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Abstract: The precision agriculture scientific field employs increasingly innovative techniques to
optimize inputs, maximize profitability, and reduce environmental impacts. Therefore, obtaining
a high number of soil samples to make precision agriculture feasible is challenging. This data
bottleneck has been overcome by identifying sub-regions based on data obtained through proximal
soil sensing equipment. These data can be combined with freely available remote sensing data to
create more accurate maps of soil properties. Furthermore, these maps can be optimally aggregated
and interpreted for soil heterogeneity through management zones. Thus, this work aimed to create
and combine soil management zones from proximal soil sensing and remote sensing data. To this
end, data on electrical conductivity and magnetic susceptibility, both apparent, were measured
using the EM38-MK2 proximal soil sensor and the contents of the thorium and uranium elements,
both equivalent, via the Medusa MS1200 proximal soil sensor for a 72-ha grain-producing area
in São Paulo, Brazil. The proximal soil sensing attributes were mapped using ordinary kriging
(OK). Maps were also made using kriging with external drift (KED), and the proximal soil sensor
attributes data, combined with remote sensing data, such as Landsat-8, Aster, and Sentinel-2 images,
in addition to 10 terrain covariables derived from the digital elevation model Alos Palsar. As a result,
three management zone maps were produced via the k-means clustering algorithm: using data from
proximal sensors (OK), proximal sensors combined with remote sensors (KED), and remote sensors.
Seventy-two samples (0–10 cm in depth) were collected and analyzed in a laboratory (1 sample per
hectare) for concentrations of clay, calcium, organic carbon, and magnesium to assess the capacity
of the management zone maps created using analysis of variance. All zones created using the three
data groups could distinguish the different treatment areas. The three data sources used to map
management zones produced similar map zones, but the zone map using a combination of proximal
and remote data did not show an improvement in defining the management zones, and using only
remote sensing data lowered the significance levels of differentiating each zone compared to the OK
and KED maps. In summary, this study not only underscores the global applicability of proximal
and remote sensing techniques in precision agriculture but also sheds light on the nuances of their
integration. The study’s findings affirm the efficacy of these advanced technologies in addressing the
challenges posed by soil heterogeneity, paving the way for more nuanced and site-specific agricultural
practices worldwide.
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1. Introduction

The diverse economic and environmental pressures on crop-producing farms are
growing in tandem with the demands for food, given a growing world population [1]. The
increase in agricultural productivity is much needed due to the challenges of distributing
food and commodities. However, it is challenged by rising debates on environmental
protection and conservation, soil, fertilizer, and water use regulation, and social and
economic equity [2]. A promising alternative to optimize the use of fertilizers and irrigation
water, avoiding their overuse and waste while increasing crop production on farms, is
applying them at different rates across a field, which has been proposed in the precision
agriculture (PA) scientific field [3–8].

Many farms manage soil using fixed-rate applications, through which fixed amounts
of fertilizers, amendments, and water are applied. This approach considers an area ho-
mogeneous, disregarding soil, relief, and plant variations. From the farmers’ point of
view, it is a practical and convenient method to manage the farm, as it simplifies the
management process. On the other hand, this approach may overestimate the inputs in
some areas, leading to high costs for farmers and more significant environmental impacts,
and underestimate them in other areas, leading to suboptimal production and potential
soil degradation [3,9–11].

Nevertheless, the delimitation of subregions with distinct soil properties in homoge-
neous areas has been practiced for a long time in history [12]. The interdisciplinary field of
PA recognizes this approach as management zones (MZs). Doerge (1999) defines an MZ as
a sub-region of a field that expresses a homogeneous combination of yield-limiting factors
for which a single rate of a specific crop input is appropriate [13].

However, one of the most time-consuming and expensive activities for identifying
and delineating MZs within an agricultural area for variable-rate applications in PA is
obtaining many samples to characterize the variations in soil, relief, and plant properties.
Traditionally, as Nawar et al. (2017) [3] describe, the agricultural conditions of the soil
are assessed using a limited number of deemed representative samples (usually a few
composite samples in an area), which are analyzed in the laboratory via wet chemistry [14].
However, sampling and analyzing soils via wet chemistry is costly, limiting the number of
samples. As such, the explicit recognition of variations and the delineation of homogeneous
areas inside a plot to support variable-rate input applications needs a better solution to
overcome the high costs and time invested in collecting and analyzing many soil samples.

With new equipment sensitive to soil properties, it is possible to distinguish them
in productive sub-regions for a given crop with greater efficiency than in the past [14].
Proximal soil sensors (PSSs) have been used to overcome this issue, as they obtain more
data, covering a field more efficiently. PSSs constitute geophysical equipment that measures
up to 2 m from the target [14]. They can be mounted to vehicles or transported manually,
allowing measurements of soil properties correlated with other properties conventionally
measured in the laboratory, including clay, carbon, and moisture content [15–17]. Among
the properties measured via PSSs, the apparent electrical conductivity (aEC) and magnetic
susceptibility (aMS), as well as the equivalent contents of thorium (eTh) and uranium (eU),
have been widely studied in soil science [3,18–22].

The aEC data measured using the Geonics EM38-MK2 sensor has been used to identify
and map the spatial variation of soils affected by salts due to irrigation [23–25]. This
property has also been measured to predict and map soil properties, such as soil texture
and organic matter [16,26,27], and to assess soil electrical conductivity variation in a grain-
production farm [22]. In addition, gamma-ray proximal sensors have been used to predict
and map soil properties at various spatial scales [28–31]. In agricultural areas, proximal
gamma-ray sensors such as the Medusa MS1200 have shown potential for predicting
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the soil water retention curve of the gravimetric moisture, nitrogen, phosphorus, and
potassium content [16,32,33].

The procedure of datafusion expects to use more than one data source with different
resolutions to perform a more accurate mapping procedure. This practice is widely studied
in soil science and is known as data fusion [15,16,34–36]. Remote sensors mounted on
satellites hundreds of kilometers away or on aerial vehicles hundreds of meters from
the ground have also been used to model and map soil properties in the field [7,37–39].
Using statistical modeling, they can be combined with proximal sensors to increase the
multivariate correlation with soil properties. Fusing data from remote and proximal sensors
with different spatial and temporal resolutions may lead to better soil property maps and
more robust management zones for PA [16,35,40,41].

De Benedetto et al. (2013) fused data from a hyperspectral remote sensor with a
ground penetration radar (GPR) data amplitude, aEC data from a PSS, and vegetation
indices from a remote sensor to define management zones in a 300 m × 30 m production
field in southeastern Italy [20]. First, they performed individual clustering algorithms for
each sensor group and merged the data. Finally, they managed to identify three major
management zones. From principal component analysis, they identified that the GPR
amplitude data were sufficient to identify one of the management zones. In contrast, two
other clusters were identified using the aEC data and the vegetation indexes.

Horney et al. (2005) performed a cookbook-style study, presenting practical MZ
implementation methods [23]. They used the aEC dataset obtained via the EM38-MK2 as
an example. They studied two areas in the San Joaquin Valley, CA, USA. They defined
two objectives to describe a generalizable methodology for other cultivated varieties.
Moreover, a second objective was to test the first methodology in experiments with a low
germination rate.

Fraisse et al. (2001) used aEC data from the EM38-MK2 and fused it with data
derived from a digital elevation model (DEM) obtained via GPS in two study areas of 36
and 28 ha near Centralia, Missouri, USA [18]. Unsupervised classification and principal
components analysis of the aEC data and topographic attributes derived from the DEM
were used to define clayey soil management zones. They concluded that the ideal number
of management zones could vary yearly, depending mainly on the climate and the crop.

Li et al. (2008) used bulk electrical conductivity (ECb) measurements for the soil
profile (0–20 cm) using a portable WET (W stands for water, E electrical conductivity, and T
temperature) sensor, the cotton yield, and normalized difference vegetation index (NDVI)
data measured in a 396 grid-sampling scheme to define soil management zones in a 15-ha
field on saline coastal land in Zhejiang Province, China [42]. Maps for ECb and yield
produced via geostatistics and the NDVI map were merged using fuzzy c-means clustering
to define the MZ modeled to the soil and yield 396 data points via analysis of variance to
assess how well the designated management zones reflected the soil properties and yield
level. The analysis of variance indicated significant differences between the soil’s chemical
properties and the cotton yield among the three delineated management zones.

Hence, it was hypothesized that PSSs combined with remote sensing (RS) data can
better identify the soil heterogeneity during the MZ mapping process and improve oper-
ations in PA procedures. During fieldwork, the operator follows transects and generates
considerable data points. There is a frequent question about the optimal density and
spacing of the transects, which involves a trade-off between the intensity and costs of the
fieldwork and the accuracy of the resulting MZ maps. The objective of this study was to
compare MZ maps produced via ordinary kriging (OK) using aEC, aMS, eTh, and eU maps
and kriging with external drift (KED), considering them together with RS satellite images
and digital-elevation-model-derived covariates to evaluate the potential of using these
covariates together with a different mapping procedure. Finally, both MZ maps’ accuracy
was assessed to determine whether fusing proximal and remote sensor data fusion increases
the accuracy in MZ delineation by relatively improving the index.
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2. Materials and Methods
2.1. Study Area

The study area was a crop field under center pivot irrigation of 72 ha. It was in the
municipality of Itaí, in the state of São Paulo, southeastern Brazil (Figure 1A–C), with
central coordinates 23.5854◦ south and 48.9395◦ west and elevation of approximately
685 m (Figure 1D). The field was cultivated with a no-till crop rotation system of wheat,
bean, and oat. In the study pivot area, the soils were described explicitly as a Latossolo
Vermelho Distrófico típico (“Ferralsols” in WRB (FAO, 2015)), with a clayey texture in the
surface layer (515 g kg−1) and a very clayey texture in the subsurface (600 g kg−1) [43].
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Figure 1. (A) Map of Brazil in Latin America; (B) contour of the state of São Paulo; (C) contour of
the municipality of Itaí; (D) map of the study area with a digital elevation model in the background,
the vehicle route equipped with proximal soil sensors (PSSs), and points collected for analysis in
a laboratory.

To assess the region’s climatology, two weather stations close enough to contribute
to the temperature estimate at Itaí: Bauru Airport (62%, 121 km north) and Viracopos
International Airport (38%, 168 km east). The historical models were built with data from
1 January 1980 to 31 December 2016. The season with the most significant precipitation
occurs from October to March. However, it rains throughout the year in Itaí at a monthly
average of 190 mm. Throughout the year, the temperature generally ranges from 14 ◦C to
30 ◦C and is rarely below 10 ◦C or above 34 ◦C.

2.2. Proximal Soil Sensor Data Preparation

Apparent electrical conductivity (aEC) and magnetic susceptibility (aMS) were mea-
sured using an EM38-MK2 electromagnetic induction conductivity meter (Geonics Ltd.,
Mississauga, ON, Canada) in Vertical Mode with 1-m coil spacing. This sensor was placed
on a foam cushion inside a wooden box free of metallic parts mounted on a 1-cm-thick
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rubber mat. The rubber mat was tied to the rear of a 4 × 4 pickup truck using a 3-m-
long nylon ribbon, avoiding metallic interference from the truck (Figure 2A). In addition,
equivalent thorium (eTh) and uranium (eU) contents were measured using the gamma-ray
spectrometer Medusa MS1200 (Medusa, Groningen, the Netherlands) mounted on the
brush grille guard of the vehicle and tied with a nylon ribbon, staying approximately
50 cm from the ground (Figure 2B).
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Figure 2. (A) MS1200 gamma-ray spectrometer mounted to the vehicle’s brush grille guard;
(B) EM38-MK2 sensor cushioned inside a wooden box mounted on a rubber mat and tied to the
vehicle’s rear; (C) fully equipped vehicle showing the irrigation line in the background.

The field campaign to collect data from proximal sensors occurred right after harvest,
with the soil covered by leftover straw. The fully equipped vehicle (Figure 2C) was driven
along parallel survey lines about 40 m apart, totaling 26 lines, at a constant speed of
approximately 15 km/h, totaling 90 min for the operation. Measurements were taken from
both sensors every second.

The EM38-MK2 sensor measured aEC and aMS at 5790 points, while eTh and eU
via the MS1200 sensor were measured at 6563 points. The difference between the total
values measured using the EM38-MK2 and the Medusa MS1200 was due to the moments
required to start the measurement process with each sensor. During the original EM38-MK2
data exploratory analysis, highly conductive aEC outliers and corresponding aMS samples
close to the irrigation equipment were identified and removed. Also, some locations were
oversampled due to vehicle stops and other maneuvers during data acquisition. The zerodist
function from the sp package [44] in the software R (version 3.4.2) [45] was applied to filter,
in both EM38-MK2 and MS1200 datasets, data recursively measured at the exact location.

After data filtering, the remaining PSS dataset had 4306 and 4896 samples from the
EM38-MK2 and MS1200 sensors, respectively. The EM38-MK2 sensor data showed more
values to be removed due to the more significant influence of the metal parts of the irrigation
pivot close to the vehicle path. The Medusa MS1200 data set only had the points recursively
measured at the exact location removed, allowing for a more significant number of points
to be maintained.

Before the mapping procedure, the last preprocessing step was to reserve a set of
data points from the PSSs to validate the maps of the attributes measured using the PSS
produced by OK and the KED. The sample function of the dplyr package [46] was used
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in the software R [45] to select the external validation dataset of the produced maps.
Four hundred points were reserved for all datasets of the two PSSs, and the accuracy
of the produced maps was evaluated using the root of the mean square error (RMSE,
Equation (1)) index and the external validation dataset.

RMSE =

√
∑N

i=1
(y− ŷ)2

N
, (1)

where N is the number of observations, y is the original value, and ŷ is the predicted value.

2.3. Remote Sensor Data Preparation

Since the data from the PSSs were obtained in the first field campaign (September 2018)
and the data analyzed in the laboratory were from the second campaign (October 2019), it
was decided to select RS satellite data for the two dates of the campaigns to contemplate the
two scenarios in which the soil of the area had been used. More about the soil sampling data
for laboratory analysis is better described below. This approach consisted of maintaining
a pool of orbital image data to allow the selection of possible correlations and influences
between the spectrum values of the bands with the proximal sensor variables so as not to
restrict the soil scenario to only that without till or cover [47].

The DEM obtained from the Alos Palsar satellite was used to complement the infor-
mation about the RS covariables. Ten relief covariables were derived using the R software’s
RSAGA package [48]. The description of the satellite images and the relief variables de-
rived from the DEM and their abbreviations can be seen in Table 1. Also, the satellite
images described in Table 1 are summarized in abbreviation given that two scenarios were
contemplated (2018 and 2019) during the analysis and modeling.

All the different bands’ satellites and all the rasters of the covariates derived from the
DEM were resampled to the final resolution of 10 m so that it was possible to stack them
and extract the information from each raster to the respective coordinates of the data of
PSS. For this, the resample function of the raster package [49] using the bilinear interpolation
method in the R software and the extraction process were performed using the extract
function in the raster package.

2.4. Selection of Remote Sensing Covariates

The many remote sensor covariates required filtering to identify those most significant
to integrate the PSS data and optimize the model. These models would be used to build
maps using RS and the PSSs via KED and finally define the MZ maps. The following
sections better describe the fusing process to determine the MZ.

The regression method via linear models was used to model data from the PSSs as
a function of RS data, and multicollinearity was minimized. The number of covariates
was reduced using Pearson’s correlation r values between all predictive covariates (the
remote sensing satellite and DEM derivates). For this, all variables that showed Pearson’s r
values greater than 0.9 absolute were identified, and then these covariates were correlated
again with the PSSs dataset. Those with the highest Pearson correlation absolute r values
were maintained.

Finally, the remaining group of RS was applied to the regsubsets function present in the
leaps package [50] in the R software [45]. This function allows for testing all possible linear
combinations between the remaining satellite covariates with the proximal sensors’ data.
Then, the combination that presented the lowest value for Schwarz’s information criterion
(BIC) [51] was selected to integrate the prediction model of the PSS attributes as a function
of the RS data.

2.5. Mapping via Ordinary Kriging and Kriging with External Drift

It’s observed that different interpolation methods can generate more reliable thematic
maps to represent specific areas, especially in locations with limited sampling units [52].
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Thus, two sections describe the mapping of the original data from the PSSs and the predicted
data from the PSSs according to the data from RS selected from the covariate selection
procedure described above. First, the original PSS data were mapped using the ordinary
kriging method (OK). Then, the data from the PSSs predicted via the selected RS covariables
were mapped using kriging with external drift (KED).

Table 1. Resolution and description of the bands of the images used and covariates derived from the DEM.

Resolution Satellite Band Wavelength Abbreviation Variables

15 m Terra-1 VNIR
0.52–0.60 ast_B1

Aster0.63–0.69 ast_B2
0.78–0.86 ast_B3N

10 m

ESA

Blue 0.44–0.53 sent_year_B2

Sentinel 2

Green 0.54–0.58 sent_year_B3
Red 0.65–0.69 sent_year_B4
NIR 0.77–0.91 sent_year_B8

20 m

VRE
0.69–0.71 sent_year_B5
0.73–0.75 sent_year_B6
0.77–0.80 sent_year_B7

NIR 0.85–0.88 sent_year_B8A

SWIR
1.34–1.41 sent_year_B11
2.07–2.31 sent_year_B12

30 m NASA

C/A 0.43–0.45 land_year_B1

Landsat 8

Blue 0.45–0.51 land_year_B2
Green 0.53–0.59 land_year_B3
Red 0.64–0.67 land_year_B4
NIR 0.85–0.88 land_year_B5

SWIR
1.57–1.65 land_year_B6
2.11–2.29 land_year_B7

TIRS
10.60–11.19 land_year_B10
11.50–12.51 land_year_B11

Resolution Reference Type Abbreviation Variables

12.5 m Calculated from
DEM

Quantitative

aspect Aspect
DEM Elevation (m)
slope Slope (%)

plan_curv Curvature plan
prof_curv Curvature depth

convergence Convergence
twi Topographic Wetness index

ls_fator Length-slope factor
rsp Relative slope Position

chnd Channel network distance
chnb Channel network base level

SWIR: shortwave infrared; VRE: vegetation red edge; NIR: near-infrared; C/A: coastal/aerosol; TIRS: thermal
infrared; ESA: the European Space Agency; NASA: the National Aeronautics and Space Administration; the
_year_Bname refers to 2018 and 2019 and the band spectrum length name.

2.5.1. Proximal Soil Sensing Mapped via Ordinary Kriging

All data from the PSSs were assessed for spatial distribution patterns to evaluate the
normality distribution to interpolation using OK. Using isotropic adjustment variograms,
the least-squares reduction adjustment procedure was performed via variogram analysis
tools in the gstat package [53] in the R software. The semivariogram works to estimate
a value for a region in which the semivariogram distance is known using data in the
neighborhood of the estimation location [54].

The semivariograms of the aEC, aMS, and eTh data were adjusted using the spherical
model (Equation (2), while the eU data were adjusted for the Gaussian model (Equation (3);
then, these data were interpolated using OK (Equation (4) [55]. Finally, all data from the
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proximal sensors (aEC, aMS, eTh, and eU) were interpolated using a spatial resolution
of 10 m.

γ(h) =

{
c

{
3h
2a −

1
2 (h/a)3

}
c

}
,
h 6 a
h ≥ a

, (2)

where c is the sill variance, and a is the range. h is the separator, being the vector
of the separation of the pairs of points in which h = xi − xj and where C

(
xi, xj

)
=

∑
[
{Z(xi − µ)}

{
Z
(

xj
)
− µ

}]
, which is a constant for any h. This constancy of the mean,

variance, and covariance depends only on the separation and not the absolute position [55].

γ(h) = c
{

1− exp
(
−h2

r2

)}
, (3)

where c is the sill variance, r is the distance parameter, and h is the vector of the separation
of pairs of points [56].

Z
◦
KO(x0) = ∑n

i=1 λiZ(xi), (4)

where Z
◦
KO(x0) is the value of the random variable to be estimated via ordinary kriging

(OK), λi is the optimal weights calculated under two constraint conditions ((a) the estimator
is not skewed and (b) the variance of the estimate is minimal), and Z(xi) is the values of
the random variable at the n sample points [56].

2.5.2. Predicting and Mapping Proximal Soil Sensing Data via Kriging with External Drift

The kriging method with external drift (KED) consists of identifying the presence of a
trend. Therefore, it is necessary to show how to separate the deterministic trend from the
random component and estimate the components’ contribution via restricted maximum
likelihood [56]. The external drift method integrates into the kriging system supplementary
universality conditions about one or several external drift variables measured exhaustively
in the spatial domain [57].

If a target variable’s tendency is the spatial coordinates, it indicates that this may be
one of several cases of mixed linear models to be considered, for example. The deterministic
effects may be modeled by others like y1, y2, . . .. In the present study, these variables were
the RS covariables, which can be linearly related to Z. In this case, Z will be the PSS
attribute. Hence, measuring and calculating the target locations and the Z points is possible.
Under these circumstances, it is possible to observe Equation (5).

Z(x) = ∑K
k=0 βkyk(x) + ε(x) = β0 + β1y1(x) + β2y2(x) + . . . + βkyk(x) + ε(x), (5)

What was done was to replace the coordinates in the function with the values of one
or more variables. The y_1(x), y_2(x), . . ., y_k(x) were known, and β_k was the unknown
coefficients to be determined [54]. y_k, being k = 1, 2, . . . was the “external” variables
distinct from the internal Z_x and kriged with them; therefore, it was known as “kriging
with external drift”. The KED incorporates the local trend within a neighborhood search
window as a linear function of a secondary variable that varies smoothly, and the trend of
the primary variable must be linearly related to the secondary variable [57].

Since the primary variable trend must be linearly related to the secondary variable,
only the proximal sensor aEC and aMS data presented satisfactory R2 and adjustable R2

values of linear model adjustments (>0.7) using RS data as covariates. The eTh and eU data
did not show a significant linear relationship, with no possible combination of RS data used
in the present study. Although KED was not performed for eU and eTh, the best models
were adjusted and would be shown, and these attributes would be mapped using OK only.
Thus, only the aEC and aMS data were interpolated with KED using the krige function of
the gstat package [53] associated with the pre-selected satellite covariate models. All maps
were interpolated using 10 m as the spatial output resolution.

The regression modeling, followed by ordinary kriging of the residues for the aEC
and aMS maps, was tested since these two attributes presented high adjusted R2 values.
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For this, the simple linear model (lm function) and the predicted functions present in the R
software [45] were used to perform the regression after applying the selected regression
model to the entire spatial pixel area of the RS covariates. Then, these maps were also
evaluated for accuracy through the external validation RMSE index using the 400 previously
separated samples.

2.6. Management Zones

Three management zone maps (MZs) were defined based on three combinations. The
first MZ map was built using only the PSS maps via OK. Then, the second MZ map was
constructed from the PSS associated with the best RS covariates through KED mapping.
In this second MZ map, the eTh and eU data were used, but the OK map version was
considered since KED did not show high linear adjustment. Finally, the third MZ map was
built using all the RS covariates described in Table 1.

The kmeans function in the stats package presented natively in the R software [45] was
used. The algorithm chosen within this function used the calculation of Hartigan and Wong
(1979) [58]. The three datasets (PSS; PSS + RS; RS) were organized in a data matrix format
and grouped using the k-means method. This method partitioned the dataset into k groups.
The sum of the distance for the centers of the designated clusters was minimized. In the
present study, three zones were chosen for k since many zones would not be operationally
practical for the farmers. The k-means clustering algorithm aims to partition n observa-
tions into k clusters, where each observation will belong to a cluster with the average
value closest to each other. The centers are in the mean of their sets of Voronoi polygons,
which are the sets of points closest to each cluster’s center. The value “1” was set to repro-
duce the same arrangement using the function set.seed present in the stats package in the
R software [45].

Considering that the PSS and RS data were obtained from different sources all data
used in the kmeans function were parameterized for the zero values of mean and variance
one using the scale function present in the stats package of the R software.

2.7. Soil Laboratory Data Sampling as Field Truth

Soil data collected traditionally were used to validate the design of the three MZ
maps. Seventy-two disturbed samples were collected at the soil surface (0–10 cm depth)
and arranged in a regular grid (one sample per hectare; Figure 1C) using a Dutch auger
(Figure 3A) in a second field campaign.
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This campaign was carried out on 6 October 2019, and beans covered the study area in
an early stage of growth (Figure 3B,C). The stratify function in the spcosa package [59] was
used to define and locate the points in the regular grid. This function allows to separate an
area of interest in sub-areas with exact sizes, and then the spsample function present in the
same package was used to locate the center of each section of the area.

The 72 disturbed samples were analyzed for soil texture and chemical contents. For
texture analysis, the clay contents were measured using the sieve-and-pipette method
Teixeira et al., 2017 [60].

2.8. Management Zone Validation

The 72 points analyzed in the laboratory validated the three MZ maps produced from
PSSs mapped via OK, using PSS data combined with the best RS covariate models mapped
via KED, and using only RS data. The zone classes were extracted from the three MZ maps
for the 72 coordinates associated with the laboratory data using the extract function present
in the raster package [49] in the R software [45].

Finally, the variance analysis method (ANOVA) was used to identify whether the
management zones could distinguish the variance of the values of the laboratory attributes
regarding their classes of management zones. The aov function of the stats package in the
R software [45] was used for that.

3. Results and Discussion

The descriptive statistics of the PSS data for the training and validation dataset and
the laboratory data are shown in Table 2. For all PSS datasets, the mean and median values
were close. Also, the standard deviation values did not contrast much. Therefore, the
asymmetry values for all PSS data can be considered moderately positive except for the
aMS data. The kurtosis coefficients for the eTh and eU data, including validation data, can
be regarded as leptokurtic. The coefficient corresponds to a less flat distribution than the
same area’s standard curve, as they are below the absolute value of 0.263 [61].

Table 2. Descriptive statistic of proximal soil sensing and laboratory data.

Kurtosis Skewness Std. Deviation Variance Median Mean Max. Min. N. Obs.

aEC (mS/m)

0.22 0.68 3.39 11.49 9.3 9.58 26.25 2.62 3906 Training
0.92 0.78 3.35 11.2 9.53 9.62 25.31 3.63 400 Validation

aMS (ppt)

−0.80 −0.06 0.65 0.42 2.24 2.27 3.88 0.44 3906 Training
−0.58 −0.03 0.64 0.41 2.19 2.25 3.81 0.5 400 Validation

eTh (ppm)

−0.03 0.11 3.03 9.16 15.94 16 27.81 6.08 4496 Training
−0.04 0.21 3.24 10.47 15.78 15.97 26.17 7.02 400 Validation

eU (ppm)

0.06 0.09 1.21 1.46 3.12 3.14 7.26 −0.99 4496 Training
0.13 0.25 1.23 1.52 3.03 3.1 7.72 0.08 400 Validation

Laboratory dataset

1.42 −1.20 45.28 2050.7 420 413.33 500 280 72 Clay (g kg−1)
−0.34 0.26 0.88 0.77 6.25 6.31 8.5 4.6 72 Ca (g kg−1)
−0.50 0.28 1.66 2.74 14.8 15 19.15 10.99 72 C (g kg−1)
−0.33 0.24 0.28 0.08 1.9 1.93 2.6 1.4 72 Mg (g kg−1)

aEC: apparent electrical conductivity in mS/m (millisiemens per meter); aMS: apparent magnetic susceptibility in
ppt (parts per thousand); eTh: equivalent thorium in ppm (parts per million); eU: equivalent uranium in ppm
(parts per million); clay in g kg−1; Ca: calcium in g kg−1; C: organic carbon in g kg−1; Mg: magnesium in g kg−1.

The distribution pattern of the aEC and aMS attributes and laboratory data could be
classified as platykurtic, corresponding to a flatter distribution than the normal curve of
the same area, except for aEC for the leptokurtic training dataset. Despite the asymmetry
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and kurtosis values of the aEC data, it was impossible to consider a normal distribution,
and therefore, for mapping via OK, it was necessary to transform the data to fit the normal
distribution using natural logarithmic distribution. The other attributes of the PSS (aMS,
eTh, and eU) and the separate data for external validation showed a normal distribution.
The distribution pattern of the values for all data sensors (the training and validation
dataset) and laboratory datasets is shown in Figure 4.
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Figure 4. aEC: apparent electrical conductivity in mS/m (millisiemens per meter); aMS: apparent
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million); eU: equivalent uranium in ppm (parts per million); clay in g kg−1; Ca: calcium in g kg−1;
C: organic carbon in g kg−1; Mg: magnesium in g kg−1. First line: histograms of proximal sensor
data used for mapping via OK and KED; second line: histograms of proximal sensor data used to
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The electrical conductivity and magnetic susceptibility values were similar to those
presented by Castrignanò et al., 2012 [62] on an 80-ha cropping field in Corrigin, Western
Australia. The thorium and uranium values were similar to those found in the study by
Wong et al., 2009 [63], in which the lowest values of eTh and eU occurred as opposed to the
highest values of electrical conductivity for a 200-ha experimental study area field situated
350 km north of Perth at Buntine, Western Australia.
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The prediction models adjusted for the sensor attributes are shown in Table 3. The RS
covariates selected from the selection procedure described in Section 2.4 via the regsubset
function and lower BIC values are shown in the “Coefficient” column of Table 3 (first
column). The intercept values represent the estimated response variable values when all
predictors were zero. Notably, the aspect variable showed a positive association with
log(aEC), indicating that an increase in aspect was linked to a slight rise in electrical con-
ductivity (log(aEC)) by 0.01 mS/m. Conversely, the variable “chnb” exhibited negative
associations with log(aEC) (−0.02 mS/m), aMS (−0.02 ppt), and eTh (−0.24 ppm), suggest-
ing that higher values of “chnb” were associated with decreased values of these response
variables. The DEM (Digital Elevation Model) variable demonstrated positive relationships
with aMS (0.09 ppt), eTh (0.33 ppm), and eU (0.02 ppm), implying that an increase in DEM
led to higher values of these response variables. Plan curvature (“plan_curv”) negatively
influenced aMS, indicating that higher plan curvature significantly decreased aMS by
15.63 ppt. Additionally, the variable “twi” showed a positive association with log(aEC)
(0.01 mS/m), suggesting that increased topographic wetness index (twi) values were linked
to higher electrical conductivity.

Table 3. Linear models’ adjustment parameters of the proximal sensor attribute as a function of
the remote sensing data using the best combination from Pearson’s selection in addition to the BIC
criterion and, finally, using a regsubset function.

eU (ppm) eTh (ppm) aMS (ppt) log(aEC) (mS/m)
Conf. Int

(95%) Estimates Conf. Int
(95%) Estimates Conf. Int

(95%) Estimates Conf. Int
(95%) Estimates Coefficient

−19.43–−4.22 −11.83 −48.95–−7.80 −28.37 −38.65–
−33.89 −36.27 19.23–21.62 20.42 (Intercept)

0.01–0.02 0.01 aspect
0.01–0.00 0 ast_B1
0.00–0.00 0 land_2018_B3

0.00–0.00 0 0.00–0.00 0 land_2018_B5
0.00–0.00 0 land_2018_B10
0.00–0.00 0 land_2019_B3
0.00–0.00 0 sent_2018_B8A

−0.00–−0.00 0 −0.01–−0.01 −0.01 −0.00–−0.00 0 0.00–0.00 0 sent_2018_B12
−0.00–−0.00 0 0.00–0.00 0 sent_2019_B2
−0.00–−0.00 0 0.00–0.00 0 sent_2019_B3

0.00–0.00 0 sent_2019_B8A
−0.34–−0.15 −0.24 −0.03–−0.01 −0.02 −0.02–−0.02 −0.02 chnb

0.01–0.03 0.02 0.23–0.44 0.33 0.08–0.11 0.09 DEM
−21.62–−9.64 −15.63 plan_curv

0.00–0.02 0.01 twi
−0.94–−0.35 −0.65 −8.03–−4.82 −6.42 −1.36–−1.00 −1.18 rsp

−0.01–−0.00 0 ast_B3N
0.00–0.00 0 0.00–0.00 0 land_2018_B7

0.00–0.00 0 −0.00–−0.00 0 land_2019_B5
−0.00–−0.00 0 land_2019_B7

0.00–0.00 0 0.00–0.01 0.01 −0.00–−0.00 0 sent_2018_B2
0.00–0.00 0 sent_2018_B4

0.00–0.01 0.01 0.00–0.00 0 sent_2019_B11
−0.00–−0.00 0 land_2019_B2

0.00–0.00 0 sent_2019_B4

4496 4496 3906 3906 Observations
0.11/0.11 0.20/0.20 0.81/0.81 0.78/0.78 R2/adjusted R2

aEC: apparent electrical conductivity in mS/m (millisiemens per meter); aMS: apparent magnetic susceptibility in
ppt (parts per thousand); eTh: equivalent thorium in ppm (parts per million); eU: equivalent uranium in ppm
(parts per million).

The variable “rsp” exhibited negative associations with log(aEC) (−1.18 mS/m), aMS
(−6.42 ppt), and eTh (−0.65 ppm), indicating that higher “rsp” values led to decreased
values in these response variables. Table 3 also highlights the importance of context-specific
interpretation, as certain variables, such as “ast_B1”, “land_2018_B3”, “land_2018_B5”, and
others, did not show significant associations with any of the response variables within the
specified confidence intervals. Considering the observed R-squared values ranging from
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0.20 to 0.81, the regression models explained a substantial proportion of the variance in the
respective response variables. Adjusted R-squared values provide a more accurate measure
of goodness of fit by considering the number of predictors, ensuring a balanced evaluation
of the model’s explanatory power. The R2 and adjusted R2 values for the aEC and aMS
attributes were close to 0.8, indicating a high potential correlation with the identified
satellite attributes. Finally, the graphs containing the predicted and original values for the
PSS attributes according to the best models of RS covariates are shown in Figure 5.
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Figure 5. Predicted versus experimental plots of proximal sensor data as a function of remote
sensor data using the training dataset. The continuous black lines adjust the intercept and slope for
the models, while the dashed lines are the intercept and model idealized as 1 and 0, respectively.
R2 adj.: R2 adjusted value; aEC: apparent electrical conductivity in mS/m (millisiemens per meter);
aMS: apparent magnetic susceptibility in ppt (parts per thousand); eTh: equivalent thorium in ppm
(parts per million); eU: equivalent uranium in ppm (parts per million).

Since the aEC and aMS data were well adjusted for the RS covariates, pixel-by-pixel
regression from the created estimation model was also used. However, this method did
not show significant results when using the external validation dataset through the RMSE
index to evaluate the aEC and aMS maps. There was also no spatial dependence on the
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predicted map residues, so the regression procedure and subsequent ordinary kriging of
the residues could not be performed. Then, it was considered to remain with the KED
method to compose the maps from which the MZ would be delineated.

Semivariograms were adjusted by removing the RS covariates’ trend, as shown in
Figure 6. The parameters used in the PSS semivariograms to map using OK and KED
are shown in Table 4. All attributes of the aEC, aMS, and eTh data were adjusted for the
spherical model (Figure 6), while the sensor eU was better adapted for the Gaussian model
(Figure 6). The low values of the nugget parameter may have indicated a reduction in the
values of variance and standard deviation of the maps.
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Figure 6. Empirical (circles) and adjusted (lines) semivariograms of proximal sensor variables
aEC: apparent electrical conductivity in mS/m (millisiemens per meter); aMS: apparent magnetic
susceptibility in ppt (parts per thousand); eTh: equivalent thorium in ppm (parts per million);
eU: equivalent uranium in ppm (parts per million). First line: semivariogram of aEC using OK and
KED; second line: semivariogram of aMS using OK and KED; third line: semivariogram of eTh and
eU using OK. There was no adjustment of the semivariogram via KED for the last two attributes of
the gamma radiometer. It did not reasonably adjust regression models in the previous steps.

The nugget/sill ratio is shown in Table 4, column 6, to present the nugget parameter’s
impact on the spatial structure of variation in the final representation of the semivariance.



AgriEngineering 2023, 5 2340

Those ratio values were multiplied by 100 to express percentages, allowing us to better
understand and discuss the errors of semivariance. The KED method for the attributes
of the aEC and aMS sensors presented 34% and 17%, respectively. These values were
higher than the ratio when using the OK method. The analysis of this ratio suggested that
the distance of 150 m, represented by the aEC data set, for example, was the maximum
adequate distance for data collection with sensors since, from the removal of the trend
identified using the RS covariates, from this distance, there may have been a significant
influence of randomness on the semivariance.

The interpolated maps showed similar distribution patterns for the OK method
(Figure 7A) and KED (Figure 7B). The high concentrations of aEC were in the southwestern
portion of the map (Figure 7A), where an ephemeral drainage channel could be observed.
Although the survey with the EM38-MK2 was carried out in a dry season (July), with
the soil not cultivated (therefore, without a pivot irrigation schedule) and only protected
with previous harvest wheat straw, the high concentration values of aEC may have been
associated with higher soil moisture related with the clay presence concentrations, as found
in similar studies by Fulton et al. (2011) [64] and Islam et al. (2011) [65]. However, in the
present study, the values of this sensor attribute did not have significant Pearson correlation
values (−0.17) with clay (Table 5). In contrast, the lower aEC values in the northern part of
the study area suggest a well-drained region with higher elevation and more sandy soils.
The aEC data showed high correlation values with the chemical attributes of C and Mg. In
contrast, the attributes measured via gamma radiometric sensors showed high correlation
values for all measured attributes, among which C and clay presented the highest (0.57 and
0.46, respectively).

Table 4. Semivariogram parameters for proximal sensor variables for ordinary kriging (OK) and
kriging with an external drift (KED).

Range (m) Nugget/Sill (%) Sill Partial Sill Nugget Model Method

aEC (mS/m)

163.33 34.03 2.13 1.4 0.72 Spherical KED
500.31 0.96 0.15 0.15 0 OK (log format)

aMS (ppt)

152.77 16.78 0.08 0.07 0.01 Spherical KED
495.37 1.93 0.52 0.51 0.01 OK

eTh (ppm)

668.18 64.44 10.39 3.7 6.69 Spherical OK

eU (ppm)

443.37 79.27 1.62 0.34 1.29 Gaussian OK

aEC: apparent electrical conductivity in mS/m (millisiemens per meter); aMS: apparent magnetic susceptibility in
ppt (parts per thousand); eTh: equivalent thorium in ppm (parts per million); eU: equivalent uranium in ppm
(parts per million).

The clay content showed a weak positive correlation with the calcium content (r = 0.19)
and moderate positive correlations with carbon content (r = 0.28 *), magnesium content
(r = 0.25 *), apparent magnetic susceptibility (r = 0.28 *), equivalent thorium concentra-
tion (r = 0.50 **), and equivalent uranium concentration (r = 0.46 **). Calcium content
exhibited strong positive correlations with carbon content (r = 0.75 **), moderate posi-
tive correlations with magnesium content (r = 0.60 **), apparent magnetic susceptibility
(r = 0.28 *), and equivalent thorium concentration (r = 0.42 **), and a slightly weaker positive
correlation with equivalent uranium concentration (r = 0.43 **). Carbon content showed
moderate positive correlations with magnesium content (r = 0.58 **), moderate negative
correlations with apparent electrical conductivity (r = −0.42 **), and strong positive correla-
tions with apparent magnetic susceptibility (r = 0.48 **), equivalent thorium concentration
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(r = 0.65 **), and equivalent uranium concentration (r = 0.57 **). Magnesium content had
a weak negative correlation with apparent electrical conductivity (r = −0.24 *), moderate
positive correlations with apparent magnetic susceptibility (r = 0.32 **) and equivalent
thorium concentration (r = 0.44 **), and equivalent uranium concentration (r = 0.39 **).
Apparent electrical conductivity exhibited strong negative correlations with apparent mag-
netic susceptibility (r = −0.93 **), moderate negative correlations with equivalent thorium
concentration (r = −0.68 **), and weak negative correlations with equivalent uranium
concentration (r = −0.28 *). Apparent magnetic susceptibility showed strong positive
correlations with equivalent uranium concentration (r = 0.79 **) and moderate positive
correlations with equivalent thorium concentration (r = 0.76 **).

Table 5. r of Pearson correlation between the proximal and laboratory data variables.

eU
(ppm)

eTh
(ppm)

aMS
(ppt)

aEC
(mS/m)

Mg
(g kg−1)

C
(g kg−1)

Ca
(g kg−1)

Clay
(g kg−1)

0.46 ** 0.50 ** 0.28 * −0.17 0.25 * 0.28 * 0.19 1 Clay (g kg−1)
0.43 ** 0.42 ** 0.28 * −0.15 0.60 ** 0.75 ** 1 Ca (g kg−1)
0.57 ** 0.65 ** 0.48 ** −0.42 ** 0.58 ** 1 C (g kg−1)
0.39 ** 0.44 ** 0.32 ** −0.24 * 1 Mg (g kg−1)
−0.28 * −0.68 ** −0.93 ** 1 aEC (mS/m)
0.45 ** 0.79 ** 1 aMS (ppt)
0.76 ** 1 eTh (ppm)

1 eU (ppm)

aEC: apparent electrical conductivity in mS/m (millisiemens per meter); aMS: apparent magnetic susceptibility in
ppt (parts per thousand); eTh: equivalent thorium in ppm (parts per million); eU: equivalent uranium in ppm
(parts per million); clay in g kg−1; Ca: calcium in g kg−1; C: organic carbon in g kg−1; Mg: magnesium in g kg−1;
levels of statistical significance: * p < 0.05 and ** p < 0.01.
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Figure 7. (A) shows the apparent electrical conductivity maps by ordinary kriging (KO) and (B) external
drift kriging (KED). aEC: apparent electrical conductivity in mS/m (millisiemens per meter).

The aMS maps shown in Figure 8 presented a distribution inversely proportional to
the distribution of the concentration values of the aEC maps (Figure 7). In addition, the
OK mapping methods of the aMS (Figure 8A) and KED (Figure 8B) data showed similar
distribution patterns for the entire study area.
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Figure 8. (A) Apparent magnetic susceptibility maps via ordinary kriging (KO) and (B) external drift
kriging (KED). aMS: apparent magnetic susceptibility in ppt (parts per thousand).

The attributes of the Medusa MS1200 sensor showed concordant distributions between
eTh and eU (Figure 9A,B, respectively). According to the literature, the high values of
the ratio of eU over eTh may indicate a tendency to erode since the eU attribute is more
mobile in the environment [66]. However, in Figure 9, it is possible to observe that the
two attributes present patterns of distribution of values in similar regions, indicating that
agricultural practice, even if implementing no-till, can minimally revolve the soil and
homogenize the soil’s attributes that control the preferential distribution of eU compared
to eTh. Furthermore, from the spatial structure represented in the eU semivariograms and
the map produced via OK, it was possible to notice monotonous variability in the study
area, indicating growth in values towards the southeast.
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Figure 9. (A) Equivalent thorium and (B) equivalent uranium maps produced via ordinary krig-
ing. eTh: equivalent thorium in ppm (parts per million); eU: equivalent uranium in ppm (parts
per million).

The values of the uncertainties of the sensor maps are presented in Table 6. Although
the hypothesis of the work was to use RS covariables to optimize the mapping of the data
from proximal sensors, the values of the aEC and aMS attributes mapped using both OK
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and KED presented values close to each other, indicating that there were no benefits of
using satellite variables to optimize data from proximal sensors. The aEC and aMS maps
produced with OK did not differ when mapped with the RS variables via KED. This was
expected since the RMSE values were also close to each other.

Table 6. Root mean square error (RMSE) of the external validation of the proximal sensor data
variables mapped via ordinary kriging (OK) and kriging with an external drift (KED).

RMSE Method Attribute

0.56 OK
aEC (mS/m)0.62 KED

0.09 OK aMS (ppt)
0.09 KED

2.8 OK eTh (ppm)

1.18 OK eU (ppm)
aEC: apparent electrical conductivity in mS/m (millisiemens per meter); aMS: apparent magnetic susceptibility in
ppt (parts per thousand); eTh: equivalent thorium in ppm (parts per million); eU: equivalent uranium in ppm
(parts per million).

The maps of the management zones based on PSS (OK) and PSS plus RS (KED)
classified via the k-means cluster algorithm are presented in Figure 10A and B, respectively.
It is possible to observe that the zones outlined using the PSS maps via OK and KED were
remarkably similar. This pattern may have resulted from implementing eTh and eU data in
an OK format to compose the management zone map representative of the KED method.

The remote sensing covariables that collected information from the irrigation pivot area
when the soil was planted (2019) did not optimize or significantly improve the distribution
of the observed patterns of the PSS attributes spatially. When beans were grown, the satellite
images representative of 2019 had a significative edge effect, recognizing the transition
between exposed soil and planting on the pivot area’s borders that can be observed in the
management zone map using only RS data (Figure 11). On the other hand, DEM-derived
data did not present edge problems. Therefore, the DEM-derived attributes selected to
compose the KED models described in Section 2.4 and shown in Table 3 could represent
the variables controlling the study area’s water behavior.
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Figure 10. (A) Management zones made via k-means using proximal sensor maps with ordinary
kriging (OK) and (B) management zones made via k-means using proximal sensor maps with external
drift kriging (KED).
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Figure 11. Management zones produced from all remote sensing data rasters using a k-means
clustering algorithm.

The MZ created from RS data alone (Figure 11) could only separate the zone to the
north of the study area, similar to the MZ maps via OK and KED (Figure 10A,B). It is
possible to observe that the orange management zone in Figure 11 was like the zones in
Figure 10 for both methods used (OK and KED).

The management zone in the blue area of Figure 11 needed to be better classified
due to the edge effect of some satellite images in 2019 that identified the planting limits
between beans and exposed soil. Although it was impossible to identify improvements
for optimizing the PSS data via KED, generating an MZ map to separate soil management
zones was possible using only RS data via satellite images and DEM covariates.

Table 7 shows that the classes created with the PSS data groupings via OK, KED, and
RS only could distinguish the distribution regions for all the soil data analyzed in the
laboratory. However, the MZ map using only remote sensor data could not be determined,
with the same level of significance as OK and KED, the Ca and Mg attributes. The potential
to treat different growth areas using proximal soil sensing was also presented by Van
Meirvenne et al. (2013) [67] and De Benedetto et al. (2013) [68], who also tested the
inclusion of remote sensor variables associated with the cluster clustering method.

Table 7. Analysis of variance (ANOVA) of the classes of the management zone map produced from
the data of proximal sensors via OK (PSS); proximal sensors combined as the best satellite covariates
via KED (PSS and RS); and remote sensing (RS) data raster.

F Mean Sq Sum Sq DF MZ

Clay (g kg−1)
0.001 *** 13,743 27,486 2 PSS
0.001 *** 13,743 27,486 2 PSS and RS
0.001 *** 14,180 28,361 2 RS

Ca (g kg−1)

0.003 ** 4.12 8.24 2 PSS
0.003 ** 4.12 8.24 2 PSS and RS
0.03 * 2.64 5.29 2 RS

C (g kg−1)

3.9 × 10−7 *** 33.88 67.77 2 PSS
3.9 × 10−7 *** 33.88 67.77 2 PSS and RS
6.2 × 10−4 *** 18.75 37.5 2 RS
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Table 7. Cont.

F Mean Sq Sum Sq DF MZ

Mg (g kg−1)

0.001 ** 0.49 0.98 2 PSS
0.001 ** 0.49 0.98 2 PSS and RS
0.012 * 0.33 0.66 2 RS

Clay in g kg−1; Ca: calcium in g kg−1; C: organic carbon in g kg−1; Mg: magnesium in g kg−1; levels of statistical
significance: * p < 0.05, ** p < 0.01, and *** p < 0.001. DF: degrees of freedom; Sum Sq: sum of the squares;
Mean Sq: mean square.

Although the MZ map using only RS data decreased in the degrees of significance
to distinguish soil attributes, it was possible to observe that there was potential for distin-
guishing between heterogeneous soil zones using only RS data. This approach reveals the
strong opportunity to implement remote sensing by-products into data fusion mapping to
distinguish management zones in precision agriculture.

4. Conclusions

The maps of proximal sensor attributes produced with ordinary kriging showed the
same external validation errors as the maps of proximal sensors built via kriging with
external drift using the remote sensing data as covariables. There was no improvement in
mapping proximal sensor attributes from the fusion of remote sensor data for the 72-ha
analysis scale.

The ordinary-kriging and kriging-with-external-drift management zone maps pro-
duced with the k-means cluster algorithm were similar. However, the remote sensing
management zone map delineated the management zones with less accuracy but similar
spatial pattern. Furthermore, it shows promise for implementing and analyzing agricultural
areas with more significant extensions.
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