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Abstract: The objective of this study is to evaluate the water conditions in a coffee plantation using
precision agriculture (PA) techniques associated with geostatistics and high-resolution images. The
study area is 1.2 ha of coffee crops of the Topázio MG 1190 cultivar. Two data collections were
performed: one in the dry season and one in the rainy season. A total of 30 plants were marked
and georeferenced within the study area. High-resolution images were obtained using a remotely
piloted aircraft (RPA) equipped with a multispectral sensor. Leaf water potential was obtained
using a Scholander pump. The spatialization and interpolation of the leaf water potential data were
performed by geostatistical analysis. The vegetation indices were calculated through the images
obtained by the RPA and were used for a regression and correlation analysis, together with the
water potential data. The degree of spatial dependence (DSD) obtained by the geostatistical data
showed strong spatial dependence for both periods evaluated. In the correlation analysis and linear
regression, only the red band showed a significant correlation (39.93%) with an R2 of 15.95%. The
geostatistical analysis was an important tool for the spatialization of the water potential variable;
conversely, the use of vegetation indexes obtained by the RPA was not as efficient in the evaluation of
the water conditions of the coffee plants.

Keywords: water status; leaf water potential; spatialization; vegetation indices; high-resolution images

1. Introduction

Within the coffee industry, Brazil stands out as the largest producer in the world, but
its productivity is negatively affected by drought [1]. According to [2], water deficit is the
main environmental factor affecting agricultural production in Brazil, and short periods of
water deficit may be sufficient to reduce coffee production [3].

Of the various parameters related to soil and plants, leaf water potential has been used
as a strong indicator for the evaluation of water status [1] and is one of the most important
factors affecting stomatal functioning.

When a plant loses water at a rate higher than its absorption and transport capacity, the
leaf water potential decreases, leading to stomatal closure and a reduction in photosynthe-
sis [4], thus reducing transpiration rates. The authors of [5] state that the stomatal closure
process reduces stomatal conductance (gs), which directly contributes to the increase in or
maintenance of water potential within limits that contribute to plant growth.

Leaf water potential has high heterogeneity, requiring the producer to make different
decisions for the same area regarding its management. Knowing the spatial and temporal
variability of this attribute is of paramount importance in quantifying the water require-
ments of coffee plants. The modernization of agriculture in the coffee sector is driven by
precision agriculture (PA) in coffee plantations [6].
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Geostatistics is a tool used in PA to analyze the factors involved in production sys-
tems [7]. It allows the identification of whether there is spatial dependence for the analyzed
factors, enabling the creation of thematic maps that assist in decision making [7].

The need for a dense sampling grid is a key problem when using geostatistics in agri-
culture to detect the spatial behavior of these attributes. An alternative tool for geostatistics
is the use of remote sensing (RS) in order to assess the spatial variability of attributes related
to soil and plants. RS can be divided into two categories: orbital RS and suborbital RS.
Despite its diverse applications, orbital remote sensing under field conditions, mainly for
small properties, is generally limited mainly due to low spatial resolution, cloud inter-
ference and high cost of operation compared to sensors embedded in unmanned aerial
vehicles [8,9].

With the emergence of new technologies within agriculture, remotely piloted aircraft
(RPA) have emerged as an important suborbital platform for RS. Despite their recent
application in coffee farming, RPA have numerous benefits for coffee growers, and the
main benefits are a spatial resolution with a very high level of detail and high flexibility
regarding temporal resolution.

Multispectral sensors can be coupled to these aircraft, and the use of the most diverse
vegetation indices has been shown to be promising for the evaluation of several aspects
of crops, including physical characteristics, pests and diseases, and the monitoring of the
health of crops by coffee growers.

Some technologies have been tested in precision coffee farming. Emerging applica-
tions such as the capture of aerial images by means of RPA are increasingly common in
coffee fields, and these include mapping pockets of invasive weeds, revealing irrigation and
fertilization anomalies [10], determining the ripeness index of the crop [11,12], detecting
faults in the coffee plant [13], improving geometric errors in images obtained by RPA [14],
estimating vegetation volume [15], estimating indirect measures in coffee plants [16], eval-
uating planting quality in high-slope terrain [17], and determining biophysical parameters
and measuring the height and diameter of coffee plants [18].

Leaf water potential is an important factor for evaluating the water status of coffee
plantations. This factor and the various attributes related to soil and plants show high
heterogeneity. However, there are no studies evaluating the spatial and temporal variability
of this factor in coffee growing using high-resolution multispectral images. Thus, the
objective of this study is to evaluate the spatial and temporal behavior of leaf water
potential in coffee plantations through geostatistical analysis and the use of high-resolution
images obtained by an RPA.

2. Materials and Methods
2.1. Workflow

The workflow of this research (Figure 1) was divided into four stages, the first stage
being associated with the construction of the sampling mesh and georeferencing of the area
and points to be collected, and the second stage being defined as the collection of leaves
from the georeferenced plants to obtain the water potential. The third step was defined by
the execution of the flight with a multispectral sensor coupled to the RPA, and the fourth
step was the correlation analysis and linear regression between the leaf water potential and
the calculated vegetation indices.
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Figure 1. Work flowchart.

2.2. Description of the Study Area

The study was conducted in a coffee plantation of the Experimental Field of the Minas
Gerais Agricultural Research Company (EPAMIG, as abbreviated in Portuguese), located
in the municipality of Três Pontas in the southern region of the state of Minas Gerais, Brazil,
at an altitude of 905 m and a Universal Transverse Mercator (UTM) coordinate system
position of S 7640030.4 and E 449531.5, Zone 23K. This municipality has an average annual
temperature of 20.3 ◦C and an average annual rainfall of 1429 mm. The soil in this area is
classified as oxisol.

The area of the experiment comprised 1.2 ha of a coffee plantation of the species Coffea
arabica L. of the Topázio MG 1190 cultivar. This crop was established in 1998 with spacings
between rows of 3.70 m and between plants of 0.70 m (Figure 2).

2.3. Sampling Grid

The sampling grid was prepared with QGIS software, version 3.4.8, and 30 sampling
points representing a sampling density of 25 points per hectare were laid out (Figure 3).
The contouring of the area and the georeferencing of the sampling points were performed
using a TRIMBLE RTK Model R8 global navigation satellite system (GNSS).

The sampling grid considered the cartographic projection of UTM Zone 23 K and
WGS 84 DATUM, which consisted of 30 sampling points, with each point represented by
a plant that was duly numbered and marked with zebra tape. Two field data collections
were performed, one in the dry season on 11 August 2020 and the other in the rainy season
on 27 January 2021. Collections were performed to evaluate the water status of the crop in
these two periods.
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Figure 2. Study area located in the municipality of Três Pontas-Minas Gerais, Brazil.

Figure 3. Sampling grid for the collection of 30 points from the study.
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Table 1 shows the climatological data for both collection dates. These data came from
the meteorological station of a farm 15 km away from the EPAMIG experimental field in
Três Pontas. These climatological data were obtained from the database of the system of the
Regional Cooperative of Coffee Growers in Guaxupé LTDA (COOXUPÉ, as abbreviated
in Portuguese).

Table 1. Climatological data for the dates of sample collection.

Collection Period Mean Monthly
Temperature (◦C) Date of Last Rainfall Amount of Last

Rainfall (mm)

Dry (August 2020) 19.3 31/05/20 20 mm
Rainy (January 2021) 23.9 20/01/21 115 mm

Source: COOXUPÉ (2020, 2021).

2.4. Leaf Water Potential Collection

Scholander’s pressure pump method was used to collect leaf water potential [19]. The
collections were carried out around 4:30 in the morning. A total of 90 leaves were collected,
with 3 leaves from each georeferenced plant. These leaves were collected from the middle
third of each plant. Each set of 3 leaves was stored in a plastic bag that was properly closed
and contained the number of the georeferenced plant.

The leaf water potential was assessed using the Scholander pressure bomb immediately
after collection from each georeferenced plant (Figure 4).

Figure 4. Obtaining leaf water potential using the Scholander pump.
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This method consists of placing the leaf inside a cylinder so that its petiole stays out
by passing it through a small rubber-coated hole in a gas-proof lid. Pressure is gradually
supplied to the cylinder chamber until the first sign that the sap is being forced out of
the exposed end of the petiole; this is when the gas injection (inert nitrogen) should be
interrupted and the manometer should be read. The value on the manometer represents
the xylem pressure potential in MPa (megapascals), where the solute or osmotic potential
is considered negligible.

2.5. Geostatistical Analysis

Semivariograms were used to analyze the spatial dependence of the leaf water poten-
tial. The semivariance is classically estimated by Equation (1) according to [20]:

γ̂ (h) =
1

2 N(h)

Ni=(h)

∑
i=1

[Z (xi)− Z (xi + h)]2 (1)

where N(h) is the number of experimental pairs of observations Z(xi) and Z(xi + h), separated
by a distance h. The semivariogram is represented by the graph γ̂(h) versus h. From the
fitting of a mathematical model to the calculated values of γ̂(h), the coefficients of the
theoretical model are estimated for the semivariogram, called the nugget effect (C0), sill
(C0 + C1), and range (a), as described by [21].

For this study, the ordinary least squares (OLS) method and spherical, exponential,
and Gaussian models were used. These models were chosen according to the fit presented
for each attribute studied. To verify whether the fits for each model meet the requirements
of cross-validation, the mean error (ME) was calculated according to [22]. The ME should
have the closest possible value to zero.

With the adjustment of the semivariograms, after the identification of the spatial
variability, the data were interpolated by ordinary kriging. Thus, the variable was estimated
in places where it was not sampled, which allowed us to visualize its distribution in space
in the form of thematic maps.

The calculation of the degree of spatial dependence (DSD) of the variables followed
the classification proposed by [23]. In this classification, the authors point out that there is
strong spatial dependence when the semi variogram shows a nugget effect equal to or less
than 25% of the sill, moderate spatial dependence when this ratio is between 25% and 75%,
and weak spatial dependence when it is greater than 75%.

The geoR package installed in the free statistical software R was used for geostatistical
analysis and for the creation of the thematic maps [24].

2.6. Image Acquisition and Processing

The set of images was acquired using a senseFly model EBee SQ remotely piloted
aircraft. This aircraft has the following characteristics: fixed wing, wingspan of 110 cm,
nominal radio range of 3 km, cruising speed of 40–110 km/h, wind resistance of up to
45 km/h (12 m/s), electric motor, maximum payload of 1.1 kg (including camera and
batteries), and a flight autonomy of up to 55 min.

The aircraft was equipped with a Parrot camera (Sequoia model) with a high-resolution
red–green–blue (RGB) sensor with a focal length of 4.88 mm. This camera also has four
monochromatic sensors for the spectral bands: green (550 ± 40 nm), red (660 ± 40 nm),
near infrared (NIR) (790 nm ± 40 nm), and red edge (735 ± 40 nm). The resolution is
1280 × 960, with a pixel size of 3.75 µm and focal length equal to 3.98 mm; the ground
sample distance (GSD) is 6.8 cm at a flight height of 50 m (above ground level—AGL),
which was adopted for the study described.
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In addition to the RGB and monochromatic sensors, the Sequoia has a luminosity
sensor to correct the influence of the sun by obtaining data with radiometric corrections.
This sensor records not only the current lighting, but also the location of the center of the
photo and inertial data.

The planning and execution of the flight was performed through the base station,
which was developed by the same aircraft manufacturer (senseFly) with the following set:
the software eMotion, responsible for the flight scheduling and execution of the aircraft
path, and a transmitting antenna allowing the real-time monitoring of the overflight, as
well as the sending of landing commands, changes in direction, and acquisition of images.
The flight plan followed the parameters shown in Table 2.

Table 2. Flight planning parameters.

Camera Parrot Sequoia

Resolution of the RGB Camera 16 megapixels
Resolution of the Multispectral Camera 1.2 megapixels

Focal Length 3.98 mm
Vertical Cover 70%

Horizontal Cover 70%
Spatial Resolution 6.8 cm

Flight Altitude 50 m
Speed 12 m/s

Image processing was performed using the software Pix4DMapper. Digital processing
consisted of phototriangulation of the image blocks, with obtainment of the exterior and
interior orientation parameters of the images, generation of the point cloud, production of
the digital surface model (DSM), and generation of the orthomosaic. Five control points were
distributed evenly throughout the property to perform the phototriangulation of the images.
The points were surveyed with the aid of a Trimble R8 model GNSS of dual frequency in
real-time kinematic (RTK) mode with an accuracy of less than 1 mm in a 1 Hz band.

Next, the radiometric correction of the orthomosaics was performed, i.e., the conver-
sion of the values into digital numbers (DNs) for the surface reflectance. This processing
was also performed in Pix4DMapper, with resources from Parrot Sequoia. Before the flight,
the radiometric calibration of the camera was performed using a reference plate. By using
the values of this plate, the software can calibrate and correct the reflectance of the image
considering the lighting characteristics at the time of flight.

2.7. Vegetation Indices

Table 3 shows the vegetation indices that were calculated from the high-resolution
spectral bands obtained by the multispectral sensor coupled to the RPA.

Table 3. Vegetation indices calculated from high-resolution images.

Index Acronym Equation Reference

Normalized Difference
Vegetation Index NDVI NIR+RED

NIR−RED [25]

Normalized Difference
Water index NDWI G−NIR

G+NIR [26]

Enhanced Vegetation
Index 2 EVI2 2.5 ∗ NIR−RED

(NIR+2.4∗RED+1) [27]

Normalized Difference
Red Edge NDRE NIR−RED Edge

NIR+RED Edge
[28]
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Table 3. Cont.

Index Acronym Equation Reference

Clorophyll
Vegetation Index CVI NIR

GREEN ∗
RED

GREEN [29]

Green Normalized
Difference Red Edge GNDVI NIR−GREEN

NIR+GREEN [30]

Canopy Chlorophyll
Content Index CCCI NDRE

NDVI [28]

Green Ratio of
Vegetation Index GRVI NIR

GREEN [31]

Modified Simple Ratio MSR
( NIR

RED )−1(√
NIR
RED

)
+1

[32]

Infrared Percentage
Vegetation Index IPVI NIR

NIR+RED [33]

Soil-Adjusted
Vegetation Index SAVI (1+L)(NIR−RED)

L+NIR+RED [34]

Modified Soil-Adjusted
Vegetation Index 2 MSAVI [2NIR+1−((2NIR+1)2−8(NIR−RED))

0.5
]

2
[35]

Optimized Soil-Adjusted
Vegetation Index OSAVI (NIR−RED)

(NIR+RED+0.16)
[36]

Green Clorophyll Index CIgreen
(

NIR
GREEN

)
− 1 [37]

Red-edge Clorophyll Index CIrededge
(

NIR
RED EDGE

)
− 1 [37]

2.8. Correlation Analysis and Linear Regression

To identify the vegetation indices with the best correlation with the water potential
attribute, data correlation and linear regression techniques were performed where the
correlation summarized the degree of the relationship between two variables (X and Y,
for example). Conversely, regression results in a mathematical equation describing the
relationship between variables.

To perform the simple linear regression, the samples extracted from each index (con-
taining the mean reflectance value of each point) were used as the dependent variable,
and the independent variables were represented by the water potential data of the leaves
collected in the field.

To collect the dependent variables, polygonal samples were taken from the georefer-
enced points. These polygons were constructed with a buffer, i.e., each sample had a radius
of 0.20 m (20 cm). Samples were obtained using the zonal statistics tool, which calculates the
mean reflectance value of pixels within a polygon. For each georeferenced point, 30 mean
reflectance values were obtained for each vegetation index studied.

The mean value of each point and each calculated index was exported to a table in
which linear regression operations were performed using the Excel program, and the values
of the Pearson correlation coefficient (R) and coefficient of determination were obtained, in
addition to the F hypothesis tests, to test the significance of each hypothesis. Considering
that Ho: ρ = 0, the hypotheses used in this research were:

Hypothesis 0 (H0). ρ = ρ0 null hypothesis;

Hypothesis 1 (H1). ρ 6= ρ0 alternative hypothesis.
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The correlation between the variables is given by the linear coefficient of Person (R)
calculated from Equation (2). The value of R is always in the range of −1 to 1.

R =
n ∑n

i=1 xiyi −∑n
i=1 xi ∑n

i=1 yi√
n ∑n

i=1 xi
2 − (∑n

i=1 xi)
2
√

n ∑n
i=1 yi

2(∑n
i=1 yi)

2
(2)

The interpretation of Pearson’s correlation coefficient is described in Table 4.

Table 4. Interpretation of Pearson’s correlation coefficient.

Correlation Coefficient Correlation

Rxy = 1 Perfect Positive
0.8 ≤ Rxy < 1 Strong Positive

0.5 ≤ Rxy < 0.8 Moderate Positive
0.1 ≤ Rxy < 0.5 Weak Positive
0 ≤ Rxy < 0.1 Very Weak Positive

0 Null
−0.1 ≤ Rxy < 0 Very Weak Negative
−0.5 ≤ Rxy < −0.1 Weak Negative
−0.8 ≤ Rxy < −0.5 Moderate Negative
−1 ≤ Rxy < −0.8 Strong Negative

Rxy = −1 Perfect Negative
Source: Adapted Ref. [38].

The relationship between these variables is represented by a mathematical model, that
is, an equation that associates the dependent variable with the independent variables. The
model is called simple linear regression. From the linear regression, the determination
coefficient is obtained, which is expressed by Equation (3).

R2 =
∑(ŷi − y)2

∑(yi − y)2 =
variation explained by the model

total variation
(3)

The coefficient of determination is a descriptive measure of the proportion of variation
in the independent variable that can be explained by variations in the dependent variable
according to the specified regression model. The closer the coefficient of determination is
to 1, the better the degree of explanation of the variation in Y as a function of the variable X.
It is always a positive measure and is obtained in simple linear regression by increasing the
squared Pearson’s correlation coefficient.

The F test of hypotheses at the 95% confidence level was used to determine whether
the variability between the group means was greater than the variability of the observations
within the groups. If this proportion is sufficiently large, it can be concluded that not all
means are equal.

3. Results
3.1. Hydrological Conditions

Figure 5a,b represent the graphs containing the climate data during the interval that
precedes the collections in the dry period (May 2020) until the collection of the rainy
period (January 2021). Figure 5a represents the precipitation and deficit data for the
municipality of Três Pontas, as well as the average leaf water potential data obtained in
the two field collections (August 2020 and January 2021), and to complement these data,
the mean of historical series of precipitation and deficit were added. Figure 5b represents
the temperature distribution graph (mean, maximum, minimum and historical average
temperature 1991–2021) within the range from May 2020 to January 2021.
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3.2. Descriptive Statistic

The descriptive statistics of leaf water potential (Ψw, in MPa) are shown in Table 5.
The first indicators of data heterogeneity are high values of the coefficient of variation (CV).
The authors of [39] state that the variability of an attribute can be classified according to
the magnitude of its CV, which according to the authors is low when it is less than 10%;
moderate when it is in the range between 10 and 20%; high when it is between 20 and 30%;
and very high when it is above 30%.

3.3. Geostatistical Analysis

Table 6 shows the adjustment parameters of the semivariograms. Of the evaluated
models (spherical, exponential, and gaussian), the spherical semivariogram model had
the lowest ME for both evaluated periods; thus, it was the fit model chosen. The authors
of [40] state that there is a predominance of the spherical mathematical model for studies
in soil science.

Table 5. Descriptive statistics for the variable Ψw (MPa) for the dry and rainy seasons.

Period Variable Descriptive Statistics

Min Max Md Mean Var SD CV (%)

Dry Ψw MPa (2020) −3.3 −0.5 1.15 1.45 0.61 0.78 53
Rainy Ψw MPa (2021) −0.8 −0.3 0.6 0.59 0.01 0.10 17

Min = minimum value; Max = maximum value; Md = median; Mean = mean; Var = variance; SD = standard
deviation; and CV = coefficient of variation (%).

Figure 5. Cont.
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Figure 5. Variation in climatic conditions of precipitation and leaf water potential (a) (source: the
authors (2022); HP-historical precipitation (mm), HD-historical deficit (mm)) (b) and temperature
during the periods from May 2020 to January 2021 in the municipality of Três Pontas (source: the
authors (2022); HT-historical temperature (◦C).

Table 6. Parameters for fitting the spherical and exponential semivariogram models of the variables
evaluated by the OLS method.

Variable Period Model C0 C1 C0 + C1 A DSD ME

Ψw
(MPa)

Dry Sph 0.10 0.40 0.50 20.00 strong 0.00
Rainy Sph 0.01 15.00 15.01 0.06 strong 0.00

The leaf water potential had a range of 15 m for both the sampling in the dry season
and the sampling in the rainy season, i.e., Ψw had a similar area of influence for both
sampling periods. According to the classification of [23], the variable Ψw showed a strong
degree of dependence for both periods evaluated. The semivariograms fitted for the water
potential variable are shown in Figure 6a,b.
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Figure 6. Semivariograms.

Figure 7a,b represent the spatial variability maps of Ψw made by kriging interpolation.

3.4. Regression and Correlation Analysis

The morphophysiological responses of plants under stress conditions alter the op-
tical properties of coffee plants and the reflectance patterns of the leaves and canopies.
Researchers in the areas of orbital RS have developed studies to evaluate water stress in
coffee plantations [41,42].

Ref. [43] state that agricultural sectors have widely used RPA for conveniently and
efficiently detecting water stress. The evaluation of water stress using vegetation indices
obtained by high-resolution images is found in the studies of [44–47]. These authors
state that the use of high-resolution images with the application of vegetation indices is a
valuable tool for evaluating water stress in crops, but none of these studies evaluated water
deficit in coffee plantations.

A linear regression and correlation analysis was performed to evaluate the relationship
between the leaf water potential collected in the field and the values obtained by calculating
the 15 vegetation indices and the 4 bands obtained by the multispectral sensor. Table 7
shows the Pearson correlation analyses between the mean of the samples collected from the
multispectral bands (red, NIR, red edge, and green) and the vegetation indices in relation to
the data collected in the field for the dry season and rainy season. An F test of the hypotheses
was performed to evaluate the significance of the correlation at a level of 0.05 (5%).

During the dry season, no correlations were found between water potential in relation
to the multispectral bands and the vegetation indices for the vegetation samples using the
F test for the hypotheses. For the rainy season, there was a significant correlation of 0.3993
(39.93%) between the water potential and the multispectral red band.

Through the significant correlation presented by the red band and the water potential
variable, the parameters of the linear equation obtained by the analysis of variance are
represented in Table 8 and indicate an R2 value of 0.1595 or 15.95%.
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Figure 7. Maps of spatial variability for the variable Ψw (MPa) for the (a) dry and (b) rainy periods.

Figure 8 shows the RGB orthomosaic of the study area obtained for both the dry
season (Figure 8a) and the rainy season (Figure 8b). The crop shows very distinct visual
characteristics; there is a greater presence of dust on the coffee plant in the dry season, and
there is a green, clean, and vigorous plant in the rainy season.

From the verification of the significant correlations between leaf water potential and
the vegetation indices, Figure 9a,b represent the maps of the red multispectral band for
both the dry and rainy periods, in which there was a significant correlation with the water
potential data collected in the field.

Table 7. Correlation analysis between the leaf water potential and multispectral bands and vegeta-
tion indices.

Spectral Bands and
Vegetation Indices

Ψw (MPa)

Dry Rainy

RED 0.3188 ns 0.3993 **
NIR 0.0489 ns 0.1220 ns

RED EDGE 0.1921 ns 0.0493 ns

GREEN 0.2852 ns 0.1424 ns

NDVI 0.1768 ns 0.3010 ns

NDWI 0.0905 ns 0.2620 ns

EVI2 0.0663 ns 0.1663 ns

NDRE 0.2870 ns 0.3263 ns

CVI 0.1742 ns 0.0865 ns

GNDVI 0.0905 ns 0.2620 ns

CCCI 0.2451 ns 0.3356 ns

GVI 0.1113 ns 0.2691 ns

MSR 0.1768 ns 0.3010 ns

IPVI 0.1768 ns 0.0996 ns

SAVI 0.0442 ns 0.1710 ns

MSAVI 0.1012 ns 0.1576 ns

OSAVI 0.1035 ns 0.2090 ns

CI green 0.1113 ns 0.2691 ns

CI red edge 0.2906 ns 0.3313 ns

Ψw-water potential; **—significant at the 5% probability level (p < 0.05) and ns—not significant.
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Figure 8. RGB orthomosaics for the (a) dry and (b) rainy periods.
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Table 8. Linear regression analysis parameters.

Variable Period Spectral Band or Index β0 β1 R2

Ψw (MPa) Rainy RED −0.0402 −0.0134 0.1595

Ψw—water potential; β0—intercept; β1—angular coefficient; R2—determination coefficient.

Figure 9. Red multispectral band for the (a) dry and (b) rainy periods.

This spectral band ranged from the lowest value of 0.01 to the highest value of 0.37;
for the dry season, there was a greater predominance in the range of 0.01 to 0.13, and for
the rainy season, the highest predominance was in the value of 0.01.

Visually, this band did not present very different characteristics from one period to
another; a common characteristic between them occurred at the border of the area, where
there were some points where the band had a reflectance value of 0.25.

4. Discussion
4.1. Variation in Climatic Conditions and Descriptive Analysis of Leaf Water Potential

Evaluating the climate variation within the period from May 2020 to January 2021
(Figure 5a), it is observed that in the interval comprising the dry period (May 2020 to
August 2020), precipitation was lower and the deficit was greater in relation to the data
presented by the historical series, which justifies the low values of leaf water potential.
Within the range from November 2020 to January 2021 (rainy period), only the month of
December presented precipitation greater than that established for the historical series, and
within this period there were no deficits.

The average monthly temperatures from May 2020 to January 2021 were higher
than the averages presented by the historical series (Figure 5b) with the exception of the
month of May. The relationship between temperature and precipitation influences the
evapotranspiration of the coffee tree and can be evaluated by calculating the climatological
water deficit; it is observed that the accumulated water deficit for this period from May
2020 to January 2021 was 336 mm, and the month that presented the greatest water deficit
was the month of September, which is justified by the second highest average temperature
of the period (May 2020 to January 2021) behind only the month of December.

For the dry season, Ψw had a CV of 53%, and for the rainy season it had a CV of 17%,
presenting very high and moderate heterogeneity, respectively, according to the criteria
of [39]. Taking into account the negative sign for the water potential reading in MPa, the
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lowest value occurred in the dry season (−3.3 MPa), whereas the highest value occurred in
the rainy season (−0.3 MPa). The leaf water potential showed mean values of−1.45 MPa for
the dry season and −0.59 MPa for the rainy season. In [48], water potential values between
−1.5 MPa and −3.0 MPa represent moderate and severe water deficits, respectively.

Thus, the mean water potential values collected in the dry and rainy periods were
not within the water deficit interval. Statements by [49,50] indicate maximum values of
−1.5 MPa for coffee plants without irrigation in the field under normal climate conditions,
suggesting that this is a limiting value for the nonoccurrence of physiological disturbances
in the plant under normal cultivation conditions.

The moderate water-deficit severity reflected in the water potential for the dry period
may be related to the absence of rainfall in this period, as observed in Table 1, where the
last 20 mm rainfall occurred 74 days (31 May 2020) before the date of sample collection.
The highest values of this attribute evaluated in the rainy season were observed when there
was a 115 mm rainfall seven days before the date of sample collection.

Some authors have presented water potential results similar to those found in this
study. For example, Ref. [51] found a mean water potential value of–1.17 MPa for the
cultivar of the current study (Topázio MG 1190); Ref. [51] found mean water potential
values of −1.25 MPa; and the mean value was −0.79 MPa for a coffee cultivation area
during the rainy season, which was below the severity interval mentioned by [52], as
occurred in this study.

4.2. Geostatistical Analysis

Leaf water potential for the dry season (Figure 7a) ranged from the lowest value of
−3.2 MPa to the highest value of −0.7 MPa; the predominance of water potential for this
period was in the range between −1.7 and −1.2 MPa (tones from creamy yellow to light
orange), with part of these values belonging to the range of severity of moderate water
deficit [48]. The lowest values, in the range of −3.2 to −2.7 MPa, were observed northwest
of the area (shades from blue to green). The leaf water potential for the rainy season
(Figure 7b) ranged from the lowest value (−0.8 MPa) to the highest value (−0.3 MPa)
and, according to [53], this range was within the range in which plants do not present
water deficit.

4.3. Regression and Correlation Analysis

The morphophysiological responses of plants under stress conditions alter the optical
properties of coffee trees and the reflectance patterns of leaves and canopies. Researchers
in the areas of orbital remote sensing have developed work to assess water stress in coffee
growing [41,42].

By identifying water balance variables and their relationship between vegetation in-
dices obtained by the MODIS sensor (Terra satellite) for coffee growing, Ref. [40] evaluated
the NDVI and EVI vegetation indices obtained by the MODIS sensor (Terra satellite). The
authors claim that the relationships between climate–topological water balance variables
and vegetation indices were verified, but with weak statistical correlation.

Aiming to estimate the water potential of the leaf through the evaluation of vegetation
indices calculated through Landsat−8 images, [41] states that a quadratic algorithm that
uses the Normalized Difference Vegetation Index (NDVI) performed better, showing a
correlation coefficient (R2) of 0.82.

The authors [43] state that agricultural sectors have used RPA widely for convenience
and efficiency in detecting water stress.

Preparing a literature review, Ref. [44] valuated the application of different types of
RPA and remote sensors and compared their performance with field truth for different
crops. The results of this review indicate that the NDVI, TCARI/OSAVI and PRI showed
positive correlations related to water stress.

The authors of [45] assessed the prospects for improving agricultural and water
productivity through remotely piloted aircraft. The authors aimed to build a literature
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review where they summarized the use of RPA in smallholder agriculture in developing
countries. The review highlights the role of the NDVI index obtained by RPA in assessing
crop health, evapotranspiration, water stress and disaster risk reduction. Based on the
results, the authors state that water stress indices (CWSI and WDI) provide a better option
for agricultural water management and adaptation to climate change.

The authors of [46], using images from a remotely piloted aircraft equipped with
a multispectral sensor, aimed to identify water stress in maize under different levels of
irrigation. Through high-resolution multispectral images, the authors found nine vegetation
indices to be related to water stress. Based on the results, the authors observed R2 values
of 0.47 and 0.50 for TCARI/RDVI and TCARI/SAVI in the reproductive and maturation
stages, respectively, and 0.81 and 0.80 for TCARI/RDVI and TCARI/SAVI in the late
reproductive and maturation stages, respectively.

The authors of [47] investigated whether the water deficit index (WDI) based on
images from remotely piloted aircraft could provide accurate maps of water stress in
crops at different stages of growth. For this study, the author evaluated two crops grown
with spring barley using thermal and RGB cameras, which were mounted in the RPA.
Based on the results, the authors concluded that WDI maps can potentially serve as water
stress maps.

The authors mentioned above highlight in their studies the various applications of
RPAs in agriculture as well as the assessment of water stress in different crops, but during
the development of this work, no study was found that assessed water stress in coffee crops
through high-resolution images.

Despite the positive correlation between leaf water potential and the red spectral band,
the R2 value was not significant (0.1595). A justification for this fact is the difference be-
tween data collection methodologies. Three leaves were collected from each georeferenced
plant to determine the water potential obtained in the field, and were subjected to the
Scholander pressure bomb. Regarding the sampling performed to obtain the vegetation
indices, polygons 20 cm in diameter whose perimeter contained more than three leaves
of coffee plants were sampled; this perimeter may contain healthy and unhealthy leaves,
which directly interferes with the mean values and does not follow a specific sampling
pattern, as is the case of field sampling.

Another justification for the results presented in this study may be linked to the dust
layer present on the coffee plant in the dry period. The dust layer directly affects the
reflectance value of the multispectral bands, serving as a basis to calculate the vegetation
indices and to estimate water potential using the Scholander pressure bomb, which requires
that clean leaves are inserted in the pressure chamber, i.e., these leaves did not represent
the actual field conditions under which the images were captured by the sensor coupled to
the RPA.

5. Conclusions

The water potential variable showed the spatial variability structure through the
calculation of the CV. In turn, the geostatistical analysis showed that the degree of spatial
dependence was strong for both periods evaluated. In the correlation analysis between
water potential, multispectral bands and vegetation indices, only the red band evaluated in
the rainy season showed a significant correlation at 0.3993 (39.93%). Even with a significant
correlation between the water potential and the red band for the rainy season, the R2 value
was low (15.95%) in the linear regression analysis.

The use of the geostatistical tool was efficient for evaluating the spatiotemporal be-
havior of the water potential variable. Conversely, the use of high-resolution images to
evaluate the water conditions of coffee plantations requires better studies, especially regard-
ing sampling, to make this tool more efficient in monitoring and detecting the variability of
water conditions and to aid producers in their decision-making in relation to management.
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