonesia but are
still prevalent in specific regions. Due to the current process, this task is currently being
performed manually by the agency. Therefore, it is possible to ensure that this research
offers maximum advantages in a variety of practical applications while ensuring security,
privacy, and a good influence on society if a commitment is made to following the relevant
rules and standards and taking an ethical approach.
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