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Abstract: Single-frame circulation aquaculture belongs to the important category of sustainable
agriculture development. In light of the visual-detection problem related to survival rate of Portunus in
single-frame three-dimensional aquaculture, a fusion recognition algorithm based on YOLOV5, RCN
(RefineContourNet) image recognition of residual bait ratio, centroid moving distance, and rotation
angle was put forward. Based on three-parameter identification and LWLR (Local Weighted Linear
Regression), the survival rate model of each parameter of Portunus was established, respectively.
Then, the softmax algorithm was used to obtain the classification and judgment fusion model of
Portunus’ survival rate. In recognition of the YOLOV5 residual bait and Portunus centroid, the EIOU
(Efficient IOU) loss function was used to improve the recognition accuracy of residual bait in target
detection. In RCN, Portunus edge detection and recognition, the optimized binary cross-entropy loss
function based on double thresholds successfully improved the edge clarity of the Portunus contour.
The results showed that after optimization, the mAP (mean Average Precision) of YOLOV5 was
improved, while the precision and mAP (threshold 0.5:0.95:0.05) of recognition between the residual
bait and Portunus centroid were improved by 2% and 1.8%, respectively. The loss of the optimized
RCN training set was reduced by 4%, and the rotation angle of Portunus was obtained using contour.
The experiment shows that the recognition accuracy of the survival rate model was 0.920, 0.840,
and 0.955 under the single parameters of centroid moving distance, residual bait ratio, and rotation
angle, respectively; and the recognition accuracy of the survival rate model after multi-feature
parameter fusion was 0.960. The accuracy of multi-parameter fusion was 5.5% higher than that of
single-parameter (average accuracy). The fusion of multi-parameter relative to the single-parameter
(average) accuracy was a higher percentage.

Keywords: survival detection; multi-parameter fusion; object detection; contour detection;
agricultural engineering

1. Introduction

A new agricultural farming model known as single-frame three-dimensional aquacul-
ture was created on the principle of circulating water and can be used to reuse aquaculture
water, reduce agricultural energy use and environmental pollution, and realize the sus-
tainable development of new agricultural technology. In light of the development of
recirculating water culture technology [1], the Portunus three-dimensional apartment cul-
ture technology has become widely popular. According to Figure 1, each aquaculture frame
corresponds to one Portunus; the frame is covered with sand, and the water depth of the
frame is approximately 10–20 cm. Portunus are fed regularly and quantitatively using pellet
feed or small fish and shrimp as bait for culture. Currently, a large number of daily inspec-
tions are handled manually in the factory-based single-frame three-dimensional culture. In
order to improve the efficiency of farming, there is an urgent need for a new technological
method to manage the daily inspections of large-scale three-dimensional aquaculture. On
the other hand, machine vision, as an efficient method for automatic detection [2,3], has
been widely used for behavioral detection, quantitative feeding, and feeding tracking in
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wisdom breeding [4–6]. For example, the fusion of images with mathematical models to
increase the reliability of the acquired information, 3D coordinate models, and tracking in-
frared reflection (IREF) detection devices [7] for fish behavior detection. Based on machine
learning, differences between one or more frames of the camera [8] are used to determine
the differences in fish feeding and quantitative indicators of feeding. To increase the relia-
bility of information acquisition and to reduce interference, the optical flow was used to
extract behavioral features (speed and rotation angle) for feeding tracking [9]. Based on
this, this paper addresses the inefficiency of manual inspections of large-scale single-frame
three-dimensional culture by conducting a study on the survival rate judgment of Portunus
based on visual detection. Identifying visual-feature parameters such as Portunus centroid
movement, feed residual bait, and Portunus rotation angle in the frame were performed
using machine vision technology. Further, the fusion of the three parameters was used to
determine the survival rate of the Portunus.
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The recognition of residual bait and Portunus centroid belongs to the target detection
problem in visual inspection. In deep-learning target detection, a deeper network, richer
feature annotation and extraction, and higher computing power are the key technical issues
to improve target detection accuracy and real-time efficiency. Deeper networks can improve
the accuracy of target detection, and Rauf [10] proposed to deepen the number of CNN
convolutional layers with reference to the VGG-16 framework [11], which enabled the CNN
to be extended from 16 to 32 layers and improved the accuracy of target recognition on the
Fish-Pak dataset by 15.42% compared to the VGG-16 network. Richer feature annotation
and network frameworks can improve learning efficiency. As the problem of aquaculture
fish-action recognition arises, Måløy [12] proposed to use a CNN framework that combined
spatial information and motion features fused with time-series information to provide
richer information features related to fish behavior, with an accuracy of 80% in the task
of predicting feeding and non-feeding behavior in fish farms. Combining network depth,
higher feature extraction capability, and real-time requirements, the Faster R-CNN [13]
and YOLO [14] frameworks have become the two leading algorithmic frameworks for
target detection. They are widely used in crab target identification, fish target identification,
and water quality prediction [15–17]. Faster R-CNN with an RPN network makes for
high accuracy. Li [18] initialized the Faster R-CNN network using pretrained Zeiler and
Fergus (ZF) models and optimized the convolutional feature map window for the ZF model
network, resulting in improved detection speed and a 15.1% increase in mAP. YOLO is an
end-to-end network framework that is fast and highly accurate. In order to identify fish
species in deep water, Xu [19] performed experiments based on the YOLOV3 model [20]
for fish detection in the high turbidity, high velocity, and murky water environment, and
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evaluated the fish detection accuracy in three datasets under marine and hydrokinetic
(MHK) environments. It was shown that the mAP score reached 0.5392 under this dataset,
and YOLOV3 improved the target detection accuracy. Due to the problem of unstable data
transmission conditions in fish farms, Cai [21] used MobileNet to replace the Darknet-53
network in YOLOV3, which reduced the model size and the computation by a factor of
8–9. The speed of the optimized algorithm was improved, and the mAP was increased by
1.73% based on the fish dataset. Both Faster R-CNN and YOLO networks can extract deeper
features from images, but YOLO belongs to the end-to-end algorithmic framework, which
is faster. In large-scale three-dimensional factory farming, faster recognition algorithms
mean real-time detection of targets in aquaculture. Therefore, the improved YOLO network
was chosen for the recognition of residual bait and Portunus centroid targets.

The edge contour (rotation angle) recognition of Portunus belongs to the problem of
visual inspection target segmentation. Aside from the traditional Canny and Pb algorithms,
most target segmentation problems are now solved by architectures that use deep learning.
Most of the time, different backbone network architectures and information fusion methods
are made based on convolutional neural network frameworks like GooLeNet and VGG to
pull out multi-scale features and achieve more accurate edge detection and segmentation.
Typical backbone network architectures include multi-stream learning, skip-layer network
learning, single model on multiple inputs, training independent network, holistically-
nested networks, etc. In 2015, Xie [22] proposed the Holistically-Nested Edge Detection
(HED) algorithm, which uses VGG-16 as the backbone network base, initializes the network
weights using migration learning, and achieves simple contour segmentation of the target
through multi-scale and multi-level feature learning. The HED algorithm achieves an
ODS (optimal dataset scale) of 0.782 on the BSDS500 dataset, reflecting better performance
of the dataset on the training set, achieving better segmentation results, and realizing
target contour recognition. Subsequently, the Convolutional Oriented Boundaries (COB)
algorithm [23] was improved on the basis of HED, which generates multi-scale, contour-
oriented, regionally-high-level features for sparse boundary-level segmentation with an
ODS of 0.79 on BSDS500, optimizing the training set contour information feature extraction.
Further, to reduce the number of deep learning network parameters and maintain the
spatial information in segmentation, Badrinarayanan [24] proposed SegNet, an encoder–
decoder-based segmentation network architecture. The SegNet algorithm transfers the
maximum pooling index to the decoder, improving the segmentation resolution. The
SegNet algorithm moves the maximum pooling index to the decoder, improving the
segmentation accuracy. The CEDN (Fully Convolutional Encoder–Decoder Network)
algorithm [25] can detect higher-level object contours, further optimizing the encoder–
decoder framework for contour detection, and the CEDN algorithm improves the average
recall on the PASCAL VOC dataset from 0.62 to 0.67 and the ODS reached 0.79 on the
BSDS500 dataset. In 2015, researchers found that the ResNet network framework [26]
can extend the neural network depth and extract complex features efficiently. In 2019,
Kelm [27] proposed the RCN network architecture based on the ResNet algorithm, which
is used for contour detection by using multi-path refinement and fuses mid-level and
low-level features in a specific order with a concise and efficient algorithm, thus becoming
a leading framework for edge detection. For example, Abdennour [28] proposed a driver
profile recognition system with 99.3% accuracy for facial profile recognition based on
RCN networks.

In summary, the problem is the visual detection of the survival rate for Portunus’
three-dimensional apartment culture. The main work of this paper is as follows: (i) Based
on YOLOV5, the residual bait and Portunus centroid were detected, and the EIOU loss [29]
bounding box loss function was proposed on the basis of CIOU (Complete IOU) loss to op-
timize the accuracy of YOLOV5 in predicting the centroid moving distance of Portunus and
residual bait. (ii) For the Portunus contour target segmentation problem, the RCN-based bi-
nary cross-entropy loss to double-threshold binary cross-entropy loss function is optimized
to improve the Portunus contour detection accuracy and calculate the contour endpoint
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coordinates (i.e., rotation angle) to improve the Portunus contour curve accuracy. (iii) Based
on YOLOV5’s RCN algorithm, Portunus centroid movement, residual bait, and rotation
angle were three parameters identified, using locally weighted linear regression (LWLR)
and the softmax algorithm for information fusion to give a comprehensive determination
model of the Portunus survival rate.

The main innovation of this paper lies in the visual detection of three parameters that
indirectly reflect the survival of the Portunus using machine vision technology, and the
establishment of a single-parameter survival determination model and a three-parameter
fusion determination model, respectively. Thus, a vision detection-based survival detection
method for Portunus was given. Currently, most of the vision inspection techniques for
Portunus are focused on target detection. In the context of three-dimensional culture, the
visual-detection method of multi-parameter fusion has not been reported. Meanwhile,
this paper uses the YOLOV5 algorithm to detect the centroid movement distance and
residual bait of Portunus and the RCN algorithm to detect the rotation angle of Portunus.
In residual bait recognition, pellet bait belongs to small target recognition; this paper uses
the EIOU loss function to enhance the training mAP and improve the recognition accuracy
of pellet bait and Portunus. In RCN for Portunus contour rotation angle recognition, this
paper proposes a double-threshold loss function algorithm to reduce the loss function
and improve the training accuracy. Finally, a combined three-parameter LWLR fusion
determination algorithm was given, and the fused survival recognition accuracy was
improved by 5.5%, relative to the single-parameter (average accuracy) recognition accuracy.

2. Materials and Methods

In this paper, YOLOV5 and the RCN framework are applied to visually detect move-
ment of the Portunus centroid, bait, and rotation angle. In YOLOV5 small-pellet-feed vision
detection, YOLOV5 has poor recognition ability for small targets because it usually uses
the CIOU bounding box loss function. There will be missed detection during the visual
inspection of pellet bait, fish, and shrimp feed, as shown in Figure 2. The YOLO5 detec-
tion algorithm with the CIOU bounding box loss function has a mAP (0.5) of 69.6% for
pellet feed target identification and 95.2% for tiny fish and shrimp target recognition in
experiments. The average target identification accuracy mAP (0.5) of Portunus, pellet feed,
fish, and shrimp feed was 88.1%. As a result, the purpose of this research was to upgrade
the CIOU bounding box loss function to the EIOU loss function in order to increase the
detection accuracy of baited tiny objects such as pellet feed.
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Furthermore, as shown in Figure 3, after training with 300 epochs in RCN Portunus
rotation angle detection, the average loss of the training set and the average loss of the test
set were determined to be 0.2857 and 0.3071, respectively. The test results had significant
biases when compared to the training results, and the Portunus contour prediction was
fuzzy with a contour missed-detection problem. In order to enhance Portunus target profile
recognition, this work offers a double-threshold loss function based on the RCN algorithm.
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2.1. Survival Rate Detection YOLOV5 and RCN Framework

(1) Movement of the centroid and identification of residual bait based on YOLOV5.
The movement of the Portunus’ centroid and the residual bait are indirect indicators of
whether or not the Portunus is alive. The typical size of a Portunus farm breeding frame
is 500 mm × 400 mm, and the size of the frame helps to identify residual bait and the
centroid coordinates of the Portunus. YOLOV5 is an end-to-end algorithmic framework
with criteria for both speed and accuracy of detection. As a result, this article is built on the
YOLOV5 framework for target recognition of Portunus centroid movement and residual
bait, and Figure 4a shows its network architecture.
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loss of Classes, Objectness, and Location, as well as identifying and detecting the Portunus
and residual bait. The image data are labeled with 3 different targets using the labeling:
Portunus, pellet feed, and fish and shrimp. After labeling, the .xml file is acquired, which is
then translated to .txt file. With reference to the PASCAL VOC dataset, a Portunus target
detection dataset was generated, of which 900 were used for training and 100 for validation.
After preprocessing the photos to 640 × 640 size, 300 epochs of network training began. To
boost training efficiency, the training Portunus dataset can be reclustered to build anchors
templates based on the targets in the training Portunus dataset. In YOLOV5, data were
preprocessed into the BackBone framework, and BackBone accelerated the extraction of
Portunus and residual bait characteristics using convolutional networks. PANet performed
same channel feature fusion and image size recovery after feature extraction. Lastly, three
target detection layers were produced, reflecting the identification of small target objects,
medium target objects, and big target objects, enhancing the accuracy of detecting Portunus
and residual baits.

(2) Portunus rotation angle detection based on RCN. The angle of rotation of the
Portunus is also an indirect indicator of whether or not the Portunus is alive. Due to the
three-dimensional nature of single-frame Portunus culture, it is unlikely that Portunus
will move in big ways. Instead, feeding is often accompanied by small movements and
rotations in many directions. In this paper, the RCN framework is used to detect the
Portunus contour, and the end-point coordinate approach is used to determine the Portunus
rotation angle based on the end-point image coordinates that are detected. Figure 4b shows
the architecture for RCN Portunus contour identification and rotation angle computation.

As illustrated in Figure 4b, the RCN network structure consisted of six major modules:
Input, RB, RCU, MRF, and Output. Its loss function was binary cross-entropy loss, which
was also a crucial aspect in the identification of Portunus contours. The image data were
labeled with crab by LabelMe, and after labeling, .json files were obtained, which were
further transformed into outline.jpg files. The Portunus contour dataset was created with
reference to the BSDS500 dataset, and 416 photos from the dataset were used for training,
93 for testing, and 11 for validation. After preprocessing the images to 640 × 640 size,
300 epochs of network training began to train the Portunus contour dataset with continuous
learning to increase contour prediction efficiency. To improve contour feature extraction,
data were preprocessed into the RB framework in the RCN algorithm. As the Portunus
contour features were retrieved, they entered the RCU framework with a residual convolu-
tion layer, which can enrich the network parameters while also adjusting and correcting
the MRF input. After that, the convolutional MRF framework and upsamples were placed
on the feature map channels and sizes in order to combine Portunus contour feature maps
of various resolutions. Next, the CRP framework used chained convolution and pooling,
which can better aggregate more information about the Portunus contours. Finally, on the
basis of six CNN modules, a profile image of the Portunus crab was produced.

(3) Computation of rotation angle using the end-point coordinate approach. When the
RCN detected the Portunus shape, the end-point coordinate method was used to determine
the Portunus selection angle, as illustrated in Figure 5. First, Figure 5a shows the minimal
outside rectangular box of the Portunus contour, and Figure 5b shows the coordinates of
the Portunus tip point based on the outer rectangular box. After that, the coordinates of
the contour tip points A and B as well as the Portunus’ rotation angle were determined, as
illustrated in Figure 5c.
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Figure 5. (a) The position of the cusp of the crab shell was determined. (b) The coordinates of the
cusp were determined. (c) The angle using coordinates A and B were determined.

(4) For Portunus survival, the single-parameter determination model and multi-parameter
fusion determination model were proposed. This paper used the YOLOV5 and RCN algo-
rithms to identify the three parameters of Portunus centroid movement distance, residual
bait ratio, and rotation angle. Next, the survival rate determination model of Portunus
survival (single parameter) was created using the LWLR method. Finally, the softmax
method was used to produce the regression prediction model of Portunus survival rate.
Figure 6 shows the general structure of the Portunus survival fusion judgment model.
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Figure 6. Framework flow chart for predicting the survival rate of Portunus based on YOLOV5, RCN,
and LWLR algorithms.

LWLR is a non-parametric machine learning algorithm, and the regression coefficients
ŵ are fitted to each sample of centroid movement distance, residual bait, and rotation angle.
The visual recognition parameters of Portunus centroid movement distance, residual bait
ratio, and rotation angle are c1, c2, and c3, respectively. Take the c1 parameter as an example,
and randomly select its value as 350. Inputting the values of c1 from the target detection
into expression (1) provides the x1c feature matrix expression as:

x1c = [c11, c12, · · · c1n] (1)

where n is generally denoted as the number of sample features, and c1n is denoted as differ-
ent features. The characteristic matrix expression of the training sample set is as follows:

Xc =
[
c1

(1) · · · c1
(m)
]T

(2)
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where m = 350 represents the sample size of the training set, and c1
(m) represents the sample

size. The labels of training samples are as follows:

Yc =
[
yc

(1) · · · yc
(m)
]T

(3)

where yc
(m) represents the true label of each sample size. Then, the prediction formula of

LWLR for a single feature sample is as follows:

Hŵ(c) = x1cŵ =
n

∑
k=1

x1kŵk (4)

where ŵ represents the regression coefficient, the expression is as follows:

ŵ =
(

Xc
TWXc

)−1
Xc

TWYc (5)

where W is the diagonal matrix of m×m, and each data point is given a weight. LWLR uses
“kernel” to give higher weight to nearby points. In this paper, Gaussian kernel is selected
to construct the weight matrix W, and the expression is as follows:

W(i, i) = exp

[ ∣∣c1
i − c1

∣∣2
−2k2

]
(6)

where W(i, i) represents the diagonal element of W, and i in ci represent the weight value
of the training sample, and its range is (0, 1]. Among them, c1 represents the reference
point and ci

1 represents the predicted value sample. Parameter k determines how much
weight is given to nearby points. When k is determined, the one-parameter survival rate
determination model for c1 is achieved.

2.2. YOLOV5 Boundary Box Loss Function EIOU

Due to YOLO bounding box loss, it experienced SSE Loss, IOU Loss [30], GIOU
Loss [31], DIOU Loss [32], and CIOU Loss. The two factors of bounding box to be solved
with DIOU were overlapping area and center point distance. DIOU is shown in Figure 7a,
and the expression of DIOU is as follows:

DIOU = IOU −
ρ2
(

bpred, bgt

)
d2 , LossDIOU = 1− DIOU (7)

where bpred and bgt represent the center point coordinates of the predicted box and the center
point coordinates of the real box, respectively; ρ represents the Euclidean distance, namely
e2 = ρ2

(
bpred, bgt

)
; and d represents the diagonal distance of the smallest circumscribed

rectangular box. DIOU not only solves the large error problem between the GIOU prediction
box and real box, but also makes the relative distance between the prediction box and real
box clear. However, there is no aspect ratio factor in DIOU function, and the aspect ratio
influence factor αv (i.e., CIOU) is added on the basis of DIOU, as shown in Figure 7b. The
expression for CIOU is as follows:

CIOU = IOU −
ρ2
(

bpred, bgt

)
d2 − αv = DIOU − αv, LossCIOU = 1− CIOU (8)

where the expression for v is as follows:

v =
4

π2

(
arctan

wgt

hgt
− arctan

wpred

hpred

)2

(9)
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where v is used to measure the consistency of aspect ratio, and α is the value of equilibrium
v which can be expressed as:

α =
v

1− IOU + v
(10)AgriEngineering 2023, 5, FOR PEER REVIEW  10 
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The formula for measuring the aspect ratio in CIOU is relatively complex, and the
aspect ratio cannot replace the width and height of bounding box (w = kwgt, h = khgt leads
to v being 0). The partial derivatives of w and h in v are obtained, respectively, of which
relationship is as follows:

∂v
∂w

= − h
w
∗ ∂v

∂h
(11)

Therefore, width and height can only take the opposite number in the optimization
process. The difference of aspect ratio reflected by Formula (11) v is not the real difference
between width, height, and confidence, so the training and prediction accuracy of tiny
objects decreases or even misses. The EIOU bounding box loss function, on the basis of
CIOU, is proposed to replace the width and height losses, as shown in Figure 7c. αv, as
shown in Figure 7c. The improved EIOU formula is as follows:

EIOU = IOU − ρ2(bpred ,bgt)
d2 − ρ2(wpred ,wgt)

c2
w

− ρ2(hpred ,hgt)
c2

h
, LossEIOU = 1− EIOU (12)

where wpred and wgt represent the width of the predicted label and the width of the real
label, hpred and hgt represent the height of the predicted label and the height of the real
label, and cw and ch represent the width and height of the minimum external rectangular
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frame. Obviously, EIOU loss directly minimizes the width and height difference between
the predicted bounding box and the real bounding box, and has better positioning and
recognition effect for small objects. Moreover, LossEIUO accelerates the convergence and
improves the regression accuracy, and increases the mAP for small object detection. The
comparison between CIOU and EIOU recognition is shown in Figure 7d.

2.3. RCN Double-Threshold Loss Function

The fundamental cause of fuzzy RCN Portunus contour prediction and missed contour
detection is a lack of feature information extraction in the RCN loss function, and the binary
cross-entropy loss function:

L(hθ(x), y) = −y · weights · log(hθ(x))− (1− y)log(1− hθ(x)) (13)

where hθ(x) ∈ [0, 1], y ∈ {0, 1}, weights = 10, and hθ(x) obtained the corresponding binary
label through the prediction of pixel x. When the value of weights is fixed, inadequate
feature extraction due to multiple convolutional stacking and upsampling fusion may lead
to the inaccurate capturing of contour information, blurred contours, or missed contour
detection of the Portunus. In this paper, the value of weights in the RCN loss function were
optimized through the double-threshold RCN loss function. The double-threshold binary
cross-entropy loss function is defined as follows:{

weights0 = A hθ(x) ≥ a
weights0 = B hθ(x) < a

,
{

weights1 = A hθ(x) ≥ b
weights1 = B hθ(x) < b

(14)

{
L0(hθ(x), y) = −y · weights0 · log(hθ(x))− (1− y)log(1− hθ(x))
L1(hθ(x), y) = −y · weights1 · log(hθ(x))− (1− y)log(1− hθ(x))

(15)

L(hθ(x), y) = c · L0(hθ(x), y) + d · L1(hθ(x), y) (16)

where a, b, c, and d are hyperparameters, and the values of A and B are 10 and 1, respectively.
The double-threshold binary cross-entropy loss function, which can improve edge learning
and extraction in convolutional neural networks, can effectively prevent the loss of key
contour edge information. Moreover, the value of weights can be realized by setting
the thresholds hθ(x). To acquire a clear contour of Portunus, {a, b} hyperparameters
take the values of {0.99, 0.95}, {0.98, 0.94} and {0.97, 0.93}, respectively, for comparative
experiments. {c, d} hyperparameters take the values of {0.6, 0.4}, {0.7, 0.3}, and {0.8, 0.2}
for cross-comparison experiments. Referring to the number of pictures in the BSDS500
contour dataset, 416 training sets, 93 test sets, and 11 validation sets were established, with
300 RCN training times.

Figure 8a–c show the training and test loss function curves when the hyperparameter
{a, b} takes the value of {0.99, 0.95} and the hyperparameters {c, d} take the values of
{0.6, 0.4}, {0.7, 0.3}, and {0.8, 0.2}, respectively. Learning from Figure 8a–c, when the
hyperparameters {c, d} take the values of {0.6, 0.4}, {0.7, 0.3}, and {0.8, 0.2}, the average
loss of the training set and test set are 0.2735 and 0.2932, 0.2736 and 0.2967, and 0.2743 and
0.2879, respectively, with the optimal value of {0.8, 0.2} from this group being {c, d}.

Figure 8d–f show the training and test loss function curves when the hyperparameter
{a, b} takes the value of {0.98,0.94} and the hyperparameters {c, d} take the values of
{0.6, 0.4}, {0.7, 0.3}, and {0.8, 0.2}, respectively. Learning from Figure 8d–f, when the
hyperparameters {c, d} take the values of {0.6, 0.4}, {0.7, 0.3}, and {0.8, 0.2}, the average
loss of training set and test set are 0.2855 and 0.3013, 0.2896 and 0.3114, and 0.2876 and
0.3095, respectively, with the optimal value of {0.6, 0.4} for this group being {c, d}.

Figure 8g–i show the training and test loss function curves when the hyperparameter
{a, b} takes the value of {0.97, 0.93}, and the hyperparameters {c, d} take the values of
{0.6, 0.4}, {0.7, 0.3}, and {0.8, 0.2}, respectively. Learning from Figure 8g–i, when the
hyperparameters {c, d} take the values of {0.6, 0.4}, {0.7, 0.3}, and {0.8, 0.2}, the average
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loss of the training set and test set are 0.2915 and 0.3093, 0.2890 and 0.3106, and 0.2833 and
0.2999, respectively, with the optimal value of {0.8, 0.2} for this group being {c, d}.
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Figure 8. (a–c) Respectively represent {a,b} under the condition of {0.99,0.95}, {c,d} = {0.6,0.4},
{c,d} = {0.7,0.3}, {c,d} = {0.8,0.2} training set, test set loss curve. (d–f) Respectively represent {a,b}
under the condition of {0.98,0.94}, {c,d} = {0.6,0.4}, {c,d} = {0.7,0.3}, {c,d} = {0.8,0.2} training set, test
set loss curve. (g–i) Respectively represent {a,b} under the condition of {0.97,0.93}, {c,d} = {0.6,0.4},
{c,d} = {0.7,0.3}, {c,d} = {0.8,0.2} training set, test set loss curve.

The results of cross experiment are shown in Table 1 with the optimal values of
{a, b}:{0.99, 0.95},{c, d}:{0.8, 0.2}.

Table 1. Parameter selection comparison.

Parameter Data

a, b, c, d
{a,b} = {0.99,0.95} {a,b} = {0.98,0.94} {a,b} = {0.97,0.93}
{c,d} = {0.8,0.2} {c,d} = {0.6,0.4} {c,d} = {0.8,0.2}

Average loss Train = 0.2743 Train = 0.2855 Train = 0.2833
Test = 0.2879 Test = 0.3013 Test = 0.2999

2.4. LWLR Single-Parameter Survival Determination Model Computation

Actual measurement data were collected at the farm base for the Portunus contour
dataset used in this study. A total of 500 data points were collected for each characteristic
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parameter of Portunus residual bait ratio, centroid moving distance, and rotation angle.
Combined with the experience of aquaculture personnel: (i) The smaller the residual bait
ratio, the greater the survival probability of Portunus under a certain feeding amount at
each stage. The residual bait ratio is negatively connected to survival. (ii) Since the size
of breeding frame is known (the maximum diagonal distance is 60 cm), the larger the
centroid moving distance is, the greater the survival probability of Portunus. The threshold
value of centroid moving distance is fixed as 13 cm (greater than the threshold survival
of 100%). The centroid moving distance is positively connected to survival. (iii) The larger
the rotation angle of Portunus, the higher the survival rate. The rotation angle is positively
connected to survival. The paper chose the rotation angle threshold of 100◦ (greater than
the threshold survival rate of 100%). The above three datasets are mutually independent
from each other, as shown in Table 2.

Table 2. Centroid movement distance, residual bait, and rotation angle datasets are partially displayed.

Characteristic Data

A1 24.1713 19.2784 3.2957 4.1385 23.5104 13.5613 7.5881 . . .

Survival rate 0.9998 0.9987 0.4656 0.5115 0.9987 0.9912 0.6855 . . .

A2 0.7215 0.4191 0.9722 0.7203 0.9475 0.3074 0.0313 . . .

Survival rate 0.606 0.834 0.107 0.557 0.1490 0.8840 0.9624 . . .

A3 30.4562 80.5426 15.9573 25.3836 6.0410 35.661 80.5888 . . .

Survival rate 0.4035 0.90646 0.22009 0.3505 0.08081 0.45951 0.90617 . . .

A1: The distance the Portunus’ centroid movement; A2: Residual bait; A3: The spin angle of the Portunus.

There are generalized linear connections between visual-detection feature parameters
and Portunus survival rate. The value of k in ŵ must be calculated in advance in the single-
parameter LWLR determination model training, since this decides whether the LWLR
model is suitable and is the only hyperparameter that must be established in LWLR. SSE
(Sum of Squared Errors) was applied to train both training and test sets, and parameter
regression was conducted. The formula of SSE loss function is as follows:

SSE =
m

∑
i=1

(yi − ŷ)2 (17)

where ŷ and yi are predicted value and true value of three characteristic parameters,
respectively. The training set and test set are divided by 7:3 to obtain the residual bait ratio,
centroid moving distance, and rotation angle. The text selects the appropriate value of k
through the training and test set loss curves, which is as shown in Figure 9a–c. Learning
from Figure 9a–c, the best values of k of the centroid moving distance, residual bait ratio,
and rotation angle of Portunus through the LWLR model are 0.3, 0.02, and 1.1, respectively.
Figure 9d–f shows the final one-parameter—the LWLR survival determination model.
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and validation curves, respectively. (d–f) Represent centroid movement distance predicting survival
models (k = 0.3), the residual bait ratio predicts the survival rate model (k = 0.02), and rotation angle
predicts survival model (k = 1.1), respectively.

3. Results
3.1. YOLO5–EIOU Boundary Frame Loss Experiment

In the YOLO5 frame for Portunus residual bait and centroid movement, the application
of EIOU bounding box may significantly enhance the identification accuracy of tiny pellet
bait, fish, and shrimp bait, and the survival rate determination accuracy of Portunus. In this
paper, the YOLO5 algorithm using EIOU was experimentally verified.

Firstly, the data of object detection were mainly from the photos before and after
feeding. One thousand photos were marked with three different goals: Portunus, pellet
feed, and small fish and shrimp feed using labeling software, with 90% training and 10%
verification. The image set is shown in Figure 10.

The selection of suitable data clustering center anchors in the YOLOV5 detection
algorithm can significantly increase detection accuracy. As a result, prior to training, the
k-means approach was used to examine the clustering of the Portunus dataset’s bounding
box coordinate information in order to determine the best clustering centers of the dataset.
The algorithm flow is as follows: (i) k samples were randomly selected from all samples as
the initial center of the cluster, and they were not repeated. (ii) The distance of each sample
from the center of each cluster was calculated, and different samples were assigned to the
nearest cluster. (iii) The mean value of all samples in each cluster was calculated as a new
cluster center. (iv) Steps ii and iii were repeated until there was no change or little change
in the cluster center.
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Figure 10. (a) Portunus, pellet bait, fish, and shrimp part of the picture dataset. (b) Labeled target
detection dataset display.

Meanwhile, in the k-means clustering analysis, the distance between bounding boxes
and cluster center anchors was calculated using 1-IOU (bboxes, anchors) in this study. When
the border frame and the matching cluster center IOU are larger, the distance between
them is smaller. The clusters identified by comparing the 1-IOU with the Euclidean distance
computation were as follows: [5, 5, 7, 7, 11, 10], [10, 21, 23, 11, 18, 18], [62, 60, 94, 83, 160, 151]
and [6, 6, 10, 10, 10, 21], [23, 11, 18, 65, 59], [91, 94, 170, 131, 151, 203] with 1-IOU (bboxes,
anchors) and Euclidean distance calculation clustering. The clustering results are shown in
Figure 11a,b. The 1-IOU and Euclidean distance clustering indices have fitness values of
0.810 and 0.791, respectively. 1-IOU clustering anchors are more consistent with a realistic
dataset sample distribution.
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After the clustering analysis, the training and testing configuration data of YOLOV5
residual bait and Portunus centroid mass center recognition are shown in Table 3. Compar-
ing the network performance of YOLOV5 under CIOU loss and EIOU loss loss functions,
the mAP (0.5) values for pellet feed, fish and shrimp after optimal identification using
EIOU loss were 71.3% and 96.2%, respectively, as shown in Figure 12a. Compared to the
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CIOU loss loss function, the mAP(0.5) values for pellet feed, fish, and shrimp increased
by 1.7% and 1%, respectively. Table 4 shows a comparison of the algorithm performance
training outcomes. The precision and IOU (threshold 0.5:0.95:0.05) mAP of target detection
increased by 2% and 1.8%, respectively. EIOU loss improvement improved the average
recognition accuracy of the whole picture, as demonstrated in Figure 12b.

Table 3. Experimental environment configuration.

Categories Type

CPU Intel(R) Core(TM) i9-10920X
RAM 64GB

Graphics card NVIDIA GeForce RTX 3070
System Windows 10

GPU Accelerate cuda 11.3.1 cudnn8.2.1
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Table 4. Algorithm performance ratio table.

Index Precision Recall mAP (0.5) mAP (0.5:0.95)

YOLOV5 0.872 0.902 0.881 0.422
Ours_YOLO 0.892 0.883 0.890 0.440

3.2. RCN Double-Threshold Binary Cross-Entropy Loss Contour Recognition Experiment

To address the issue of inaccurate Portunus contour recognition information, fuzzy
contour, or missing contour detection in RCN Portunus contour recognition in this paper,
we proposed a double-threshold binary cross-entropy loss. The experimental picture
collection was the same as for YOLOV5 residual bait identification, and the contour dataset
was labeled using LabelMe to differentiate between foreground and background and
generate.json contour label files. The top section of the crab shell was serrated during the
marking process, which may easily generate negative consequences such as reverse noise
transmission during training. As a result, during the dataset labeling process, the crab shell
(with serrated form) was flattened and tagged. In reference to the number of images in the
BSDS500 contour dataset, this research labels 520 Portunus contour datasets. The training
set, test set, and validation set accounted for 80%, 17%, and 3%, respectively. The image set
is shown in Figure 13.
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The binary cross-entropy loss function-based RCN network was trained using 300 epochs
and the labeled image set; the average loss of the training set was 0.2857 and the average
loss of the test set was 0.3071. Moreover, based on the improved double-threshold binary
cross-entropy loss function RCN network after 300 training epochs, the average loss of
the training set was calculated to be 0.2743, the average loss of the test set was 0.2879,
and the optimized loss was reduced by 4% compared to that before optimization. On
the other hand, the preoptimization RCN network required roughly 500 epochs to reduce
the loss to 0.23. The optimized RCN can reduce the loss to 0.20 after training with 300
epochs. After algorithm improvements, the RCN network minimized contour blurring and
missed contour detection phenomena while improving RCN prediction accuracy. Table 5
compares and analyzes the ODS metrics, OIS metrics, and AP of the CEND network, the
preoptimized RCN network, and the optimized RCN network in order to demonstrate the
benefits of the algorithm enhancement. The optimized RCN algorithm improved the ODS
and IOS by 2% and 1.3%, respectively. Finally, comparing the RCN loss function before and
after optimizing, the contour prediction of Portunus is shown in Figure 14.
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Table 5. Algorithm performance comparison.

Index ODS OIS AP

CEDN 0.627 0.643 0.652

RCN 0.704 0.755 0.623

Our-RCN 0.724 0.768 0.631

3.3. Multi-Parameter Survival Judgment Model

Following image-based identification of the Portunus’ centroid, rotation angle, and
residual bait using the YOLOV5 and RCN algorithms, the bait’s residual concentration was
calculated. In this paper, a single-parameter survival determination model was developed
using LWLR. Experiments on the survival rate of Portunus under the effect of single
characteristics were investigated. The 500 datasets were divided into training and test sets
using 7:3. Figure 15a–c show the predicted and real values of the three image identification
feature parameters of centroid moving distance, residual bait ratio, and rotation angle,
respectively. As shown in Figure 15, the accuracy of each single parameter prediction was
more than 80%, which is as shown in Table 6. To further improve the prediction accuracy,
the so f tmax ∗ c algorithm was used to fuse the three feature parameters for prediction. The
so f tmax ∗ c algorithm regression prediction formula for Portunus survival rate is as follows:

Logisticprediction =
k=3
∑

k=1
so f tmax(zk) ∗ ck =

k=3
∑

k=1

ezk
ez1+ez2+ez3 ∗ ck, zk =

ck
∂−ck

, k = 1, 2, 3 (18)

where ck is the single-parameter LWLR model survival rate; ∂ ∈ [1, 2) hyperparameter
is the scaling factor of zk, and is the threshold for multi-parameter fusion. Gridding was
used to pick several values of ∂, and the fusion of centroid moving distance, residual bait
ratio, and Portunus rotation angle feature parameters were used to generate the optimum
regression determination model.
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Table 6. Accuracy rate under single parameter.

Parameter Centroid Distance Residual Bait Ratio Rotation Angle

Accuracy 0.920 0.840 0.955

First, based on YOLOV5, RCN, and LWLR networks, the survival rates model of
three different characteristic parameters were obtained, respectively. Second, the grid is
split into {1.10, 1.20, 1.30, 1.40} for ∂ fetching values, as illustrated in Table 7. Through
extracting 350 and 150 image data of 500 sample datasets for training and testing, the
paper conducts the fusion judgment. The experimental findings revealed that combining
three feature characteristics had the maximum accuracy in predicting Portunus survival at
∂ = 1.10. Figure 16 shows that the multi-parameter fusion predicted values (blue curve)
nearly cover the real values (red curve). Moreover, the prediction result of multi-feature
parameter fusion is better to that of single feature parameter, with the greatest prediction
accuracy of 96.0%.

Table 7. Accuracy rates under different ∂ thresholds.

Parameter Data

∂ 1.10 1.20 1.30 1.40
Accuracy 0.960 0.947 0.893 0.920
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4. Discussion

Based on the inspection demand of Portunus single-frame three-dimensional aquacul-
ture, a multi-parameter fusion judging model of Portunus survival rate based on machine
vision was studied in this paper. Firstly, based on YOLOV5 and the RCN algorithm, the
characteristic parameters such as centroid moving distance, residual bait ratio, and rotation
angle were obtained. Secondly, based on the LWLR and so f tmax algorithm, the survival
rate regression prediction of Portunus was finally obtained.

5. Conclusions

To detect Portunus survival in real time, the original YOLOV5 and RCN networks
missed detection of both pellet feed and contour, and the original algorithm must be
optimized and fused with many parameters. Firstly, the k-means clustering algorithm
was used to cluster the size of anchors in YOLOV5, which could improve the accuracy
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of the algorithm model. Through EIOU loss, the convergence was accelerated, and the
regression accuracy was also improved. Based on the original basis, the mAP(0.5) values for
pellet feed, fish, and shrimp increased by 1.7% and 1%, respectively; EIOU loss increased
precision by 2% and mAP (threshold for 0.5:0.95:0.05) by 1.8%; and the prediction accuracy
of centroid moving distance and residual bait ratio of Portunus was improved. Secondly,
the RCN network was optimized using the double-threshold binary cross-entropy loss
function, and its last loss could be reduced to 0.2 when 300 times of training were made.
Before optimization, last loss reached 0.23 after 500 training, and the RCN average loss was
reduced by 4%. After RCN improvement, the ODS of contour recognition index increases by
2%, the probability of blurring or missing contour prediction was reduced, and the rotation
angle of Portunus was obtained. Finally, based on the LWLR and Logisticprediction algorithm,
multi-parameter fusion was carried out. The recognition accuracy of the residual bait ratio
characteristic parameter to the survival rate of Portunus was 0.920, the recognition accuracy
of centroid moving distance characteristic parameter to the survival rate of Portunus was
0.840, the recognition accuracy of rotation angle characteristic parameter to the survival rate
of Portunus was 0.955, the recognition accuracy of multi-parameter fusion for the survival
rate of Portunus was 0.960, and the accuracy of multi-parameter fusion was 5.5% higher
than that of single parameter (average accuracy). Therefore, multi-parameter fusion greatly
improves the accuracy of judging whether the Portunus is alive.
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RCN RefineContourNet
LWLR Locally Weighted Linear Regression
mAP (AP) mean Average Precision (Average Precision)
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MHK Marine and Hydrokinetic
HED Holistically-Nested Edge Detection
COB Convolutional Oriented Boundaries
SegNet A Deep Convolutional Encoder–Decoder Architecture for Image Segmentation
CEDN Fully Convolutional Encoder–Decoder Network
DIOU Distance-IOU
CIOU Complete IOU
EIOU Efficient IOU
ODS Optimal Dataset Scale
OIS Optimal Image Scale
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