
Citation: Barboza, T.O.C.;

Ardigueri, M.; Souza, G.F.C.;

Ferraz, M.A.J.; Gaudencio, J.R.F.;

Santos, A.F.d. Performance of

Vegetation Indices to Estimate Green

Biomass Accumulation in Common

Bean. AgriEngineering 2023, 5,

840–854. https://doi.org/10.3390/

agriengineering5020052

Academic Editor:

Mathew G. Pelletier

Received: 6 March 2023

Revised: 1 May 2023

Accepted: 3 May 2023

Published: 4 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

AgriEngineering

Article

Performance of Vegetation Indices to Estimate Green Biomass
Accumulation in Common Bean
Thiago Orlando Costa Barboza * , Matheus Ardigueri , Guillerme Fernandes Castro Souza,
Marcelo Araújo Junqueira Ferraz, Josias Reis Flausino Gaudencio and Adão Felipe dos Santos

Department of Agriculture, School of Agricultural Sciences of Lavras, Federal University of Lavras (UFLA),
Lavras 37200-900, Brazil; adao.felipe@ufla.br (A.F.d.S.)
* Correspondence: thiago.barboza@estudante.ufla.br

Abstract: Remote sensing technology applied to agricultural crops has emerged as an efficient tool to
speed up the data acquisition process in decision-making. In this study, we aimed to evaluate the
performance of the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference
Red Edge (NDRE) in estimating biomass accumulation in common bean crops. The research was
conducted at the Federal University of Lavras, where the ANFC 9 cultivar was used in an area of
approximately seven hectares, in a second crop, in 2022. A total of 31 georeferenced points spaced at
50 m were chosen to evaluate height, width and green biomass, with collections on days 15, 27, 36, 58,
62 and 76 of the crop cycle. The images used in the study were obtained from the PlanetScope CubeSat
satellite, with a spatial resolution of 3 m. The data obtained were subjected to a Pearson correlation (R)
test and multiple linear regression analysis. The green biomass variable was significantly correlated
with plant height and width. The NDVI performed better than the NDRE, with higher values
observed at 62 Days After Sowing (DAS). The model that integrates the parameters of height, width
and NDVI was the one that presented the best estimate for green biomass in the common bean crop.
The M1 model showed the best performance to estimate green biomass during the initial stage of the
crop, at 15, 27 and 36 DAS (R2 = 0.93). These results suggest that remote sensing technology can be
effectively applied to assess biomass accumulation in common bean crops and provide accurate data
for decision-makers.
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1. Introduction

Common bean (Phaseolus vulgaros L.) is an important component of the Brazilian
diet due to its high protein value [1]. Its per capita consumption in natura is
16 kg:person−1 year−1 [2]. Given its economic and social importance, as well as the high
variability in productivity across the national territory, it is relevant to develop techniques
and methods that enable the monitoring of plant morphological changes in bean crops.

Biomass production evaluations are important because these variables are directly
correlated with crop gain productivity [3]. However, in many agricultural crops, biomass
quantification follows the direct sampling protocol, which requires representative sample
areas and is highly costly.

In this scenario, the development of technologies that aid in obtaining information in
a non-destructive and sustainable manner is important [4]. Remote sensing is a technology
that allows monitoring the crop cycles, acquiring information related to physical and
biological characteristics of the crop [5]. Several techniques seek to establish relationships
between the radiation absorbed by the crop canopy and the biophysical attributes. In
healthy plants, adequately supplied with water and nutrients, there is a positive linear
relationship between the amount of photosynthetically absorbed radiation by the canopy
and biomass production [6].
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Vegetation indices (VI) have been widely used due to their ability to predict and evalu-
ate characteristics of vegetation cover, such as leaf area estimation, biomass production, and
productivity [7–10]. Such information can be a valuable tool for producers and research
institutions, as it is useful in decision-making, crop management, harvest planning, crop
yield forecasting, information gathering and monitoring.

These VIs enhance the spectral interaction of plants and correlate with biophysical
parameters of vegetation, such as canopy biomass. According to [11], the performance of
vegetation indices, including the Normalized Difference Vegetation Index (NDVI), was
evaluated in wheat crops by correlating them with biophysical parameters, and NDVI
showed better correspondence with biomass. It was also used for estimating total eucalyp-
tus biomass at local and regional scales through the NDVI, Soil-Adjusted Vegetation Index
(SAVI), Simple Ratio (SR) and Enhanced Vegetation Index (EVI) [12]. Furthermore, there
is a strong correlation between vegetation biomass and data obtained by orbital remote
sensing [6].

Biomass is an inherent characteristic of the growth and development process of crops,
which correlates with VI. Many authors used VI to estimate the biomass. In pasture, seven
VI, used to estimate the biomass, and the NDVI showed a good relationship described
by the accuracy and precision of the models [13], the soybean biomass estimate showed a
strong correlation with the VI in Brazil [14], and in corn with the use of VI it was possible
to estimate the biomass 77 days after sowing of the irrigated plants [15].

There are few studies that used vegetation indices to estimate the biomass for the
common bean. With these VI, it is possible to perform temporal and spatial monitoring
of the development of the bean crop, estimate canopy biomass and make future harvest
predictions [3]. Thus, this article will help open new ways to use VI to improve the
management of crops, help farmers in increasing production and promote the production
of this plant.

Some studies involving the evaluation of biomass production of bean cultivar, as well
as the use of remote sensing techniques, become important in assessing the potential of
these methods for biomass estimation. Thus, the objective was to evaluate the performance
of NDVI and the Normalized Difference Red-Edge index (NDRE) in estimating green
biomass of the bean crop through vegetation indices. The remainder of this paper is
divided as follows: Section 2 describes the project development; Section 3 presents the
results obtained with the research, the importance of using the VI and its correlation with
the biomass of common bean plants; finally, conclusions are presented Section 4.

2. Materials and Methods

The study was developed in a commercial area located in the state of Minas Gerais, in
the city of Ijaci. The property belongs to the Federal University of Lavras (UFLA), known
as the Scientific and Technology development center—Fazenda Muquém. The climate in
the municipality is Cwa [16], temperate and rainy, with dry winters and rainy summers,
and the temperatures of the warmest month are greater than 22 ◦C [17].

In the study area, on 18 February 2022 (second harvest), we carried out the sowing of
a short-cycle cultivar of carioca beans (ANFC 9), with a growth period of 88 to 90 days and
upright stature. We adopted a spacing of 0.6 m between rows and 250,000 plants sowed
per hectare, and a seed fertilization of 250 kg/ha of NPK 08-28-16.

Top-dress fertilizations with urea were performed, and sprays were applied to control
pests and diseases in the crop area. In order to evaluate the green biomass of the crop during
different dates, 31 points spaced at 50 m apart were distributed in an area of approximately
7 ha with an irrigated pivot, and the georeferencing of each point was performed with a
GPSMAP 60 CSX Garmin® device, as shown in Figure 1.
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Figure 1. Study location map.

2.1. Green Biomass, Plant Height and Plant Width

Six collections were made during the crop development cycle, starting 15 Days After
Sowing (DAS) at the V4 phenological stages of the crop, and at 27, 36, 58, 62 and 76 DAS.
For the green biomass evaluation, 0.5 × 0.5 m frames were used to collect plants near
georeferenced points.

Subsequently, plants were placed in identified bags, taken to the agriculture depart-
ment of UFLA for biomass weighting and then inserted into a forced-air circulation oven
for 72 h or until reaching constant mass at 65 ◦C temperature.

Using a graduated tape measure, measurements were taken on three plants from each
sampling point. Plant height was measured from the base of the plant to the last fully
expanded leaf. For plant width, the distance was measured between the leaves at opposite
ends of the plant.

2.2. Satellite Images

The satellite used to collect spectral images was the PlanetScope CubeSat, consisting
of 180 nanosatellites (0.10 × 0.10 × 0.30 m) weighing approximately 4 kg each. CubeSat
has a one-day temporal resolution, 3 m spatial resolution and a spectral resolution obtained
by the PSB.SD sensor with eight bands (Table A1). PlanetScope products have surface
reflectance corrections, minimizing the effects caused by the atmosphere. The image
correction is performed using correction models such as 6SV2.1 [18], which corrects the
top of the atmosphere (TOA) to the bottom of the atmosphere (BOA). However, values
are provided as GeoTIFF files on a 10,000 scale, requiring division by this value to obtain
reflectance values between 0 and 1. Images were acquired according to the days when
plant characteristics were evaluated in the field. When downloading the images a range
of 2 days was used to obtain the images near to the collection dates in the field. All used
images (five images) were downloaded without cloud cover (0%) in the fields.

2.3. Vegetation Indices

For the estimation of plant green biomass, two vegetation indices were calculated, the
Normalized Difference Vegetation Index (NDVI) [19] (Equation (1)), which uses the near-
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infrared (NIR) and red (RED) bands, and the Normalized Difference Red Edge (NDRE) [20]
(Equation (2)), using the wavelengths of NIR and red edge.

The chosen vegetation indices relate to crop biomass, such as in the estimation of
cynodont grass biomass [21], maize [22], and soybean breeding [23]. The red range is
related to chlorophyll, and the infrared range is related to water content in mesophyll
cells of the leaves. Therefore, the lower the reflectance in the red range, and the higher
reflectance in the NIR range, the lower the stresses that the plants are undergoing.

NDVI =
NIR − RED
NIR + RED

(1)

where NDVI: Normalized Difference Vegetation Index; NIR: Near-Infrared; RED: red.

NDRE =
NIR − RED EDGE
NIR + RED EDGE

(2)

where NDRE: Normalized Difference of Red-Edge; NIR: Near Infrared.
The vegetation index calculations were performed within the QGIS 3.26.1 free software,

using the raster calculator tool for band combination and index calculation. The extraction
of vegetation index values occurred by creating a Voronoi polygon in each point (31) in
sequence, and the Voronoi polygon layer was inserted in the tool buffer to create a negative
buffer of 2 m to avoid overlapping areas. In total, for each sample point, 31 voronoi
polygons with negative buffers were obtained. With the Voronoi polygons and negative
buffers created, the zonal statistics tool was used to extract the reflectance values of the
vegetation indices. The zonal statistic is a tool in the toolbox of QGIS that is used with
input from the Voronoi polygon created with the negative buffer and by extracting the
vegetation index (NDVI or NDRE). The Voronoi polygon informs of the pixels that should
be extracted by the zonal statistics tool in the layer vegetation index (NDVI or NDRE).
Using the Voronoi polygons, the tool calculates the maximum, minimum, sum and mean
values provided by the vegetation index layer. However, to create the models the value
used was the mean obtained in each sample point.

2.4. Multiple Linear Regression Analyses

The data (n = 186) were initially subjected to descriptive analysis: maximum and
minimum values, variance, coefficient of variation, standard deviation, and mean, to
visualize the behavior of the data and identify possible outliers. In addition, the parameters
of width, heigh, NDVI, NDRE, and green biomass were analyzed by Pearson correlation,
selecting those with the best statistical significance (p < 0.05) and highest correlation values
above 0.6.

After performing the correlation analysis, the data were subjected to multiple linear
regression analysis. Multiple linear regression is a technique for approximating functions,
with more than one input in the model as an independent variable, and accounting for
random errors, which are possible variations that occur outside of the inserted variables [24]
(Equation (3)). In this case, fresh biomass values were used as the dependent variable, and
the width, height, NDVI and NDRE parameters were used as independent variables.

To create the models, first, each parameter of the input was select according to the
configuration of the models presented in Table 1. After selecting all parameters (axis X)
and the green biomass values (axis Y) in the Excel software, the multiple linear regression
analysis and the estimated values were obtained. The analysis was divided into two parts,
a first analysis with all data (15, 27, 36, 58, 62 and 76) and a second analysis the data of 15, 27
and 36 DAS, representing the time frame in which the plants have not yet completely closed
the canopy. At the end of the analysis, the graph was plotted in terms of green biomass
estimated (X) and green biomass observed (Y) in the field. The values of R2 and R were
obtained through multiple linear regression analysis and RMSE was calculate afterwards.

Y = β0 + β1X1 + β2X2 + β3X3 + . . . βnXn + ε. (3)



AgriEngineering 2023, 5 844

where Y represents the estimated value of fresh biomass; X1, X2, X3 and Xn represent
independent variables; β1, β2, β3, β4 and βn are the regression coefficients that will be
estimated; and ε is the assumed random error with a normal distribution with mean zero
and variance. The evaluation of the models occurred through the values of the coefficient
of determination (R2) (Equation (4)), correlation coefficient (r) (Equation (5)) and root mean
square error (RMSE) (Equation (6)).

R2 =
∑N

i=l (Yesti − Y)2

(Yobsi − Y)2 (4)

where Yest is the estimated value and Yobs is the.

R =
∑n

i=l(xi − x)
(

yi − y
)

√
[∑n

i=l (xi − x)2(yi − y)2 (5)

where R is the correlation coefficient, xi and yi are the values of the variables x and y, and
x and y are the mean values of the variables X and Y.

RMSE =

√
∑n

i=1(yobs − yest)
2

n
(6)

where RMSE is the root mean square error, yobs is the observed value, yest is the value
estimated by the model and n is the amount of data. The analysis was carried out using
Statistica 7 software, together with Excel software, using the data analysis tool, making it
possible to plot graphs and analyze data (Figure 2).

Table 1. Variable correlation of green biomass and bean crops.

Variable By Variable Correlation () Significance

Green biomass Height (cm) 0.7230 <0.001

Green biomass Width (cm) 0.7184 <0.001

Green biomass NDVI 0.7035 <0.001

Green biomass NDRE 0.6155 <0.001
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3. Results and Discussion

The results of the descriptive measures for all variables are presented in Table A2,
where a marked difference between coefficients of variation can be observed. The dataset of
biometric parameters, as well as the independent variables, presents a wide range, justified
by the sampling distributed throughout the crop development cycle. The common bean
plant initially accumulated biomass slowly, with significant potential occurring around
70 DAE [25].

The growth of the stem, lateral branch emission and new leaf production promote
biomass accumulation in the plant during the vegetative development stage, persisting
throughout the reproductive phase in late-cycle cultivars. In the earlier cultivars, after stage
R5, the increase in dry matter occurs mainly due to the production of pods and grains [26].
Plant height and leaf width can be cited as linear measurements that provide information
on plant development and are used to estimate biomass.

The variability of reflectance indicated by vegetation indices can be attributed to the
dynamics of the crop’s phenological stages, due to the increase in leaf area with vegetative
and reproductive development of the crop. This finding was also reported by [3], with
higher reflectance values detected from 50 DAE onwards. This is similar the results of [27],
who demonstrated that biomass can be estimated in a non-destructive and low-cost manner
using orbital images. The correlation between the explanatory variables is given in Table 1.

A strong correlation between two variables can be considered when the correlation
index values are between 0.7 and 1.0, according to [28]. Thus, it can be observed that the
correlations between all variables are high and positive, meaning that there is a high degree
of correlation between the explanatory variables.

Green biomass was significantly correlated with plant height and width variables,
with correlation coefficients of r = 0.723 and r = 0.718, respectively, as they are related to
plant development. The correlation was also significant for the NDVI and NDRE indices,
with the NDVI presenting the best correlation coefficient (r = 0.704) and the NDRE with
lowest value (r = 0.616).

The two vegetation indices (NDVI and NDRE) are described to be used to measure the
biomass of plants. The NDVI uses the infrared band in the equation and the NDRE uses the
red-edge in the equation. The region of responses to chlorophyll and carotenoids is relevant
for the study of morphological parameters of the plant, present in wavelengths from 600 to
720 nm, while in the vicinity of 700 to 885 nm is an interesting region for the assessment of
green biomass in various crops [29]. This difference in the bands can be related with the
sensitivity of the indices in measuring the growth and biomass of the common bean plants.

Therefore, the reflectance response observed within the red edge region and infrared
wavelengths have been successfully applied in many researches, such as for the prediction
of biomass and leaf nitrogen content in sugarcane [30], high-yield biomass estimation using
multispectral imaging in rice [31] and in maize [32], the prediction of dry biomass in straw-
berry [33] and the estimation of bean production and biomass based on RGB images [34].
NDVI has a major sensitivity to NDRE due to the plant growth and increase in biomass,
which is observed in the Pearson correlation in the Table 1. Due to the sensitivity of this
index, good models to predict the yield, estimated chlorophyll a, b and total, and biomass
of the other crops with spring wheat can be built with high accuracy and precision [35–37].

Four multiple linear regression models were selected. The green biomass variable
was used as a dependent variable in all models. Model 1 (M1) was based on the variables
height, width, and NDVI. Height, width, and NDRE were used in Model 2 (M2), NDVI and
NDRE were used in Model 3 (M3) and height and width in Model 4 (M4).

As shown in Table 2, there was a proximity between all models, with correlation
coefficients ranging from 0.73 to 0.75 and R2 ranging from 0.53 to 0.56. The lowest coefficient
of determination was observed in M3, which had a higher RMSE (=5.82) but was still
classified as excellent, at lower than 10% [38].
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Table 2. Values of the coefficient of determination (R2), correlation (r) and standard error for the
multiple linear regression models.

Models Coefficient of
Correlation (r)

Coefficient of
Determination

(R2)
Standard Error RMSE

M1 0.75 0.56 165.37 1.38
M2 0.74 0.54 168.73 1.33
M3 0.73 0.53 170.38 5.82
M4 0.74 0.54 168.27 2.63

M1 * 0.96 0.93 25.16 24.58
M2 * 0.96 0.92 25.43 24.85
M3 * 0.90 0.81 40.61 39.95
M4 * 0.96 0.92 25.91 25.48

* Models calculated for n = 93 at 15, 27 and 36 days after sowing.

The lowest values observed in M3 can be related to the spatial resolution of the satellite
and the number of model parameters. Planet Scope satellites have a spatial resolution of
3 × 3 m, so the variation of biomass must be bigger than that for the satellite capture. When
the number of model parameters increases, the models show an improvement, which is
observed in M1 and M2.

Figures 3 and 4 show the relationships between observed biomass and biomass
estimated from selected models. It can be observed that there is a large dispersion of
points around the fitted model in all models (Figure 3) and a small dispersion of points
in Figure 4, where the data of R2 and RMSE are the best. The coefficient of determination
(R2) obtained the best results for the model when comparing the values of plant height
and width, demonstrating the potential to combine both biometric variables of the crop.
The other multiple linear regression models presented values very close to M1, with M2
and M4 having the same R2 values and M3 having the lowest value, resulting in a higher
error as well (Table 3), except for the data before the plants closed the canopy, where the
precision (R2) was improved and accuracy (RMSE) was decreased.
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Table 3. Parameters used for estimating green biomass and their respective values.

Combinations Coefficients Standard Error p-Value

M4
Intersection −187.7240 48.1623 0.0001
Height (cm) 6.0684 1.7652 0.0007
Width (cm) 6.8111 2.2474 0.0028

M3
Intersection −533.6658 62.7488 0.0000

NDVI 2023.9552 273.3690 0.0000
NDRE −11,198.3932 372.1840 0.0015

M2

Intersection −188.0222 68.8877 0.0070
Height (cm) 6.0654 1.8376 0.0012
Width (cm) 6.8059 2.4114 0.0053

NDRE 1.2650 208.4227 0.9952

M1

Intersection −339.2907 72.9043 0.0000
Height (cm) 4.8573 1.7904 0.0073
Width (cm) 3.8309 2.4631 0.1216

NDVI 450.1601 164.6879 0.0069

M4 *
Intersection −91.9320 11.6563 0.0000
Height (cm) 4.7469 0.5348 0.0000
Width (cm) 3.3760 0.6529 0.0000

M3 *
Intersection −234.003 22.6591 0.0000

NDVI −709.5394 123.8172 0.0000
NDRE 1830.1530 164.3382 0.0000
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Table 3. Cont.

Combinations Coefficients Standard Error p-Value

M2 *

Intersection −121.931 18.3248 0.0000
Height (cm) 4.3558 0.5571 0.00005
Width (cm) 2.8478 0.6887 0.0000

NDRE 130.1802 62.1121 0.0000

M1 *

Intersection −119.713 15.7407 0.0000
Height (cm) 4.7993 0.5197 0.0000
Width (cm) 2.5261 0.7169 0.0000

NDVI 89.8283 35.3702 0.0000
* Models calculated for n = 93 at 15, 27 and 36 days after sowing.

The NDVI formula includes spectral bands of near-infrared and red. The red band,
ranging from 690 to 720 nanometers, is the range that predominates the absorption by
chlorophyll, while good relationships are found in the near-infrared wavelengths ranging
from 760 to 800 nanometers, indicating high reflectance [35]. In beans, a reflectance peak
starts near 490 nanometers and increases until 550 nanometers, then drops sharply and
records lower reflectance between 665 and 680 nanometers [39].

The spectral band provided by satellites and used in the calculation of the NDVI vege-
tation index captures a range of 650 to 680 nanometers, coinciding with the range of greater
absorption by chlorophyll and consequently with low reflectance in the range, indicating
that the plant is carrying out photosynthesis and increasing its biomass. Conversely, higher
reflectance would be observed in this range if the plant is experiencing biotic or abiotic
stress. The NDRE, another vegetation index used, differs from the NDVI in terms of the
red-edge range used in its calculation. The band provided by satellites varies from 697 to
713 nanometers, moving away from the range of 665 to 680 nanometers [40], which shows
greater detection of chlorophyll, which is reflected in the adjustment of the models.

When comparing the two vegetation indices, the created models showed negative
values, with higher RMSE and lower R2 values. Both vegetation indices were correlated
with biomass and sensitive to soil; however, in the early stages of the crop, low reflectance
values were found, which for the soil can vary from 0.08 to 0.16 nanometers [41]. Thus, the
low values of vegetation indices resulting from the initial growth of plants and low soil
coverage negatively affected the estimated values by the model. Similar results were seen
by [42] in the initial stages, then observing senescence in the more advanced stages. The
authors of [43] reported that depending on the viewing angle and capture time of images,
as well as vegetation cover below 22%, vegetation index values were affected by the soil
type of the area, ranging from 0.29 to 0.42.

In Figure 5, the values of the normalized difference vegetation index and red-edge
normalized difference vegetation index are presented. It is possible to observe that as
the days after sowing passed, the vegetation index values increased, demonstrating the
increase in green biomass of the crop. Near 62 Days After Sowing (DAS), the highest values
of the vegetation indices were found, and from then on, there was a decrease in values,
showing the plant senescence process and subsequent harvest.

The NDVI values ranged from 0.28 to 0.91, with a sharp increase after the transition
between the vegetative and reproductive phases, corresponding to high photosynthetic
activity. Similar results were found by [44], where the highest indices were related to
the highest yields in bean crops. NDVI is a widely used index for analyzing vegetation
cover that is employed in agricultural crops for monitoring the vegetable cycle [45], crop
classification [46], and crop yield prediction [47].
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Figure 5. The behavior of vegetation indices and biomass in relation to days after sowing.

The highest NDVI value was 0.91, observed at around 62 Days After Sowing (DAS). At
this stage of development, the plant concentrates resources on pod emission and beginning
of grain filling. Until this stage, NDVI increased throughout the cycle. After the peak, the
values decreased due to crop senescence, returning to values similar to those found in
the initial phase. Ref. [48] reported similar results, with a peak NDVI of 0.80 (R2 = 0.959)
occurring at the R7 stage, demonstrating the potential of the index for monitoring the
phenological phases of beans.

The NDRE values varied from 0.19 to 0.69, with a reflectance pattern similar to that
observed in the NDVI index throughout the cycle. The lowest NDRE value can be attributed
to the reflectance of the RE band, which is less sensitive to chlorophyll content under the
canopy [4]. The highest values for the index were also observed at around 62 DAS. Figure 6
shows the dynamics of vegetation indices over the course of crop growth and development,
notably presenting at 62 DAS the highest reflectance values for both vegetation indices and
demonstrating the highest green tone in the graphs.
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The biomass values rapidly increased from 30 to 60 DAS, reaching a peak at 60 DAS,
similar to the vegetation indices. The highest leaf area index of the bean crop was observed
at around 55 DAS, attributed to the R6 phenological stage, which is the flowering stage
of the crop, resulting in low reflectance in the red band and high reflectance in the near-
infrared band. At this stage, the plants reach their maximum height [42].

However, this increase in biomass is not always detected by vegetation indices, espe-
cially the NDVI, due to saturation [43]. According to [49], saturation values of NDVI are
found around 53 to 55 days after emergence or R6 stage of common bean, with maximum
index values of 0.83. Therefore, during this reproductive phase, with high leaf area and
biomass of the crop, little variation is captured by the vegetation index, indicating that the
vegetative phase is the best phase to evaluate the biomass and leaf area of the bean crop [3].
Saturation is also observed in other crops, resulting from low variation in the red band [50].

This changed in the study by [34], in which the estimate of bean biomass obtained
relatively stable performance in three growth stages of the crop, namely in the mid bean-
filling stage, followed by the podding stage and then the early bean-filling stage. Thus,
there was a low variation in the index values between 55 and 62 DAS, with maximum
NDVI values of 0.91 and mean values of 0.71, similar to these found by [3,49,51–54].

4. Conclusions

This study was able to understand that vegetation indices (NDVI and NDRE) are
related to the increased biomass of common beans. The models (M1, M2, M3 and M4)
showed similar results of accuracy and precision, but Model M1 was the best in terms
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of precision (R2 = 0.56) and Model M2 was the best in terms of accuracy (RMSE = 1.33),
when analyzed during the bean cycle. For the 15, 27 and 36 DAS models M1 (R2 = 0.93),
M2 (R2 = 0.92) and M4 (R2 = 0.92) showed better performance in predicting green biomass
when analyzed in the initial stage of culture development, and RMSE values of 24.58,
24.85 and 25.48 g, respectively.

The model that presented the best estimated values for fresh biomass used multiple
linear regression analysis with three input parameters: plant width, height, and the vegeta-
tion index, NDVI or NDRE. Despite suffering from saturation starting in the reproductive
stages, NDVI was better at estimating fresh biomass compared to NDRE.

However, when only the values of the vegetation indices were used as input, the
models showed lower accuracy and precision, demonstrating that the association with
biophysical parameters is important for model calibration. The use of models with only
a vegetation index is a method to quantify the biomass and improve the management of
crops while only using satellite images. Additionally, this study provided an approach to
agricultural management and decision making in precision agriculture.

In this research, two vegetation indices were used to estimate the biomass of common
bean plants. In the literature, it is possible to find works that used other vegetation indices
and machine learning to estimate biomass, obtaining better model adjustments and superior
results. Furthermore, images of other satellites, such as Sentinel and Landsat, can be applied
to quantify plant biomass. More studies need to be carried out to test machine learning
models with different common bean datasets and other vegetation indices to improve
estimation ability.
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Appendix A

Table A1. Managing database procedures.

Band Name Wave-Length (nm)

1 Coastal blue 431–452

2 Blue 465–515

3 Green I 513–549

4 Green 547–583

5 Yellow 600–620

6 Red 650–680

7 Red-edge 697–713

8 NIR 845–885
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Table A2. Descriptive statistics of the independent variables height, width, NDVI and NDRE, and
the dependent variable green biomass.

Parameters Standard
Deviation

Coefficient
of Variation Mean Minimum Maximum

Height 16.45 46.34 35.49 8.00 62.00
Width 12.92 30.62 42.20 16.20 64.40
NDVI 0.147 20.64 0.71 0.40 0.90
NDRE 0.107 21.86 0.49 0.29 0.65

Green biomass 248.24 78.78 315.10 20.00 147.50
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