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Abstract: Promotion of research and development in advanced technology must be implemented
in agriculture to increase production in the current challenging environment where the demand
for manual farming is decreasing due to the unavailability of skilled labor, high cost, and shortage
of labor. In the last two decades, the demand for fruit harvester technologies, i.e., mechanized
harvesting, manned and unmanned aerial systems, and robotics, has increased. However, several
industries are working on the development of industrial-scale production of advanced harvesting
technologies at low cost, but to date, no commercial robotic arm has been developed for selective
harvesting of valuable fruits and vegetables, especially within controlled strictures, i.e., greenhouse
and hydroponic contexts. This research article focused on all the parameters that are responsible for
the development of automated robotic arms. A broad review of the related research works from the
past two decades (2000 to 2022) is discussed, including their limitations and performance. In this
study, data are obtained from various sources depending on the topic and scope of the review. Some
common sources of data for writing this review paper are peer-reviewed journals, book chapters, and
conference proceedings from Google Scholar. The entire requirement for a fruit harvester contains a
manipulator for mechanical movement, a vision system for localizing and recognizing fruit, and an
end-effector for detachment purposes. Performance, in terms of harvesting time, harvesting accuracy,
and detection efficiency of several developments, has been summarized in this work. It is observed
that improvement in harvesting efficiency and custom design of end-effectors is the main area of
interest for researchers. The harvesting efficiency of the system is increased by the implementation of
optimal techniques in its vision system that can acquire low recognition error rates.

Keywords: digital agriculture; fruit harvester; object recognition; selective harvesting; development
challenges; system performance

1. Introduction

Using robotics to accomplish work has become desirable over the last two decades in
every field, i.e., industry [1], medical [2], agriculture [3], and military [4]. Many researchers
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have discussed the development challenges that arise in the field of agriculture for fruit
and vegetable harvesting and other field operations, i.e., sowing, weeding, and spraying
vegetables [5–7]. However, with advancements in the Internet of Things (IoT), sensors,
high-speed internet (4G/5G/6G), and robotic automation with required attachments, de-
velopments in agriculture are at their peak, and many operations, i.e., crop quality and
quantity measurement, disease finding, the planting process, and harvesting are taken
from types of machinery in developed countries [8–11]. The word automation here refers
to the equipment and devices that work in place of manual procedures. Globally, the
demand for agricultural products is increasing rapidly. It is expected that, in the next 30
years, agriculture production needs to be increased by about 50% to meet food demands
globally [12,13].

Many regions around the world are facing labor shortages in the agricultural sector [14].
Robotic arms can help address this issue by automating the harvesting process and reducing
dependency on human labor, especially during peak harvesting seasons when the demand
for workers is high. With the passage of time, the demand for manual farming is decreasing
due to the unavailability of agricultural skilled labor and its shortage due to extreme
weather conditions in the field [15]. Sometimes, the reason behind labor shortages occurs
due to the pandemic situation and its effect on worldwide travel restrictions [16–19]. These
acts may affect the availability of migrant laborers in addition to several other factors, such
as people migrating from rural to urban life, lack of interest in farming, and traditional old
farmers. As a result, a lot of fruit products are spoiled in the field, where harvesting relies
on seasonal field workers [20]. In some cases, manual harvesting affects farmers’ health due
to improper body posture, which can cause musculoskeletal disorders [21]. Farmers also
highlight the problem of working in a harsh environment, which can cause several health
issues. Moreover, another disadvantage of manual harvesting is the high labor cost and
inefficient working. Surveys from multiple companies show about 35–40% of the yield of
citrus is spent on manual harvesting [22]. Another study about cost calculation regarding
the production of sweet cherries revealed that half of their production margin is utilized on
their manual harvesting [23].

To overcome the issue of labor shortage, ensure labor health, and increase the pro-
ductivity of agriculture in the current challenging environment, the promotion of research
and development must be implemented in agriculture. Many agricultural products like
potato, wheat, sugarcane, and corn ripen and are ready for harvesting in a single movement.
However, some high-value crops, such as apples, sweet peppers, tomatoes, etc., do not
ripen in a single movement [24]. Harvesting crops that require diverse ripening stages is a
laborious, repetitive, and costly process, making it a prime candidate for automation in
agriculture. Apart from addressing labor shortages, automation also plays a crucial role
in ensuring the quality of the harvested crop, making it fit for human consumption [25].
Also, agricultural automation can harvest crops with high speed and precision, surpassing
human capabilities. They can work tirelessly without getting fatigued, which leads to
increased efficiency in the harvesting process [26]. Significant research and development
efforts have been dedicated to advancing the field of agricultural automation, but no satis-
factory commercial solutions have been introduced so far. Numerous automated machines
have been designed to alleviate the challenges faced in agriculture, but this review will
focus specifically on the robotic arm harvester.

Every effort is made in this review paper to discuss all the technical challenges that
may occur in the development of fruit-harvesting robotic arms, their needs, and their
importance in current scenarios. Furthermore, each main component of fruit-harvesting
robotic arms, along with their concerns and challenges, is discussed.

2. Recent Developments

Previous related work in the development of robotic arm harvesters is discussed in this
section. Also, their performance and limitations available in the literature are considered.
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In the early stages of fruit-harvesting robotic arms, the designs were rudimentary, with
basic grippers and single-axis movements characterizing their mechanical form [27–29].
These early arms lacked adaptability to different fruit shapes and sizes, leading to a
quest for more sophisticated solutions [30]. As the years progressed, a breakthrough
came with the introduction of multi-axis movement, granting these robotic arms greater
flexibility and reach [31]. The incorporation of force sensors and vision systems marked
another milestone, enabling the arms to delicately handle fruits and precisely locate them
within their environment [32]. However, it was the 2010s that saw a true revolution in
gripper design. Adaptive grippers emerged, their flexible fingers and suction cups adapting
seamlessly to a variety of fruit shapes [33–36]. Soft grippers, employing compliant materials,
further improved interactions, reducing the risk of damage. In the subsequent years,
advanced materials and electromagnetic actuators transformed the landscape, making arms
lightweight, energy-efficient, and precise. The hybrid gripper systems of the 2020s brought
a new level of versatility, combining different gripping mechanisms for enhanced fruit
handling. Simultaneously, artificial intelligence emerged as a key player, empowering these
arms with real-time decision-making capabilities [37–39]. Through specialized attachments
and end-effectors, from gentle suctions for delicate fruits to cutting tools for stalked ones,
these robotic arms evolved into versatile, indispensable tools in fruit harvesting [40–42].
Ergonomics and safety considerations also received due attention, ensuring that these
mechanical marvels not only excelled in function but also in user-friendly operation. The
design of the fruit-harvesting robotic arm is one of continuous innovation, driven by a quest
for precision, adaptability, and efficiency, ultimately reshaping the landscape of agricultural
practices.

Researchers have made significant strides in addressing the challenge of localizing
fruits in fruit-harvesting robotic arms since the last century [43]. Before the 2000s, research
in the field of fruit-harvesting robotic arms faced significant challenges in localizing fruits
due to the limited availability of advanced technology [44]. Their efforts primarily focused
on rudimentary methods of fruit detection and localization. One of the earliest approaches
involved basic computer vision techniques. Researchers developed algorithms to analyze
2D images of fruit-bearing trees [45–47]. These algorithms relied on color-based segmen-
tation and shape recognition to identify potential fruit locations [48,49]. However, this
method had limitations, especially in varying lighting conditions and with occluded or
partially hidden fruits.

Another approach was the use of ultrasonic sensors [50,51]. These sensors emitted
high-frequency sound waves and measured the time taken for the waves to bounce back
after hitting an object. Although they were effective in detecting obstacles, they were less
precise in identifying individual fruits. Furthermore, some researchers explored the use
of infrared sensors to detect temperature variations associated with ripe fruits [52]. This
approach, however, had limited success, as factors like ambient temperature and humidity
could affect the readings. Researchers also experimented with mechanical contact-based
systems. These systems involved probes or robotic arms that physically touched fruits to
assess their ripeness [53]. Although this approach could provide valuable information,
it was not suitable for delicate fruits or those in high-density clusters. Initially, in the
early 2000s, the focus was on basic computer vision techniques for fruit recognition. This
involved developing algorithms to detect and identify fruits based on color, shape, and
texture. As technology advanced, researchers began integrating more sophisticated sensing
systems, such as multi-spectral imaging, which allowed for a more detailed analysis of fruit
characteristics. This enabled the robots to distinguish between ripe and unripe fruits with
higher accuracy. In the mid-2010s, the implementation of depth sensors marked a crucial
advancement. These sensors provided precise information about the location of fruits in
three-dimensional space, allowing for more accurate localization [54–56]. Additionally,
force feedback systems were introduced to ensure the gentle handling of delicate fruits
during the harvesting process [38]. A significant breakthrough came with the introduction
of machine learning algorithms around 2013. These algorithms enabled the robotic systems
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to learn and adapt to different fruit varieties and environmental conditions, enhancing
their ability to accurately identify and localize fruits [57–60]. By 2015, researchers had
achieved simultaneous multi-fruit harvesting capability, a milestone that greatly increased
the efficiency of fruit harvesting robots [61]. Furthermore, the development of robotic
arms with multiple degrees of freedom allowed for more flexible and precise manipula-
tion, further improving localization accuracy. In recent years, advancements in artificial
intelligence (AI) have played a pivotal role. Integration of AI algorithms has enabled
real-time assessment of fruit ripeness, allowing the robots to make decisions on the spot.
Edge computing, introduced around 2021, further enhanced the speed and efficiency of AI
processing directly on the robot, reducing reliance on external computational resources [62].
Furthermore, the integration of LiDAR technology has provided the capability for 3D
mapping of orchard terrain. This allows robots to navigate and localize fruits in complex
and dynamic environments [63,64]. Overall, researchers have employed a combination of
computer vision, sensor technologies, machine learning, and AI algorithms to progressively
refine the localization capabilities of fruit harvesting robots. These advancements have not
only improved the efficiency and accuracy of fruit harvesting but also have the potential
to revolutionize the agricultural industry by addressing labor shortages and increasing
productivity. Figure 1 shows the timeline of the significant contributions to the design and
development of fruit-harvesting robotic arms in decades. It can be seen that there has been
a major contribution to its development in the recent decade due to its growing demand in
the agricultural sector.
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An autonomous robotic arm developed by for apple harvesting that comprises a
custom-made end-effector. A Pentium IV 2 GHz PC with 1 GB RAM, Panasonic VR006L
robotic arm, tractor, generator, and touch panel PC with HMI are used in the manufacturing
of a prototype.

Huang [65] developed a robotic arm with a path-planning plate form simulated
in MATLAB. Their focus is to find a solution for the end-effector harvester to reach its
destination with high precision by implementing an inverse kinematics technique.

Another low-cost prototype for a fruit harvester is designed by [66] using a stereo
vision camera. The vision system is installed in the end-effector so that the updated infor-
mation related to arm movement is sent to the controller for further necessary actions. The
complete prototype is constructed using Minoru 3D for the vision system, DC gear motors,
3D printed arm parts using dimension SST 1200es, 3D printer, and an STM32F407VGT6
controller.

It is observed from the literature the main key issues are due to achieving low harvest-
ing time, which was examined by [67]. A low-cost, high-speed robotic apple harvester has
been proposed, which boasts the ability to sense, plan, and harvest. The entire prototype
is mounted on a John Deere Gator electric utility vehicle and comprises a manipulator,
custom-made end-effectors, TOF camera, and color camera. The detection of objects (apples
in this case) is achieved using circular Hough transformation (CHT) and blob analysis (BA)
techniques.

An autonomous sweet pepper recognition and tracking system has been developed
using a simulation approach [68]. The simulation is carried out using MATLAB, V-REP,
and ROS software for analysis. The algorithms are executed in MATLAB, and the real-time
images captured by an external camera are filtered to remove color noise. The system’s
performance was evaluated using 78 images.

A real-time image processing algorithm is used to determine the location of fruit,
and their kinematic solution is obtained using C# [69]. A mechanical custom-made end-
effector is developed to detach the fruit, and the pressure required for the desired fruit is
calculated precisely by determining the tolerable pressure. Visual tasks are carried out using
a two-dimensional camera with the addition of a depth sensor. The results were validated
using 100 images, demonstrating an acceptable level of accuracy in fruit localization and
harvesting.

A geometrical solution that can transform the exact location of peduncle coordi-
nates into robotic arm joint functions using a Convolutional Neural Network (CNN) is
validated [70]. Kinect RGB-Depth camera is mounted on the robot for real-time image
processing. The result validation shows a harvested success rate of about 52%.

Another robotic arm harvesting prototype based on deep learning techniques im-
plemented for fruit harvesting and recognition are Point Net-based and Mobile-DasNet,
respectively, which is designed in [71]. The complete prototype is customized using a
Universal Robotic manipulator UR5, self-design end-effector, intel D-435 depth camera,
and NVIDIA GTX-1070 GPU.

Feng incorporated laser technology into an apple-harvesting robot [72]. A laser vision
system that allows the robot to accurately measure the distance to the target. This laser
vision system enables the robot to perform a three-dimensional scan of the target scene,
capturing detailed spatial geometry information and analyzing the relationship between
the fruits and branches.

An integrated prototype is designed in [73], whose testing and validation are carried
out in the greenhouse. The whole system is implemented by acquiring six Degree of
Freedom (DOF) robotic arms, a Fotonic F80 depth camera, GPU, and PLC. The software
counterpart in this model consists of C++ and ROS indigo on Ubuntu. Although attractive
work is carried out, it has several drawbacks in terms of harvest success rate and detachment
time.

A novel apple harvesting robot end effector that incorporates a pneumatic flexible
actuator as a curved joint is created in [74]. This innovative design allows for a substantial
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output force, enabling the end effector to firmly grasp the target fruit with excellent
flexibility. This breakthrough development has the potential to significantly enhance the
efficiency and effectiveness of apple harvesting processes.

A localization-based detection and fruit harvesting prototype is prepared in [75] with
a custom cutting mechanism. The proposed system contains a Braccio robotic arm, depth
camera, and Arduino Due controller. The software part is established using MATLAB and
Arduino IDE environment. The prototype has several limitations in terms of performance,
and the system is not fully automated because, during testing, it requires some manual
modification.

A closed-range vision-based chili harvesting robot with a custom end-effector is
designed in [52]. The proposed manipulator detaches the chili using a suction and grasping
mechanism. To minimize fruit damage, the detachment process is developed the same as
manual harvesting. The prototype contains a laser diode, a laser receiver [76], five DOF
manipulators, and a computer. The drawback of this design is a single trunk training
model that works only on aligning a single trunk, so this type of prototype is not used for
harvesting in a field environment.

Zhang designed a manipulator for an apple-picking robot and conducted experiments
to study the control stability of the manipulator [77]. The control area was divided into a
stretching area and a harvesting area to ensure smooth operation. The trial showed that once
the robot ranges the target, the required stabilization time is less than two seconds. This
suggests that the manipulator’s control system is stable and capable of quickly stabilizing
once it reaches the harvesting area.

Another designed prototype for an automated mushroom harvester is proposed
in [78]. Special custom end-effectors are designed for the delicate control of mushrooms.
The algorithm developed for localizing and identification of mushrooms is based on the
calculated area of the mushroom top. The maximum diameter of the mushroom top
harvested by the system is 75 mm. To solve the problem of low lightning conditions, a
Phillips TLE 23Watt bulb is used near end-effectors to maintain a better environment for
target identification by the vision system. The calculated damage rate claim by the author
during the testing of the developed prototype is 3%.

Zhao has developed a robot for apple harvesting that features a 5◦ series joint with an
integrated arm that has both lifting and telescopic capabilities [79]. The robot’s performance
was tested under controlled laboratory conditions, resulting in an 80% success rate, with a
harvesting period of 15 s.

An Automated Robotic arm for the orange harvester was developed in [80]. The vision
system for fruit identification is composed of two cameras (ZED Stereo camera and A4tecch
Webcam) and one ultrasonic sensor. A stereo camera is used to detect orange trees by
applying a green detection algorithm. A webcam is used to serve the end-effector to reach
the fruit, and an ultrasonic sensor is used for the distance measurement of the fruit from
the end-effector.

The intelligent fruit-harvesting robot designed by Gu was equipped with advanced
technologies such as autonomous navigation, computer vision, and robotic arm control [81].
The robot was able to autonomously navigate through the orchard using sensors and
algorithms to detect obstacles and plan its path. It could identify mature fruits using
computer vision algorithms with a high recognition rate in the field of agricultural robotics.

Most of the above developments show that the basic aim of their work is the successful
harvesting of fruit using an optimal detachment mechanism. Results claimed by the
manufacturer in the previous developments are shown in Table 1.
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Table 1. Overview of recent developments in automated fruit harvesting prototypes.

Ref. Component/Equipment Used Software/Algorithm
Used Performance Results

[75]
Braccio Robotic Arm

Arduino Due
Intel real sense depth camera

MATLAB
Arduino IDE

Localization success rate 37.7%
Detachment success rate 65.5%

Harvest success rate 24.7%
Cycle time 7 s

[73]

Six DOF robotic arm
Fotonic F80 camera

Custom-built LED-based illumination
GPU and PLC

C++
Python

ROS Indigo on Ubuntu
14.04

The harvest success rates.
Cycle time

61%
24 s

[67]

Seven DOF manipulator
Custom end-effector

Single CCD color camera
TOF-based 3D camera

MATLAB
C++ domain.

Localization success rate
The harvest success rates.

Cycle time

100%
84.6%
7.6 s

[68]

Logitech cam
Supplementary halogen lamps
Adafruit GPS breakout module

Arduino Uno

V-REP
ROS

MATLAB

Localization success rate
Cycle time

94%
2 s

[65] servos (RX-64)
Cine camera MATLAB N/A

[70]
Kinect RGB-Depth camera

6 DOF ARM
Custom made gripper

Mask R-CNN
ROS

Fruit detection success 87%
Cutting point detection 71%

The harvest success 52%

[35]

Pentium IV 2 GHz PC with 1 GB RAM
Industrial robot (Panasonic VR006L)

Touch panel PC with HMI
Custom gripper

Halcon Software
Fruit detection success

Fruit harvesting success
Cycle time

80%
80%
9 s

[71]

Universal Robot UR5
Customized soft end-effector.

Intel D-435 camera
NVIDIA GTX-1070 GPU

ROS
Linux Ubuntu 16.04
RealSense package

ROS MoveIt

DasNet Recognition
success

Mobile-DasNet Recognitio
success

91%
90%

[69] Custom made end-effector C#
Detection success 85%

Harvesting success 73%

[66]
Minoru 3D USB Webcam
3D printed robotic arm.

STM32F407VGT6 controller
N/A

Distance error of
Cycle time

6%
16 s

[52]

Five DOF robotic arm
Infra-red laser diodes

AC servo motors
Computer

N/A
Localization success rate
Fruit harvesting success

Cycle time

60%
80%
14 s

[78]
486 DX 33 MHz Computer

Fluorescent tube, Phillips TLE 23 W/29
Pulnix TM 500 camera

N/A
Localization success rate 70%
Fruit harvesting success 76%

Cycle time 8 s

[80]

Six DOF Robotic manipulator
Electric cart

Arduino Microcontroller
ZED Stereo camera
Webcam (A4tecch)

Ultrasonic Sensor (US-100)

Arduino IDE
Green Detection

Algorithm
Open CV Library

Visual Studio

Localization success rate
Fruit harvesting success

Cycle time

75%
85%

9.41 s

It is observed from previous work that harvesting time, harvesting success rate, and
localization success rate are the main focused parameters that are discussed by the authors
in the literature. The harvesting cycle is the period for the detachment of a single fruit
that starts from the initial manipulator movement to the successful reach of the fruit to
the container. The localization success rate is the ratio of the total number of available
fruits and detected fruits by the vision systems. Harvesting success rate is the ratio of total
number of fruits harvested and the number of fruits detected by the system.
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3. System Requirements

In this section, the entire requirement for the development of fruit-harvesting robotic
arms is discussed. The design contains a manipulator for mechanical movement, a vision
system for localizing and recognition of objects, and an end-effector for detachment pur-
poses. The development of a software platform is also an important part of the system that
will manage mutual collaboration between components so that a well-defined workflow
has been established. Data processing in software is dependent on manipulator coordinates,
image information, and data from sensors. A basic flow chart for automated fruit harvesters
working in a field environment is shown in Figure 2.
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Figure 2. Flowchart of automated fruit picker. Figure 2. Flowchart of automated fruit picker.

Working principle and their mechanical structure concern to each component is dis-
cussed in this section. However, their occurring challenges are considered in the next
section.

3.1. Manipulator

For the successful harvesting of valuable fruit, a mechanical architecture that consists
of a robotic manipulator and end-effectors is needed. The function of the manipulator
is to guide the end-effector to reach the target, where the end-effector grasps it, and the
manipulator brings fruit to the container [82]. The entire workspace is known by the system
so that they will navigate the fruit to the target without damaging the system and fruit.
Parameters considered in the workspace depend upon plant height, system height, number
of fruits, the distance of target fruit, and size of target fruit.

Another specification for the development of a manipulator is to consider the payload
of the desired fruit, i.e., The manipulator design for watermelon and apple has different
types of load capacity conditions. An easy way of understanding a manipulator is that it
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resembles a human arm [83]. Where the human arm is related to a six DOF manipulator,
each joint of the robotic arm is equivalent to the shoulder, arm, and wrist, as shown in
Figure 3.
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Where the shoulder joint of the manipulator is attached to a fixed body instead of a
moveable structure, and the remaining joints are found inside the robotic arm. Usually,
the fourth DOF of the robotic arm is used for wrist movement, the fifth for adjustment
of rotation or orientation, and the sixth is for gripping [84]. An essential amount of
driven power is required for operating motors that are found inside the joints for their
movement, which is described by the manufacturer’s power rating depending upon the
motor requirement, weight of the manipulator, and type of work taken from the robotic
arm. Every DOF internally carries a motor inside its joint for mechanical movement. Heavy
payload is lying on the second DOF, so a servo motor with high torque is especially required
for this joint [85].

3.2. Vision System

Vision system is an important component throughout all automated robotic 1systems
known as Vision Guided Robotic system (VGR). In agriculture robotic harvesting, the
object (fruit in our case) is first identified by the vision system. Manipulators reach a target
based on the information coordinates provided by the vision system [86]. For several
decades, active research has been performed on the development of optimal visual plate
forms that will identify the fruit with high accuracy. Many algorithms are applied in many
prototypes where accuracy in computational and sensing parameters is the first choice
to achieve efficient results. The most important feature of fruit sensing is color-based
identification [87,88]. Several distinct algorithms based on segmentation were developed
for apples, citrus, mangoes, tomatoes, pineapples, etc. For vision identification, researchers
also used other techniques like Circular Hough Transform [89], a global mixture of Gaus-
sians [90], Blob identification [91], and many more that can achieve a 70% to 95% success
rate in a controlled environment. The development of efficient vision systems is the basic
key feature needed to increase the success rate of harvesting devices. Different types of
sensors are used for the identification of fruits, i.e., ultrasonic sensors, laser scanners, Light
Detection and Ranging (LiDAR) sensors, stereo vision cameras, depth cameras, and RGB
cameras. Different types of sensors used for robotic arm vision guiding are shown in
Figure 4.
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Many industries have made special universal sensors that have multiple functionalities
in a single module, i.e., a single module has the ability of depth plus RGB color sensing
and maybe more [96]. Using these sensors, different properties of plants and fruits, like
fruit size, location, color, pose, and orientation, have been acquired. There are two types
of VGR systems: arm-mounted camera VGR system and stationary camera mount VGR
system. In the stationary camera mount system, the vision sensors are mounted on a
base that is separate from the manipulator. This type of system requires an additional
infrastructure that will monitor the field of view available in their range. The captured
information has been sent to the software system. After receiving information from the
software, they will calculate the position of the target using inverse kinematics [97]. The
manipulator reaches the target according to defining variable values and completes the
desired task. Certain calibrations are required that will interpret the vision sensor position
and manipulator position concerning each other. In the arm-mounted VGR system, the
vision sensor is attached to the manipulator and repeatedly changes its position due to
arm movement. This type of system does not require additional infrastructure design for
the camera. During their task, the updated information is received by the software, so the
system knows their current position in the 3D plane as compared to the initial point. In
this scenario, the distance of the fruit to the camera is first evaluated systematically and
then, based on the displacement between the camera, gripper, and target available in the
workspace, is estimated by scaling [98].

A monocular camera is used for vision purposes, and a stepper motor is used for
manipulator movement [99]. In this scenario, a depth camera is not required; the depth
information is acquired through their optical phenomenon. The degree of blurriness is
estimated to find the distance of an object in the plane. The accuracy of the system is
not too good as compared to the stereovision camera-based system. Another design of
a system based on a stereovision camera that can estimate the depth of an object can be
found [100]. The blob technique is used for extracting features of the image, and detection
is carried out using each camera; segmentation occurs before delivering a command to
further attached modules. The term “each camera image” refers to a stereovision camera
that uses two cameras with a confined distance among them that work like human eyes.
Results show better performance in accuracy and target size estimation as compared to
monocular cameras.
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An apple fruit picker that contains stereovision cameras has been developed [101].
Their performance is validated under different conditions where the target ranges from
30 cm to 110 cm. Validation is carried out in two scenarios; first, a manual procedure is
performed by placing a small object in the center of an apple that has an error estimate
of approx. 0.63% in distance. In the second scenario, the centroid of the apple is found
through computation analysis that has an error of about 3.54%. For the detection of a
ripened tomato, a structured light-based system was developed in [102]. In this work, the
concept of structured light is used for the localization of fruit, and the Cb layer is used for the
estimation of its ripeness. An error of a few millimeters is spotted during system validation.
As seen in the literature, most of the development process is based on stereovision cameras.
Another robotic manipulator designed for harvesting lychees is also based on a stereovision
system [103]. This fruit picker is tested at the laboratory level for path planning and fruit
detachment. The manipulator is developed in a virtual environment, and path planning
kinematics is coded in Microsoft Visual C++. Most research papers reviewed up to this
point are purely based on the arm-mounted camera technique or the stationary mount
technique. In contrast, a novel technique is proposed that is based on the collaboration of
both vision systems [104], where a stationary mount camera is responsible for the greater
field of view of the workspace, and accuracy is gained from the arm-mounted camera.
Testing of this technique was carried out in a citrus orchard, and the system obtained
95% accuracy. A prototype has been designed for detecting and picking small asparagus
of 230 mm in height [105]. The vision system consists of two slit lasers and an old TV
camera. The reason behind the two lasers is that they controlled the desired height of
asparagus plants. Another laser-camera system is designed to be used for the detection
and detachment of apples. A machine vision scenario is used for apple detection, and laser
sensors are used for fruit localizing [106]. The accuracy of the system, as claimed by the
author, is 100% in detection and has an accuracy of 90% in fruit detachment.

3.3. End-Effector

There are two types of fruit harvesting techniques: one is the bulk technique, and the
second one is the fruit-by-fruit harvesting technique [107]. The design of end-effectors does
not matter in the bulk fruit-picking technique, where the detachment process is performed
by a Rapid Displacement Actuator (RDA). Branches of trees with ripened fruit are detected
by the vision system, and then by actuating RDA, the fruit is harvested and caught by
another system for collection in the container. RDA is used to apply vibration to the
branches of trees [108]. However, this type of harvesting has many disadvantages that will
be discussed in the subsequent section. The design of end-effectors has a had significant
impact on individual fruit harvesting techniques. There is a lot of research work occurring
on the custom shape of the harvester. So far, different types of cutting tools have been
invented, such as scissor type, suction mechanism [109], and swallow harvester [110].

Normally, the suction-based approach is used for harvesting, and it is much more
reliable and easy to design [73]. This approach is achieved through a cap-type end-effector
and a tube body connecting the cap of the sucker. By squeezing with air pressure, the target
fruit is harvested and transferred to a storage container via a discharge tube. The second
type of harvesting tool is usually made for fragile crops and requires complex engineering
for its cutting mechanism. This type of effector consists of scissors that will cut the peduncle
of the fruit and a gripper that will hold the fruit until it reaches the target containers. A
specially designed trained system is required to detect the cutting point of the peduncle.
Research efforts have focused more on the development of a cutting peduncle-based system
than on another harvesting system [111]. These types of systems for tomatoes and sweet
peppers are developed in [112,113]. Another type of end-effector works almost like a
human hand that will reach the target and grasp it in its mechanical design, just like fingers.
After grasping them, the fruit will be detached from the plant. However, certain statistics
may be required to calculate the gripping and detachment force to avoid damaging fruit
and plant [114]. Force is applied using manipulator movement, and sometimes twisting the
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wrist will provide enough effort for their detachment. This type of harvesting technique is
mainly applied to rigid plants and trees where fruit picking may cause some disturbance
that will not affect them. So, in the development of swallow end-effectors, fruit shape, fruit
size, fruit weight, and the plant’s nature are important components. A vast majority of
researchers work on the development of reliable end-effectors, as shown in Figure 5.
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4. Development Challenges

In this section, the hurdles faced in the development of automated fruit-harvesting
robotic arms will be reviewed. Every component of the system suffers from a series of
challenges. Challenges are dependent on the parameters cost, working environment, the
efficiency of the system, the size of the prototype, types of sensors, implemented algorithm,
harvesting time, manipulator material, and hardware. Adjusting one parameter in the
name of improvement will result in compromising or reducing some other parameter. An
overview of development challenges arising in different components of robotic arms is
shown in Figure 6.
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4.1. Vision Challenges

The vision system for fruit-harvesting robotic arms encounters a myriad of challenges.
These encompass varying lighting conditions, potential obstruction by leaves and branches,
overlapping fruits, and the challenge of accurately detecting distant fruits. Natural varia-
tions in fruit color and shape, as well as occlusion by plant elements, further complicate
recognition. Environmental factors like wind and rain introduce dynamic elements, while
seasonal changes in plant and fruit characteristics demand adaptability. Ensuring dust-free
camera lenses, precise calibration, and real-time processing capabilities are imperative.
Depth perception, resilience to environmental variations, and adaptability to diverse fruit
types are also crucial. Additionally, the system’s capacity for learning and generalization
across different environments and fruit types is essential for its effectiveness and versatility
in the field.

Identification of fruit by visual sensing is an important element of the system that
is suffering from several challenges. Over several decades, significant work has been
carried out in the identification of fruit, and many techniques have been developed, and
implemented in the prototypes. The researcher claims to have achieved an acceptable
number of results in the previous work. One of the problems reported by the researchers
is that of different lighting environments, which affect the segmentation process and
play a vital role in fruit identification [115–117]. The different lighting conditions mean
the designed work seems to look good and has better accuracy in the control lighting
environment in laboratory conditions. However, these systems face problems in the
orchard/field environment due to the presence of intense sunlight in the daytime and
very dim light at night. These issues are addressed to some extent by harvesting the fruit at
sunset or providing enough light during the night-time but will still reduce the efficiency
of the system [118]. The prototype is said to be highly efficient if it can work in every
environment without depending on the limited time window.

Variable lighting problems arise due to the effect of unbalanced exposure on the image,
which will disturb saturation and contrast. So, in these situations, the quality of the image
may cause problems in fruit identification. An exposure fusion technique is developed
in [119]. This method produces a well-exposed picture by retaining just the best areas for
every frame in various exposure-given images, as shown in Figure 7.
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with little shades. Another technique is proposed that will perform fruit identification
independent of color properties; based on this work, the fruit is identified by a 3D geometry
plane [120].

Like vision algorithm techniques, the selection of visual sensors is also an important
issue [121]. Two types of vision scenarios are available in VGR, as described in Section 3.2.
In stationary camera mount, the vision sensor is mounted on a fixed frame, also known
as the eye-to-hand method. This type of system has the advantage of knowing their fixed
position as a reference point in the working area. The limitation of this system is the
installation of an extra frame for the vision sensor and the second high-resolution camera
required for object detection. The camera must be three-dimensional, with the ability to
extract depth information. For better identification of fruit quality, the image for target
tracking should not be lower than 5 Mp. The selection of position for the camera and
manipulator mounting is also a challenging task; their position is identified in such a
manner that the view of the camera is not interrupted during manipulator movement.
Complex computation is required for the localization of fruit from a fixed point, and the
availability of error in depth data from a fixed position is also higher.

Challenges faced in this scenario are tackled using an arm-mounted technique, also
known as the eye-in-hand technique. In this scenario, the vision camera is fixed in the hand
of the manipulator or on the end-effector [122]. In this scenario, the distance of the target
at every instance is monitored in a closed loop concerning the position of the end-effector
and vision sensor. A low-cost two-dimensional camera is enough for vision purposes. Arm
mounted solves many challenges that are faced in a stationary mount scenario, like the need
for another frame for the camera, interference of camera and manipulator, and requirement
for a high-quality camera. Along with these advantages, there are also limitations in the
arm-mounted technique. A camera is mounted in the middle or at the top of the end-
effector, which will affect the burden on the manipulator. Some manipulators could not
tolerate the burden of heavily integrated cameras, as seen in the case of the Microsoft Kinect
depth sensor used in [123], which is approximately 1.5 kg. So, in these types of scenarios,
the implementation of a stationary camera mount system is optimal.

4.2. End-Effector Challenges

The selection of a harvesting technique is also a challenging task. In the bulk technique,
a heavy mass of fruit is harvested in a short time by applying vibration to the plant or
tree. This process was first adopted several years ago and gave a good output in time
consumption [124], but it has several disadvantages reported by fruit growers that fruit
and plant damage occur due to applied detachment force. However, this problem is very
limited in big canopy trees and hardy fruits but has a high impact on fragile fruit and
plants [125]. Another problem in bulk harvesting is that the fruit detachment is carried out
without the identification of single characteristics of fruit, so most of the harvested fruit
is unripe. As a result, bulk harvesting of these products is not acceptable in the market
as compared to manually harvested products due to damaged and unripened conditions.
Active research is still in progress in this field to harvest the fruit at their maturity level,
which is not a trivial process, but it will affect the harvesting time. Another method for
harvesting is fruit-by-fruit harvesting or selective harvesting [126]. Implementation of
this technique also suffers from technical challenges like the selection of end-effector, type
of vision system, and DOF of a robotic arm. In successful harvesting, the selection of an
end-effector is an important factor. Three types of end-effectors are developed in selective
harvesting: cutting end-effector, suction mechanism, and swallow end-effector. Commonly,
a suction mechanism is used in most cases where the end-effector does not make any
harsh contact with the plant, but physical contact occurs with fruit during harvesting. The
problem facing the suction base technique is the need for another mechanism for suction
that will burden extra costs on the system. Another limitation of this technique is damage
to fragile plants and fruit.
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A cutting mechanism is needed for harvesting fragile fruit and plants [127]. An addi-
tional mechanism is attached with an end-effector that consists of a scissor-type cutting tool.
When the end-effector reaches the target fruit, the actuator forces the cutting mechanism for
peduncle cutting. Not only is the cutting mechanism needed, but the griping mechanism
needed to hold the fruit until it reaches the manipulator does not reach the destination
container. This mechanism is very useful in the case of sensitive plants and fruit, but
the challenge in this technique is the identification of a cutting point. High-resolution
cameras and complex algorithms are used in their development. These types of developed
cutting mechanism end-effectors are also problematic in a cluster of fruit. Sometimes, after
harvesting fruit, part of the peduncle may be stuck in the cutting tool; as a result, the
cutter will not cut further peduncle perfectly [128]. Before designing the cutting tool, a
mathematical calculation is carried out for the desired applied force that depends on the
strength of the peduncle, which is also a challenging task. Many developed prototypes
based on the cutting mechanism use two power sources that will increase the cost of the
system. An optimal solution is developed in [36]; a novel gripper is designed that will
share a single power source for the fruit gripper and cutter.

Another type of end-effector is the swallowing end-effector, which is almost like a
human hand. At the edge of the end-effector, a mechanism like the fingers of a human is
attached that will pick the target fruit, almost like traditional manual harvesting. In the
swallow-type end-effector, the detachment force burden is also experienced by the manip-
ulator. The detachment is performed by grasping the fruit and applying the force by the
manipulator’s movement that will cause damage to the plant, fruit, and the manipulator’s
body. As a consequence of the above statements, the selection of a manipulator in the
robotic arm is dependent on the type of task performed by the system. When the system
is developing for hardy fruit and plants, the suction mechanism will be improved. The
swallow technique is implemented for fragile fruit and hardy plants. However, a cutting
mechanism is developed for that system where plant and fruit both are sensitive to force.

4.3. Manipulator Challenges

The selection of the number of DOFs in a robotic arm manipulator is also an important
consideration in a design. The working feasibility of the robotic arm in a complex working
environment is increased by increasing the DOF of the robotic arm so that extending to
the target is much easier in that case. A better outcome is obtained by using kinematics
simulations to control the manipulator precisely. The manipulator’s kinematic approach
concentrates on the movement within each link before considering any force that causes
the movement [129]. Every DOF denotes an important variable necessary to express
the position of one link concerning the preceding link, adding to the complexity of a
manipulator [130].

Additional constraints seem to be that the system needs to be able to operate con-
tinuously in its field environment, which might be either an open-field agricultural field
environment or operating in lab testing. Outdoor-working robots will be subjected to
more demanding operational circumstances. Rain, wind, dust, and extreme temperature
variations may necessitate protection for actuators, sensors, and control systems. In lab
testing, most of the operating tools are easily available, but in field operations, there is a
requirement for additional generators, power sources, and sufficient lighting conditions.

5. Conclusions

The development of fruit-harvesting robotic arms presents a multifaceted set of chal-
lenges across three critical domains. In terms of vision challenges, the ability to accurately
detect, locate, and assess the ripeness of fruits in complex and dynamically changing envi-
ronments remains a challenging task. Overcoming this necessitates advanced sensor fusion
techniques, robust computer vision algorithms, and real-time data processing capabilities.
At the same time, in manipulator design, accommodating the diverse range of fruit sizes,
shapes, and locations demands an adaptable kinematic structure coupled with precise
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control mechanisms. Furthermore, ensuring gentle yet effective fruit handling necessitates
innovations in compliance and actuation systems. Lastly, end effector challenges require
an intricate balance of delicacy and adaptability, requiring specialized materials, tactile
sensors, and advanced computer vision algorithms. Addressing these challenges will be
pivotal in realizing the full potential of fruit-harvesting robotic arms and revolutionizing
agricultural practices for increased efficiency and sustainability. Advancement in technolo-
gies in the current era is merging into many fields, such as industries, the medical field,
education systems, defense systems, navigation systems, and even domestic appliances.
That makes work easier, lower cost, and faster than traditional approaches. Implementation
of technologies in the field of agriculture also tends to be modernized with the advanced
era. For several years, research has been performed in the field of agriculture to facilitate
the former. Many commercial automated machines have been developed for harvesting
crops that are ripening and harvested at the same time as potato, wheat, sugarcane, corn,
etc. However, a robotic arm as a harvesting device for those agricultural products that
require repetitive tasks for harvesting at different intervals is still being tested. The reason
behind the delay in this effort is that there are several challenges in their development.
These challenges appear in every component of the robotic arm and obstruct their develop-
ment. The main components of automated robotic arms are vision systems, manipulators,
and end-effectors. The main problem that arises in the vision system is the selection of a
camera-fixing scenario and applied algorithm. The development of manipulators faces
challenges in selecting the number of DOFs. The system is said to be highly efficient when
the vision system identifies all the fruit in its field of view, the algorithm calculates their
location, the manipulator reaches every target fruit, the end-effector detaches the fruit from
the plant, and the manipulator successfully holds the fruit before transferring it to the
fruit container. It is observed from previous work that the development of robotic arms is
associated with their application. Factors like the working environment, fruit type, nature
of the fruit, and the extent of the cost must be known by the developer. The effort made
in this review article is to discover all the work that is necessary for consideration in the
development of a robotic arm.

6. Future Works

Future advancements in the mechanical design domain of fruit-harvesting robotic
arms will prioritize structural optimization for a balance of strength and weight (i.e., low
weight and high strength). Innovations in articulation, linkage mechanisms, and kinematics
will enhance maneuverability to navigate around complex orchard layouts. Integration of
torque and force sensors, along with redundancy and safety features, will ensure precise
and gentle fruit handling. Sealing mechanisms and protective enclosures can protect
components from environmental factors, while vibration control techniques can minimize
oscillations. Ergonomic considerations will streamline operation and maintenance, and
advanced safety features will prevent accidents. Future strides in the vision systems of
fruit-harvesting robotic arms will steer in a new era of precision. Advanced 3D cameras and
machine vision technologies will be deployed to swiftly identify ripe fruits, assess their size,
and determine their position and orientation. Additionally, multispectral imaging may play
a pivotal role in distinguishing fruit from foliage, further enhancing accuracy. Integration
of AI-powered algorithms for real-time decision-making will optimize picking trajectories.
As for end effectors, the focus will shift towards adaptable, multi-modal designs. Grippers
equipped with compliant materials and adjustable features will gently yet securely grasp
fruits of varying shapes and sizes. Modular end-effector attachments will enable seamless
transitions between different fruit types, ensuring versatility in harvesting operations.
These advancements in vision systems and end effectors promise to revolutionize fruit
harvesting with unprecedented speed and precision in the future.
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