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Abstract: The analysis of chicken movement on the farm has several applications in evaluating
the well-being and health of birds. Low locomotion may be associated with locomotor problems,
and undesirable bird movement patterns may be related to environmental discomfort or fear. Our
objective was to test the BoT-SORT object tracking architecture embedded in Yolo v8 to monitor the
movement of cage-free chickens and extract measures to classify running, exploring, and resting
behaviors, the latter of which includes all other behaviors that do not involve displacement. We
trained a new model with a dataset of 3623 images obtained with a camera installed on the ceiling
(top images) from an experiment with layers raised cage-free in small-scale aviaries and housed in
groups of 20 individuals. The model presented a mAP of 98.5%, being efficient in detecting and
tracking the chickens in the video. From the tracking, it was possible to record the movements and
directions of individual birds, and we later classified the movement. The results obtained for a
group of 20 chickens demonstrated that approximately 84% of the time, the birds remained resting,
10% of the time exploring, and 6% of the time running. The BoT-SORT algorithm was efficient in
maintaining the identification of the chickens, and our tracking algorithm was efficient in classifying
the movement, allowing us to quantify the time of each movement class. Our algorithm and the
measurements we extract to classify bird movements can be used to assess the welfare and health of
chickens and contribute to establishing standards for comparisons between individuals and groups
raised in different environmental conditions.

Keywords: animal welfare; laying hens; movement rating; precision livestock farming; YOLO

1. Introduction

The welfare of chickens in a production environment depends on several conditions
on the farm and the birds’ health. Van Veen et al. [1] verified with laying hen producers
that the activity and movement of the hens are important indicators to assess health and
well-being. In this direction, several studies have sought to better understand the behavior
of animals to infer welfare [2–4].

Human monitoring of animal behavior can be exhaustive and imprecise [5–7]. In this
field, computer vision has gained space for using non-invasive sensors and ensuring good
accuracy in analyzes [8–12].

The ability of chickens to walk may indicate lameness [13–15], while the level of
agitation of the flock may indicate stress to the rearing environment [16]. Thus, tracking
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chickens in a production environment has several applications for health and comfort
diagnosis that can support mitigating measures and reduce losses in production [12].

Computer vision systems based on deep learning techniques make it possible to
automatically discover data representations more easily, enabling the extraction of location
and distance measurements [7]. The automatic detection of chickens housed on shavings
bedding using computer vision cannot be considered a trivial task, as in the monitored area,
there are variations in brightness, shadows, concealment by equipment, and the distortion
of the camera lens itself [17]. In this sense, several studies propose different methods of
detecting birds [12,16,18].

Several studies sought to track chickens in different rearing environments [6,18–22].
A common problem in tracking organisms is the loss of detection caused by traditional
methods, causing ID changes during tracking. Banerjee et al. [23] tested the Strong Simple
Online Real Time Tracking (Strong SORT) model on C. elegans worms and verified the
effectiveness of the Id maintenance method. Young-Chul et al. [24] describe the use of
a combination of association based on the proximity of Cartesian coordinates using the
Hungarian algorithm and an association based on visual characteristics to maintain the
trajectory of the detected object.

The BoT-SORT algorithm [25], which uses a Kalman filter and a Hungarian algorithm
and is associated with the track model in Yolo, presents itself as a new possibility to track
objects using a one-step detection method. We hypothesize that this tool can efficiently
maintain the identification of chickens in flocks, making it possible to extract important
information that may indicate states of agitation and the well-being of individuals and
the flock. Our system is different from others, such as Deep-Sort [26], which is state-of-
the-art in object tracking and leverages Deep Learning using a large residual network to
extract features related to the appearance of an object. BoT-SORT is used to extract object
movement variables such as speed, acceleration, and displacement, where these attributes
were used to maintain tracking and ignore detection failures of the bird and the behavior
we wanted to observe.

This study aimed to develop an intelligent system to automatically identify chickens
in flocks whose housing density represents a challenge for computer vision, track the
paths taken by each bird, and extract information such as distances and movement speeds
of individuals.

2. Materials and Methods
2.1. Experiment and Video Recording

This study utilised a 15-minute video of 20 chickens housed in a reduced-scale shed.
The camera was situated atop the aviary to capture bird images from an overhead per-
spective. The entire shed area was monitored by a POWER ® camera, model AP2688W,
equipped with an analog Charge-Coupled Device (CCD) image sensor. Eighty layers of
the Lohmann lineage were monitored from 10 June to 8 September 2020. The birds were
29 weeks old at the beginning of the experiment and were obtained from a commercial
farm. The chickens were randomly divided into four groups of 20 birds each. The feed
was administered daily in the amount of 110 g/bird. Access to water was free. Light
management was similar to that adopted by the original farm, with a photoperiod of 17 h
of light. Four models of small-scale warehouses were used, with usable dimensions of
140 cm × 300 cm and 150 cm in height, arranged in an east-west orientation. The birds
were housed on a 15 cm high wood chip bed. Each henhouse had two nest boxes
(40 cm × 40 cm × 40 cm) installed side by side, a pendulum feeder (Φ 30 cm), and
four nipple drinkers. The complete experiment was described by Fernandes et al. [16].

2.2. Dataset and Hardware Setup

From the set of all videos recorded in the experiment, 3623 frames were randomly
extracted, divided into 3123 for training, 259 for testing, and 241 for validation. The images
are 352 × 240 pixels, and the capture rate was 30 fps. In each frame, all the birds appearing
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in the image were marked, using the Label Studio (https://labelstud.io/, accessed on
5 June 2023) tool (Figure 1). The coordinates of the birds’ bounding boxes were saved
in text files and, together with the images, formed the dataset for generating the Yolo
model [27–31].
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The hardware configuration of the computer utilized in this study is detailed in Table 1.
The scripts for processing the videos were developed and executed using Python 3.9.16,
and the Pytorch 1.13.1 framework was employed for deep learning purposes.

Table 1. Workstation hardware configuration.

CPU CPU Intel® Core i7-10700k
CPU frequency 4.85 GHz

Cores/threads number 8/16
Memory RAM 64 GB

GPU Nvidia RTX 2070 Super, 8 GB (2.304 CUDA cores)

2.3. Detection Model—Yolo v8n

A Yolo v8n model was generated and trained using the specified dataset for 50 epochs.
Model performance was evaluated using the following metrics.

Precision =
True Positive

True Positive + False positive
(1)

Recall =
True Positive

True Positive + False Negative
(2)

mAP =
1
N ∑N

i=1 APi (3)

where APi is the average precision for each class and N is the number of classes. In this
study, mAP equals AP.

As described in Equation (4), the loss function was utilized to evaluate how the
algorithm modeled the data set and achieved the desired outcome.

Lossyolo = lbox + lcon f + lclass (4)

lbox = λcoord∑S2

i=0 ∑B
j=0 Iobj

i,j

[
(xi − x̂i)

2 + (yi − ŷi)
2
]

+λcoord∑S2

i=0 ∑B
j=0 Iobj

i,j

[(√
wi −

√
ŵi
)2

+

(√
hi −

√
ĥi

)2
] (5)

https://labelstud.io/
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lcon f = λnoobj∑S2

i=0 ∑B
j=0 Inoobj

i,j
(
Ci − Ĉl

)2 (6)

lclass = ∑S2

i=0 ∑B
j=0 Iobj

i,j ∑C∈classes(pi(c)− p̂i(c))
2 (7)

where lbox, lcon f , lclass are the losses of location, trust and class; λcoord increase weight for

loss in bounding box coordinates; Iobj
i,j = 1 if the chicken in box j and cell i match, Iobj

i,j = 0

where not; Inoobj
i,j it’s just the opposite; xi, yi, wi hi are the coordinates (x, y) of the location,

width and height of the ith bouding box; λnoobj reduces loss when detecting background; C
is the total number of classes, which in our model is equal to 1; p̂i(c) denotes the conditional
class probability for the class c in the cell i.

2.4. Tracking Algorithm

The BoT-SORT multi-object tracking model of Yolo v8n was utilized in this study,
which employs a state vector based on the Kalman filter and Hungarian algorithm [25].

The tracking model was elaborated through a map of stages for the execution of the
system, described in Figure 2.
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For the chicken tracking task, the default Kalman filter is based on a linear observa-
tion model and constant velocity movement, governed by the following linear stochastic
difference equations, available at Aharon et al. [25].

xk = Fkxk−1 + nk−1 (8)

zk = Hkxk + vk (9)
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where Fk is the transition matrix for the discrete-time of k− 1 for k; Hk is the matrix with
observed values; nk e vk are random variables that represent the process and measurement
noise, respectively.

The process noise covariance matrix Qk and the measurement noise covariance matrix
Rk can change at each step in time. The Kalman filter consists of predicting the current time
and updating over time according to the equations given below.

x̂k|k−1 = Fk x̂k−1|k−1 (10)

Pk|k−1 = FkPk−1|k−1FT
k + Qk

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + Rk

)−1
(11)

x̂k|k = x̂k|k−1 + Kk

(
zk − Hk x̂k|k−1

)
Pk|k = (I − Kk Hk)Pk|k−1

For each time step k, the Kalman filter estimates the state x̂k|k−1 and the covariance
matrix Pk|k−1, and later updates the later estimated state x̂k|k given the observation zk and
the covariance matrix Pk|k, calculated based on the Kalman gain Kk.

For the BoT-SORT model, the Kalman Filter state vector is described in Equation (12)
and the measurement vector in Equation (13), which is implied in the corrections of the
process noise covariance matrices (Qk) and measurement noise covariance (Rk) shown in
Equations (14) and (15), respectively [16].

xk =
[

xc(k), yc(k), w(k), h(k),
.

xc(k),
.

yc(k),
.

w(k),
.
h(k)

]
(12)

zk =
[
zxc(k), zyc(k), zw(k), zh(k)

]
(13)

Qk = diag
((

σpŵk−1|k−1

)2
,
(

σp ĥk−1|k−1

)2
,(

σpŵk−1|k−1

)2
,
(

σp ĥk−1|k−1

)2
,(

σpŵk−1|k−1

)2
,
(

σp ĥk−1|k−1

)2
,(

σpŵk−1|k−1

)2
,
(

σp ĥk−1|k−1

)2
)

(14)

Rk = diag
((

σmŵk|k−1

)2
,
(

σm ĥk|k−1

)2
)

, (15)

where xc and yc are the coordinates of the chicken’s bounding box; w and h are the width
and height of the bounding box k and k− 1 is the current and previous state; σp, σv and σm
are the standard deviations of the noise factors.

2.5. Measurement of Distance and Velocity of Travel

The distance covered was calculated from the coordinates of the centroids of each bird
between two frames using the Euclidean method.

D(Fi−Fi+1)
=

2
√
(xi+1 − xi)

2 + (yi+1 − yi)
2 (16)
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where D(Fi−Fi+1) is the distance between two points, the first being captured in the frame
Fi and the second in the frame Fi+1, xi and yi are the coordinates of the point in the frame
Fi and xi+1 and yi+1 are the coordinates of the point in the frame Fi+1.

Therefore, for every two frames, we calculate the distance traveled by a chicken cen-
troid and accumulate these values during the complete shooting. However, these values
are expressed in pixels and cannot be compared with other distances from other videos due
to differences in camera placement and image resolution. To make the measurements com-
parable, we convert pixels into centimeters using a ratio rule from a known measurement
of the scene.

Birds were identified as they appeared on the scene. When the bird left the scene,
the path data for that identification was closed so that the same bird, when it returned to
the scene, received a new identification. Thus, the distances covered were recorded for
each identification.

DId = ∑ D(Fi−Fi+1) (17)

where are Did is the distance traveled by a chicken with the identification Id by the number
of sequential frames that this identification was maintained.

The speed was calculated from the distances covered by the Ids, according to the
equation below.

SId =
DId
∆t

(18)

where SId is the speed of the bird identified by Id, DId is the distance traveled by the bird
Id and ∆t is the time between frames (in our work ∆t = 1/30 s).

2.6. Distinction of Running, Exploring, and Resting Behaviors

In the process of detecting chickens in the images, different values of displacements
in time were established to differentiate three movement states: resting, exploring, and
running. Initially, a noise filter was applied to eliminate erroneous identifications, along
with the definition of limits that demarcate the transitions from one behavior to another.

To classify the behaviors, a minimum frame count was defined to indicate the begin-
ning of a new behavior in chickens. Specifically, “Resting” requires a minimum of 5 frames,
“Exploring” requires four frames, and “Running” requires three frames. Furthermore, to
qualify for detection of one of these behaviors, a bird must maintain a minimum “lifetime”
of 18 frames. This implies that the identified bird, designated by its unique track_Id, must
be present in the video for at least 18 consecutive frames.

Using these data, the velocity parameter was employed to distinguish the behaviors.
This involved calculating the average instantaneous velocity over the last ten frames. For
the “Resting” behavior, a speed of 1 cm/frame or less was used as a limit, considering that
the resting chicken can move only the head or other body parts, leading to changes in the
position of the centroid, even if it remains still or without displacement.

For the “Exploring” behavior, velocities were defined that vary between more than
1 cm/s and less than 100 cm/s, determined in the analysis of the results. “Running”
behavior was classified when the velocity was greater than 100 cm/s. To increase accuracy
and reduce false positives when identifying “Running” behavior, an additional criterion
has been implemented. This criterion measured the distance between the initial and final
positions within a vector containing centroids of the last ten associated frames when the
reference velocity was exceeded, and we only considered when the distance measured
between the extremes was greater than 20 cm. In our tests, this condition differentiated the
“Running” behavior from other behaviors with fast movements and without significant
movement of the hen.

3. Results
3.1. Yolo Tracking Model

Figure 3 shows the mAP (mean average precision) and Loss plots of the generated
Yolo v8n model. The model achieved 98.5% accuracy. These plots depict the evolution of



AgriEngineering 2023, 5 1683

mAP and loss throughout training, offering a detailed view of the model’s performance in
chicken identification. The model demonstrated robustness, as the mAP curve remained
stable above 98% despite a decrease in the loss curve starting from epoch 15. This suggests
the model continues to identify chickens with high precision after an initial training phase.

AgriEngineering 2023, 5, FOR PEER REVIEW  7 
 

 

between the extremes was greater than 20 cm. In our tests, this condition differentiated 

the “Running” behavior from other behaviors with fast movements and without signifi-

cant movement of the hen. 

3. Results 

3.1. Yolo Tracking Model 

Figure 3 shows the mAP (mean average precision) and Loss plots of the generated 

Yolo v8n model. The model achieved 98.5% accuracy. These plots depict the evolution of 

mAP and loss throughout training, offering a detailed view of the model’s performance 

in chicken identification. The model demonstrated robustness, as the mAP curve re-

mained stable above 98% despite a decrease in the loss curve starting from epoch 15. This 

suggests the model continues to identify chickens with high precision after an initial train-

ing phase. 

 

Figure 3. Graph of the evolution of the mean average precision (mAP, black line) and loss (red line) 

during the Yolo v8n chicken detection model training. 

As illustrated in the images presented in Figure 4, our system was capable of detect-

ing chickens within the nest, albeit with less certainty. Moreover, certain areas, such as 

those behind the feeder, remained concealed. Additionally, the impact of camera lens dis-

tortion on image quality at the periphery also merits consideration. 

  

(a) (b) 

Figure 3. Graph of the evolution of the mean average precision (mAP, black line) and loss (red line)
during the Yolo v8n chicken detection model training.

As illustrated in the images presented in Figure 4, our system was capable of detecting
chickens within the nest, albeit with less certainty. Moreover, certain areas, such as those
behind the feeder, remained concealed. Additionally, the impact of camera lens distortion
on image quality at the periphery also merits consideration.
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Figure 4. The original frame (a) was processed with Yolo v8n (b) showing that the model’s confidence
value in detecting laying hens inside the nest and behind the feeder is low.

The quality of detection of chickens is fundamental for successful tracking. Chickens
that can be confused with background, or vice versa, generate centroid coordinates that
have the potential to interfere with the identification of birds by the Kaman filter. This is a
crucial point in the development of the tracking system.

3.2. Appearing and Hiding of Chickens

We had problems hiding the chickens in the scene during our tracking tests. In Figure 4,
we highlight two common places where the chicken identification is lost in the image due
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to obstruction of objects. In Figure 5, we show the example of the path of two chickens that
appeared and disappeared in the scene near the feeder and near the nest.
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Figure 5. Path of the birds with the marks of the beginning and end of the path (magenta and red,
respectively) and highlighting the moments when the bird walked faster (green and yellow dots) for
the hen-line (a) track_Id 5 that appeared and disappeared near the feeder and (b) track_Id 45 that
appeared and disappeared near the nest.

Markings in magenta and red correspond respectively to the first and last coordinates
of chicken detection in the video, that is, the beginning and end of the mapped path. Along
the way, the more yellow the marking, the faster the chicken travels. We can observe that
the places of emergence and disappearance of chickens in Figure 5 are close to the nest or
feeder. This was due to the already mentioned fact that we lost the identification of the
bird when it left the scene, entered the nest, or passed behind the feeder. This condition is
expected in the case of monitoring chickens in commercial farms, as the camera capture
area will be smaller than the area of the shed, and, therefore, there will be the appearance
and disappearance of chickens (same individuals or not) along the edges of the image.
Thus, we decided to work with this feature, allowing our methodology to be applied in
commercial breeding conditions in the future.

3.3. Direction of Displacement and Minimum Displacement

In the path graphs, we observe that there are times when the bird walks faster, and in
others, there is minimal movement, suggesting that the bird is standing still, expressing
some natural behavior.

As can be seen in Figure 6, our processing considered small lateral displacements,
accumulating as distances covered by the birds. However, situations like the one illustrated
can refer to a bird standing still, resting, or expressing some natural behavior. Therefore,
our code considers distances greater than 1 cm/frame as displacement of the bird. The
variation in the displacement direction also seems to contribute to the identification of the
hen’s state of movement, so we also started to observe this information.
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Figure 6. Arrow chart of chicken track_id 33 (a), highlighting a moment when the bird was still (b).
The red and magenta dots correspond, respectively, to the beginning and end of tracking the
monitored chicken.

3.4. Measures to Determine the State of Movement

Once the correction was made, we looked for metrics indicating when a bird was
standing still, walking, or running. Analyzing the velocity graph in Figure 7, we observed
that the velocity of this displacement varied at values below 100 cm/s when the bird was
walking and peaked much above this value when the bird ran.
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Figure 7. Graph of variation of the average speed of chicken track_Id 33 every ten frames, where the
peak speed corresponds to this chicken running.

Figure 7 presents a graph depicting the variation in velocity during the time a bird was
tracked by our model. This particular bird was selected for analysis as it exhibited all three
behaviors during the tracking period. At the onset of tracking, a spike in speed is observed,
confirmed in the original video as indicative of the running behavior. This pattern was also
observed in other birds, and a velocity threshold of 100 cm/s was established for classifying
running behavior in our code. Resting behavior is characterized by the bird remaining
completely stationary, disregarding any minor displacements (<1 cm/frame). Consequently,
any movement detected with a velocity between 0 and 100 cm/s was classified as exploring
behavior. To minimize any transitional effects between behaviors, the average speed of the
last ten frames (0.33 s) was considered.
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3.5. Movement Analysis

Our surveillance and tracking system can identify a “new chicken” instantly. As
previously reported, there are covered regions in our footage, and we found that there
are chickens that remain with the same identification for a very short time. There are also
those that, during the nesting behavior, even if they maintain the identification, remain
still during the entire vigil. Our objective is to develop an intelligent system capable
of automatically identifying chickens in flocks whose rearing density. In this sense, we
focused our attention on chickens that walked more than 300 cm and were monitored by
our system for more than 200 s without losing identification, and we made the graphs
shown in Figure 8.
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Figure 8. Graphs of frequency of occurrences, total observation time, and total distance covered for
resting, exploring, and running behaviors for birds that walked more than 300 cm and were watched
for more than 200 s without losing identification.

The chicken with track_Id = 148 caught our attention, which had a greater displace-
ment per run than the other birds. Analyzing the trajectory graph, we noticed that in the
region where the chicken supposedly ran, the direction vectors were misaligned. Unlike
what happened with the chicken track_Id = 33, during the peak velocity, the direction
vectors were aligned. We searched the video for the exact frames of each chicken for these
occurrences and verified that chicken 33 ran at that moment and chicken 148 flapped its
wings. Figure 9 shows the graphs and frames, highlighting the observed differences.

As observed in Figure 9, the peaks in speed are highly similar for distinct behaviors,
indicating that this measure alone is insufficient for distinguishing between these behaviors.
Based on these observations, the variation in the direction of movement of the birds was
analyzed and compared with their speed. The tangent angle of the chicken’s displacement
vector for each analyzed frame indicates the intensity of the change of direction of the
chicken’s path. It was observed that when this route change is abrupt and associated with
high speed, there is a high possibility that the bird is opening its wings. When the speed is
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high and there is no change in route, it is assumed that the chicken is running. When the
route changes but the speed is considered normal, it is assumed that the bird has simply
changed direction and continued walking.
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Figure 9. Graphs of paths, variation in displacement average speed, and frame of the original video
highlighting the differences in measurements observed for the chicken (a) track_Id = 148, which
expresses the behavior of flapping wings, and (b) track_Id = 33, which is running. The circles mark the
data in the graphs corresponding to the chickens at a given moment in the video (images) expressing
different behaviors.

For the running chicken, we used the measurement of the distance between the cen-
troids of the extreme points during the last ten frames. This approach allows the detection
of the directionality of the bird’s movement. Consideration of speed is of fundamental
importance, as it constitutes a discriminating factor between the “Exploring” and “Run-
ning” states. In Figure 10, during flapping, the chicken identification track_Id = 79 is
segregated into two identifications (track_Id = 79 and track_Id = 97). After the expression
of the behavior, identification 97 ceases to exist. During flapping, there is a rapid change
in the positioning of the centroid of the original identification (track_Id = 79), resulting in
a speed that falls within the predefined limits for the “Running” and “Exploring” states.
The generation of new identifications in different bird regions during wing flapping can
also cause deviations in the centroids, mimicking the presence of another bird. The finding
of a distance between the centroids of these identifications above 20 cm characterizes the
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“Running” behavior. To mitigate the influence of spurious identifications, we adopted
a rule requiring a minimum number of 18 frames (called “lifetime”) in which the bird
remains in the video. The limit of 18 frames was chosen based on observations since birds
frequently performed movements that caused abrupt changes in the image centroid. This
strategy aims to reduce confusion between genuine behaviors and artifactual occurrences.
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Figure 10. Capture of frames showing flapping wings. (a) chicken 79 was divided into two birds in
identification. (b) chicken 97 is ceasing to exist.

We implemented these rules in our code (pseudo-code in Appendix A). The processed
video that classifies bird movement with all these metric considerations is shown in the
Supplementary Material.

In Table 2, we show a summary of the time spent by the birds resting, exploring, and
running, which can be used to analyze the state of welfare or health of the birds in time
intervals of interest.

Table 2. Summary of occurrences and times spent by birds running, exploring, and resting, disre-
garding Ids with a minimum lifetime.

Behavior Class Number of
Occurrences (N)

Overall Time (T)
Seconds

Average Time
(T/N)Seconds

Resting 808 13,537 16.8
Exploring 792 1490 1.9
Running 7 9 1.3

Table 2 presents a summary of data obtained from the entire 15-minute video. This
summary can be generated for any desired time interval. It was observed that the birds
spend most of their time stationary, resting or engaging in other natural behaviors that do
not involve movement. The majority of the route traveled by the bird is spent exploring. A
few instances of running behavior were observed, and it was verified that this behavior is
expressed for very short periods.

We found no reference values for these behaviors in the literature. However, we
hypothesize that by extracting precise measurements of these behaviors, it will be possible
to establish reference values for each lineage, allowing the welfare of chickens submitted to
different housing environments to be compared.

4. Discussion

Proposing automatic, accurate, and non-invasive approaches to monitoring animals in
production is necessary to improve the efficiency and welfare of animals in housing [32]. In
this sense, several studies have used convolutional neural networks (CNN) to detect and
classify chicken behavior. Neethirajan [19] and Yang et al. [20] demonstrated the feasibility
of using Yolo to detect chickens in several videos, suggesting applications such as counting
and tracking. Yang et al. [20] classified six behaviors using Yolo-v5 with accuracies ranging
from 72.3% to 95.3%. Li et al. [33] developed a computer vision system to detect chickens
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in feeders and drinkers. Nasiri et al. [32] estimated feeding time for broilers using Yolo-v3
to detect when heads were within the feeder area.

Individual and group behavior are important indicators of the welfare and health of
birds [34–36]. Our work provides a breakthrough for tracking chickens, demonstrating
that the Kalman filter and the BoT-SORT algorithm efficiently maintain the identification
of birds in our videos, where the density and overlapping of bodies were a challenge for
computer vision.

The BoT-SORT algorithm is highly effective in maintaining accurate identification of
chickens throughout the tracking process. With our tracking algorithm, we could carry out
a detailed analysis of the distances covered and the movement speeds of the chickens. This
ability to identify and categorize movement behaviors makes it possible to analyze bird
behavior in different environmental conditions.

Measuring the distances covered individually by the hens can indicate the activ-
ity level of the flock of individuals and can also be used to assess the gait score [37].
Campbell et al. [2] found that aviary resources were used differently by individual hens
and that understanding these usage patterns by both individuals and the group will allow
the optimization of cageless housing system designs. Jaihumi et al. [13] developed a Yolo
v5 model to assess the mobility of broilers, and Fernández et al. [6] found an association
between activity level and patterns of aviary occupancy with hock and leg injuries in
broilers using computer vision.

By observing movement patterns, we could detect significant differences between
individuals in the monitored group of chickens. These individual distinctions in move-
ments are necessary to assess bird welfare and health. For example, we can identify birds
exhibiting anomalous behaviors indicative of health problems or discomfort, allowing for
early intervention to ensure appropriate treatment.

Collins [38] observed that some chickens walked greater distances than others. The
motivation for moving laying hens may differ from that of broilers. However, in our
results, we also observed that there are hens that moved more and at greater speeds
than others. Taylor et al. [39] found a relationship between chickens that covered greater
distances and increased welfare, and these animals had lower weight, better gait scores,
and lower corticosterone responses. Considering chickens under the same rearing model,
the observed differences in movement measured by our tracking system may indicate more
adapted individuals.

The movement measurements obtained and the tracking algorithm developed in this
study provide a solid basis for future investigations. This model can assess the welfare and
health of chickens and classify and understand other natural behaviors, thus contributing
to significant advances in poultry farming and animal welfare research. Such information is
essential to improve poultry farming practices, ensuring a healthier and more comfortable
environment for these animals.

Limitations and Suggestions for Future Studies

Our tracking method is limited in regions where the camera is obstructed, such
as behind equipment, edges of images, and inside nests. Obstruction of the image by
equipment was also observed in other studies [21]. In our tests, we preferred not to deal
with this problem because, in commercial situations, there will be regions where the bird
will leave the camera’s field of view. We understand it is better to use strategies to analyze
the data recorded this way, as already discussed in other works.

Our footage was low resolution and heavily distorted around the edges. The use of
high-resolution cameras with less edge distortion can improve the detection accuracy, the
conversion scale from pixels to centimeters, and, consequently, the measurements of the
distances covered by the birds. Addressing these distortions can give greater accuracy
in displacement measurements. More complex images are subject to greater chances
of computational model confusion [20]. In this field, it is still necessary for work to
demonstrate the stability of a flock tracking system and longer filming times.
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We adopted criteria to reduce confusion in classifying the running behavior with other
natural behaviors. We raised the hypothesis that these criteria can be better worked to
contribute to the classification of natural behaviors. Dawkins [40] and Kashima et al. [41]
proposed that behavior can be used to estimate the need and health of animals, highlighting
that behavior analysis should have a more prominent role when used with new technologies.
Thus, other studies that seek to classify individual or group behaviors autonomously are
necessary and will constitute the future of industrial poultry for monitoring the welfare
and health of chickens.

5. Conclusions

Our model obtained a mean average precision of 98.5% in detecting chickens, and the
BoT-SORT algorithm was efficient in maintaining the identification of these birds during
tracking. From the tracking, it was possible to analyze the distances covered and the speeds
of the chickens, which made it possible to classify their movement behaviors. Movement
speeds above 100 cm/s of chickens with a lifetime of more than 18 frames were sufficient to
differentiate running behavior from exploring behavior. In this study, the tests showed that
the chickens spent approximately 85% of their time resting, 10% of their time exploring
the environment, and 6% running. Our algorithm and the measures extracted to classify
chicken movement contribute to the assessment of chicken welfare and health.

Supplementary Materials: The video processed with the proposed algorithm can be downloaded at:
https://www.mdpi.com/article/10.3390/agriengineering5040104/s1.
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Appendix A

Algorithm: Chicken tracking code and movement classification

Input: Video or stream of video
Output: Video with detections and file of data about this experiment
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