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Abstract: The leaf extracts of Gymnema sylvestre consist of secondary metabolites which are well
known for antioxidant activity. This study aimed to measure the drying characteristics of G. sylvestre
leaves under far-infrared radiation (FIR) and to optimize the specific energy consumption for drying
and antioxidant activity of ethanol-water extract of dried leaves. Fresh leaves were harvested and
exposed to combinations of four different temperatures (125, 150, 175 and 200 ◦C) and exposure
times (5, 10, 15 and 20 min). Drying kinetics, energy consumption, color changes, total phenolic
content (TPC) and antioxidant activities were quantified. Both temperature and drying time have
significant (p < 0.05) effects on drying characteristics and antioxidant activity. The equilibrium
moisture content was achieved at 200 ◦C and 18 min. The specific energy decreased and total
color changes increased with temperature. Under lower temperatures (125 and 150 ◦C), TPC and
antioxidant activity increased with exposure time, whereas higher exposure time (20 min) with high
temperatures (175 and 200 ◦C) significantly decreased TPC and antioxidant activity. The highest
TPC of 30.5 mg TAE/g leaf-fresh weight was achieved at 200 ◦C and 15 min. The optimal drying
conditions achieved from the dissimilarity function method were 200 ◦C and 8.4 min.

Keywords: antioxidant activity; color changes; energy consumption; drying kinetics; far-infrared;
response surface method

1. Introduction

Gymnema sylvestre is a medicinal plant used in ayurvedic and homoeopathic therapy.
It is a slow-growing, perennial and woody climber belonging to the family Ascleiapedi-
aceae [1]. This plant possesses several bioactive secondary metabolites, including Gym-
nemic acid and gymnemasaponins [2]. Moreover, bioactive compounds such as alkaloids,
tannins, flavonoids, and phenolic compounds are present in this plant. Therefore, the plant
is used for various treatment of illnesses, including diabetes, obesity, liver diseases, asthma,
constipation, cardiopathy, arthritis, infections and inflammations [2–4].

Free radicals mainly belong to two groups, namely reactive oxygen species and reactive
nitrogen species. These vigorously react with other molecules, causing oxidative stresses
and damaging multiple-system organs [5]. These free radicals are naturally generated
by the biological process in the body and are also accumulated in the body when food
with free radicals are consumed [6,7]. Antioxidants are generally used to quench the free
radicals and reduce the harm to the vital biological molecules in the body. The interest in

AgriEngineering 2023, 5, 611–622. https://doi.org/10.3390/agriengineering5010038 https://www.mdpi.com/journal/agriengineering

https://doi.org/10.3390/agriengineering5010038
https://doi.org/10.3390/agriengineering5010038
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriengineering
https://www.mdpi.com
https://orcid.org/0000-0002-5400-3368
https://orcid.org/0000-0002-7605-2996
https://doi.org/10.3390/agriengineering5010038
https://www.mdpi.com/journal/agriengineering
https://www.mdpi.com/article/10.3390/agriengineering5010038?type=check_update&version=1


AgriEngineering 2023, 5 612

finding and using plant-based natural antioxidants has increased due to the adverse effects
of synthetic antioxidants [8–10].

It is well documented that water and alcoholic extracts of G. sylvestre show antioxidant
activity [11,12]. For example, the alcoholic leaf extract of G. sylvestre exhibits a total
antioxidant capacity of 17.54 mg/g ascorbic acid [11]. Another study reported that the
ethanol extract of G. sylvestre showed high total phenolic and flavonoid contents [13]. The
same study reported that the 2,2-diphenyl-1-picrylhydrazyl (DPPH) EC50 value of this
extract was 303 µg mL−1. The DPPH EC50 value of ethanolic extract from dried leaves was
reported as 76.59 µg mL−1 [12]. Further, this study reported that ethanol extract showed
higher antioxidant activity than methanol and water extract.

Dried herbs have been used for medicinal purposes as an alternative to fresh leaves
where their availability is lacking. G. sylvestre is also used in traditional medicine in dried
powder form [14]. Drying is a cost-effective preservation technique which decreases the
moisture content and increases the shelf life of the products [15]. Infrared (IR) has been
applied for drying herbs, including curry leaves, tea, peppermint and parsley [16–18].
This method rapidly transfers heat to the drying substance and provides uniform heating
without heating the air [19,20]. The moisture content, surface roughness and wavelength
of IR are a few parameters that influence the penetration depth of IR [21]. Generally, the
penetration depth of the IR is low and is therefore only suitable for thin-layer drying [22].
To this end, only a limited number of studies reported the antioxidant properties of dried
G. sylvestre leaves [12,14]. Additionally, far-infrared radiation (FIR) has a high potential to
be used as a heating source for drying herbs. Nevertheless, it has not been applied to dry
the G. sylvestre leaves to the authors’ best knowledge. Therefore, the overall objective of
this study was to evaluate the effects of FIR on the color, TPC and antioxidant properties of
G. sylvestre. Further, this study used the response surface method (RSM) to optimize the
drying conditions to achieve a better-quality product with low specific energy consumption.

2. Materials and Methods

In this study, a batch-type FIR dryer was fabricated and G. sylvestre leaves were
exposed under different temperatures and exposure times. The energy consumption for
drying was measured and specific energy consumption (SEC) was calculated. The color
changes of dried leaves during drying were quantified. Then the dried leaves were ground
and made into fine powders. The water-ethanol extracts of dried leaves were obtained and
total phenolic compound, DPPH activity and ferric reducing antioxidant power (FRAP)
were measured. Finally, the drying parameters were optimized using the RSM to minimize
the SEC and to maximize the antioxidant activity.

2.1. Plant Material Preparation

The fresh G. sylvestre leaves were harvested from Jaffna District located in the northern
region of Sri Lanka (longitude and latitude are 9.6908◦ N and 80.0211◦ E, respectively)
during the year 2018. The plant leaves were washed with distilled water and stored at 4 ◦C
(maximum of 2 weeks). Before the experiment, the leaves were taken out and allowed to
equilibrate at room temperature (24–25 ◦C). Initial moisture content was measured using
the oven-drying method at 110 ◦C until the constant moisture content was achieved [23].

2.2. Drying Setup and Treatments

A batch-type FIR dryer was assembled with two FIR panels, each having 650 W
(Figure 1). A wave guide made of aluminum was used to direct the FIR toward leaf samples.
For each experiment, 25 g of G. sylvestre leaves were spread on the drying table without
overlapping each other. For this, leaves of similar sizes were selected to maintain an equal
number of leaves dried under each experiment. The leaves were dried under combinations
of four different temperatures (125, 150, 175 and 200 ◦C) and exposure times (5, 10, 15 and
20 min). The corresponding symbols for the temperatures are T1, T2, T3 and T4 and
exposure times are X1, X2, X3 and X4, respectively. The drying temperature was adjusted
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by changing the gap between the FIR emitter and the drying table. A K-type thermocouple
(Omega, Norwalk, CT, USA) was used to measure the drying temperature. The continuous
weight changes were measured by a top-loading balance. The experiment was repeated
five times (serving as replications) for each combination of temperature and exposure time.
The dried leaves were stored in a Ziploc polythene bag under ambient conditions.
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Figure 1. The schematic diagram of the batch-type FIR dryer assembled for drying G. sylvestre leaves.

2.3. Drying Kinetics

The drying curves for G. sylvestre leaves were plotted using Equation (1) [24].

MR =
MCt

MC0
(1)

where MC0 and MCt are moisture content at the initial stage and at time point t, respectively.

2.4. Specific Energy Consumption

The energy consumption for drying was measured using a portable power analyzer
(YOKOGAWA, model CW240). The specific energy consumption (SEC) refers to the energy
required to evaporate the unit weight of moisture from the leaves and was calculated using
Equation (2) [23].

SEC =
Eu

Mw
(2)

where SEC is specific energy consumption (MJ kg−1), Eu is energy consumption of FIR (MJ)
and Mw is the amount of water removed (kg).

2.5. Color Measurement

The color values L (0 = black, 100 = white), a (−a = greenness, +a = redness) and
b (−b = blueness, +b = yellowness) were measured using a colorimeter (Minolta CR 300,
Tokyo, Japan). The total color difference (∆E) was calculated using Equation (3) [20].

∆E =
[
(L − Lo)

2 + (a − ao)
2 + (b − bo)

2
]0.5

(3)

where ∆E is total color difference, L, a and b are lightness, greenness to redness and blueness
to yellowness of dried leaf samples, respectively. The same symbols with “0” subscript
show the color values of fresh leave samples.

2.6. Water-Ethanol Extract of the Leaves

The leaf extract was prepared by a modified method by Khramov, et al. [25]. Fine
powder of the dried leaves was obtained by grinding the leaves using a coffee grinder
(BLACK + DECKER, CBM4-B5) at 600 rpm and the sample was passed through a 250-micron
sieve. An amount of 400 mg of dried powder was treated with 20 mL of water-ethanol
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(1:1 v/v) mixture in a closed Erlenmeyer flask and this mixture was heated in a water
bath at 50 ◦C for 1 h. Then, the leaf extract was centrifuged (1000× g for 3 min) and the
supernatant was filtered through a Whatman No. 45 filter paper. The leaf extract was
stored under 4 ◦C until used for further analysis.

2.7. Total Phenolic Content

The total phenolic content (TPC) of leaf extracts was measured using the Folin–
Ciocalteu method [26]. In brief, 0.5 mL of Folin–Ciocalteu reagent (a 10% v/v in distilled
water) was added and vortexed well with 50 µL of water-ethanol extract of G. sylvestre.
After 5 min, 0.4 mL of 7.5% Na2CO3 was mixed and kept at ambient conditions for 5 min.
An amount of 50 µL of distilled water was used in place of plant extract to prepare a blank.
The absorbance was quantified at 765 nm using a UV-VIS spectrophotometer (SHIMADZU-
UV 1800, Kyoto, Japan). Tannic acid (0.1 g L−1) was used as the stand solution and TPC is
expressed in terms of tannic acid equivalent. TPC was calculated using Equation (4).

TPC =
ABe

ABs
× Sc (4)

where TPC is total phenolic content, ABe is absorbance of leaf extract, ABs is absorbance of
standard and Sc is concentration of standard.

2.8. DPPH Radical Scavenging Assay

The free radical scavenging activity of the leaf extract was measured using the method
by Blois [27] with modifications. A methanolic solution of 0.135 mM 2,2-diphenyl-1-
picrylhydrazyl (DPPH) was prepared and used for the analysis. Different volumes of leaf
extract (from 0 to 250 µL with an increment of 50 µL) were mixed with distilled water
to make the total volume 750 µL and then 300 µL of DPPH solution was added. This
mixture was kept in the dark for incubation for 30 min and absorbance was measured at
517 nm using a UV-VIS spectrophotometer (SHIMADZU-UV 1800, Kyoto, Japan). Using
Equation (5), the DPPH scavenging activity was calculated. DPPH scavenging activity
was plotted against leaf concentration and the concentration that inhibits half of the free
radicals (IC50) was estimated.

DPPH activity =
ABC − ABS

ABC
× 100 (5)

where ABC and ABS are absorbance of control and sample, respectively.

2.9. FRAP (Ferric Reducing Antioxidant Power) Assay

The ferric-reducing power of the leaf extract was measured using a FRAP assay [28].
A new FRAP solution was prepared by mixing 10 mM of 2, 4, 6-tripyridyl triazine (TPTZ)
with a 20 mM ferric chloride and 0.25 M acetate buffer at pH 3.6 in a 1:1:10 volume ratio.
Leaf extract of 20 µL was vortexed well with 1 mL FRAP reagent. A 1000 µM FeSO4 solution
was used as a standard. The absorbance of standard and leaf extract-reagent mixtures was
obtained at 593 nm and ferric-reducing power was calculated using Equation (6). During
the FRAP test, colorless Fe3+—TPTZ was reduced to blue color Fe2+—TPTZ and this color
change can be measured at 593 nm wavelength [29].

FRAP =
ABe

ABs
× FRAPc (6)

where ABe is absorbance of leaf extract, ABs is absorbance of standard and FRAPc is
concentration of FRAP standard.
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2.10. Optimization of Drying Conditions

The response surface method (RSM) was used to optimize the drying parameters
to obtain better quality products and save energy and time. RSM was performed using
Minitab 18. The second-degree polynomial equation was employed in RSM since it is
widely used for optimization [22]. The optimization function is expressed in Equation (7).

Y = β0 +
k

∑
i=1

βiXi +
k

∑
i=1

βiiX2
i + ∑

k

∑
i<j=1

βijXiXj (7)

where Y values are response variables (i.e., specific energy consumption, ∆E, TPC, DPPH
and FRAP); β0, βi, βii and βij denote constant regression coefficients of intercept, linear,
quadratic and interaction terms, respectively; Xi and Xj are independent variables, namely
temperature and exposure time, respectively.

The desirability function was used to develop the desirability value for each response
variable and all these individual desirability values were added together to obtain the
desirability index (D), which is expressed in Equation (8).

D =

(
n

∏
i=1

dVi
i

) 1
∑ Vi

(8)

where D is desirability index, di is desirability value of an individual response variable,
Vi is relative importance and n is the total number of response variables.

2.11. Data Analysis

The data were presented as mean ± standard deviation (SD) of five replicates. The
one-way analysis of variance (ANOVA) was employed to study the effect of treatments at
a 5% significance level. Tukey honest significant difference (HSD) test was performed for
mean separation at a 5% significance level. Correlation analysis was performed between
TPC and antioxidant assays (DPPH and FRAP). All the statistical analyses were done using
Minitab 18 (Minitab, Penn State University, State College, PA, USA).

3. Results and Discussion
3.1. Drying Kinetics

The moisture ratio changes of G. sylvestre dried under FIR are shown in Figure 2. The
moisture loss increased with decreasing rate for all exposure times. This could be due to
the reason that loosely bound moisture can be rapidly released from the sample; however,
tightly bound moisture is harder to evaporate, which decreased the drying rate with time.
Increasing the drying temperature increased the drying rate. The samples dried at 200 ◦C for
18 min only reached the equilibrium moisture content, and other drying combinations did
not reach the equilibrium moisture content. Under these drying combinations, treatments
T3X4, T4X3 and T4X4 only decreased the moisture content below this recommended level.
The total amount of moisture losses for the samples dried for 20 min under 125, 150, 175
and 200 ◦C were 16.5, 18.25, 19 and 19.5 g, respectively. The lowest and highest drying rates
were achieved for T1X1 and T4X4 drying combinations, respectively. The corresponding
moisture losses were 10 and 19.5 g, respectively.

3.2. Specific Energy Consumption (SEC)

Drying is an energy-consuming process and, therefore, it is a very important parameter
in engineering design and operation. The SEC for drying of G. sylvestre leaves ranged be-
tween 38.8 to 93.9 (Table 1). Temperature and drying time had a significant interaction effect
on SEC. The SEC significantly (p < 0.05) increased with drying time for all drying tempera-
tures (Table 1). The highest and lowest SEC were observed for T1X4 and T1X1, respectively.
For a fixed exposure time, increasing the temperature significantly (p < 0.05) decreased
the SEC. Fast-drying rate under high temperatures decreased the energy consumption for
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drying, thus the SEC decreased with increasing temperature. Similar observations were
reported for the drying of peppermint leaves [30] and blueberries [31].
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Table 1. Specific energy consumption (SEC), total phenolic content (TPC) in terms of tannic acid
equivalent (TAE) and antioxidant properties (DPPH and FARP) of dried G. sylvestre.

Temperature Time SEC TPC DPPH (IC50) FRAP

(◦C) (min) (MJ kg−1 H2O) mg TAE/g Leaf
Weight (w.b) (mg mL−1) µmol g−1 Leaf

Weight (w.b)

125 (T1) 5 (X1) 38.8 ± 0.8 h 24.2 ± 0.3 j 9.2 ± 0.2 i 63.0 ± 1.8 i

10 (X2) 60.6 ± 2.1 e 25.5 ± 0.4 hi 9.4 ± 0.1 hi 64.4 ± 0.5 hi

15 (X3) 79.4 ± 1.1 c 26.2 ± 0.2 g 9.9 ± 0.3 gh 67.4 ± 0.3 g

20 (X4) 93.9 ± 1.1 a 26.6 ± 0.4 fg 10.4 ± 0.3 fg 69.1 ± 0.4 ef

150 (T2) 5 (X1) 32.4 ± 1.7 i 25.1 ± 0.3 i 9.5 ± 0.2 hi 65.2 ± 0.4 h

10 (X2) 52.5 ± 1.5 f 26.1 ± 0.3 gh 10.4 ± 0.2 fg 68.3 ± 0.5 fg

15 (X3) 70.2 ± 1.6 d 27.2 ± 0.2 ef 11 ± 0.2 de 72.2 ± 0.3 d

20 (X4) 85.8 ± 2.1 b 27.9 ± 0.2 de 11.3 ± 0.4 de 74.7 ± 0.6 c

175 (T3) 5 (X1) 29.1 ± 2.1 i 27.4 ± 0.2 e 10.9 ± 0.3 ef 69.7 ± 0.5 e

10 (X2) 49.8 ± 2.9 f 28.4 ± 0.2 cd 11.5 ± 0.2 cd 73.9 ± 0.3 c

15 (X3) 66.5 ± 1.6 d 29.7 ± 0.4 b 12.1 ± 0.3 c 77.7 ± 0.6 b

20 (X4) 82.1 ± 2.6 bc 26.3 ± 0.4 g 10.9 ± 0.3 de 73.9 ± 0.5 c

200 (T4) 5 (X1) 24.5 ± 1.5 j 28.2 ± 0.3 cd 11.4 ± 0.3 de 72.1 ± 0.3 d

10 (X2) 44.3 ± 2.6 g 28.8 ± 0.3 c 12.7 ± 0.2 b 76.9 ± 0.5 b

15 (X3) 61.0 ± 2.5 e 30.5 ± 0.2 a 13.3 ± 0.3 a 80.7 ± 0.4 a

20 (X4) 80.6 ± 2.2 c 26.4 ± 0.4 g 11.5 ± 0.2 d 76.9 ± 0.3 b

Means with the same letter in each column are not significantly different at p < 0.05.
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3.3. Color Changes

The color of dried powder is an important sensory quality attribute from the con-
sumers’ perspective. Bright green color of dried leaves is preferred by consumers over
dark or off-green colors. The color changes of G. sylvestre leaves during FIR drying are
shown in Figure 3. The CIE color scale indicates three values: L (white to black), a (red
to green), and b (yellow to blue). The color values of fresh G. sylvestre leaves soon after
harvest were 39.9, −11.5 and 19.6, respectively, for L, a and b. The “L” value decreased
with increasing temperature and exposure time, which shows that the lightness decreased
during drying (Figure 3a). The bright greenness of the dried leaves that decreased with
increasing drying conditions can be seen in Figure 3b. The highest and lowest “L” values
were 38.94 and 22.98, respectively, while the highest and lowest negative “a” values were
−10.76 and −1.058, respectively. Conversely, color value “b” decreased with temperature
and time (Figure 3c).
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and (d) total color changes (∆E).

The total color change (∆E) of a good drying method should have lower values. All
the dried samples exhibited changes in ∆E value, which ranged from 1.4 to 23.1 (Figure 3d).
The T1X1 treatment produced the lowest ∆E, whereas the highest ∆E was produced by the
T4X4 treatment. Chlorophyll a and chlorophyll b are the pigments that provide the green
color for the leaves. Under high thermal treatment, magnesium ion replaces the hydrogen
ion in chlorophyll and converts chlorophylls to pheophytins, which decreases the green
color [30,32]. A similar observation was reported for drying mint leaves using a microwave
vacuum dryer [32]. However, the highest ∆E obtained in this study was lower compared to
the highest ∆E of mint leaves dried under FIR as reported by Salarikia et al. [30].

3.4. Total Phenolic Content (TPC)

Polyphenols are chemically and biologically active secondary metabolites which
provide several benefits to humans, including antioxidant activity, anticancer effect, anti-
inflammatory effect and modulate gene expression [33]. The TPC content of the fresh
G. sylvestre leaves was 24.15 ± 0.84 mg tannic acid equivalent per g of fresh leaf weight. The
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lowest and highest TPC values for dried G. sylvestre leaves were 24.2 and 30.5 mg tannic
acid equivalent per g of fresh leaf weight, which was obtained from treatments T1X1 and
T4X3, respectively (Table 1).

Under lower temperatures (125 ◦C—T1 and 150 ◦C—T2), TPC significantly (p < 0.05)
increased with exposure time from 5 to 15 min, but a significant difference was not observed
between 15 and 20 min. Several studies showed that TPC increased with temperature and
exposure time under FIR drying [34–36]. For example, a study reported that TPC increased
with the exposure time of FIR emission for a defatted sesame meal [35]. It is well docu-
mented that FIR can cleave bounds and release polyphenols from large polymers [36,37],
which could be the reason for the observed TPC values. Nevertheless, the relationship for
exposure time with TPC was different for high-temperature treatments (175 ◦C—T3 and
200 ◦C—T4). At high temperatures, TPC significantly (p < 0.05) increased with exposure
time by up to 15 min and then significantly (p < 0.05) declined at 20 min. Although the
TPC increased with increasing temperature, it can be denatured for prolonged exposure at
high temperatures [38]. A similar observation was reported on onion drying in which the
TPC content increased for temperatures from 80 to 120 ◦C and then declined at 150 ◦C [39].
However, the effect of temperature and exposure time on TPC varies depending on the
drying method, drying conditions and type of plant [36,38].

3.5. Antioxidant Activity

The antioxidant and antiradical activities of the ethanol-water extracts of dried
G. sylvestre leaves were measured by DPPH and FRAP assays. The DPPH radicals
are stable at ambient conditions and accept an electron from antioxidants to become
a stable diamagnetic molecule that can be measured at 517 nm. The IC50 value of fresh
G. sylvestre leaves was 9.2 ± 0.7 mg L−1 of leaf extract volume. The IC50 values of dried
leaves were between 13.3 and 92 mg L−1 of leaf extract volume. Temperature, drying
time and interaction of these two factors have significant (p < 0.05) effects on the IC50
value. The relationship of DPPH with exposure time under low (125 and 150 ◦C) and
high temperatures (175 and 200 ◦C) were different. For low temperatures, the IC50 value
significantly (p < 0.05) increased with exposure time. However, under high temperatures,
the IC50 value significantly (p < 0.05) increased for the first three exposure times and
significantly (p < 0.05) decreased at 20 min. The highest and lowest DPPH (IC50) values
were for T4X3 and TIX1 treatments, respectively (Table 1). However, IC50 values were not
statistically significant for treatments T1X1, T1X2 and T2X1. The IC50 values of this study
were higher than the values reported for shade-dried G. sylvestre leaves which showed
an IC50 value of 76.59 µg mL−1 [12].

The FRAP value of the fresh G. sylvestre leaves was 63.1 ± 2.3 µmol g−1 of fresh leaf
weight while the dried leaves ranged between 63.0 and 80.7 µmol g−1 of fresh leaf weight.
Treatment T1X1 and T4T3 exhibited the lowest and highest FRAP values, respectively
(Table 1). The FRAP values also showed a similar change to DPPH values with temperature
and exposure time. Under low temperatures, FRAP values significantly (p < 0.05) increased
with time, but under high temperatures, FRAP values significantly (p < 0.05) increased
from 5 to 15 min and then significantly (p < 0.05) decreased at 20 min.

Both DPPH (IC50) and FRAP values of dried G. sylvestre leaves followed a similar
trend of TPC and both of these antioxidant assays showed a strong correlation with TPC
(Figure 4). The corresponding Pearson’s correlation coefficient values were 0.93 and 0.86.
This shows that TPC plays a major role in the antioxidant activity of dried G. sylvestre
leaf powder. Another possibility is the formation of Maillard reaction products which
have antioxidant activity that can also increase the antioxidant activity of dried G. sylvestre
leaves with exposure to FIR [38,40]. This finding is in agreement with the previous studies
reported on FIR drying of onion [39] and peanut hulls [36].
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3.6. Optimization of Drying Conditions

The response surface regression equations were developed for SEC, ∆E, TPC, DPPH,
FRAP and moisture content are shown in Table 2. The interaction term and linear terms of
temperature and time were more dominant in these regression equations than quadratic
and interaction terms. According to the ANOVA, all of the models showed p values <0.001,
which indicates that model terms are significant (Table 3). In most of the equations, linear
terms of temperature and time were significant (p < 0.05) (Table 3). The temperature-
temperature interaction term was significant (p < 0.05) only in the regression equation
of SEC.

Table 2. Regression model for each response variable.

Response Variable Model R2

Specific energy consumption (SEC)
SEC = 79.7 − 0.684 Temperature + 4.682 Time +
0.001488 Temperature × Temperature − 0.0430 Time × Time
+ 0.00005 Temperature × Time

99.74

Total Color Change (∆E)
∆E = −30.89 + 0.2402 Temperature + 1.243 Time −
0.000138 Temperature × Temperature—0.00823 Time × Time
− 0.002653 Temperature × Time

99.37

Total Phenolic Content (TPC)
TPC = 4.8 + 0.141 Temperature + 1.319 Time −
0.000168 Temperature × Temperature − 0.02580 Time × Time
− 0.00379 Temperature × Time

78.48

2,2-diphenyl-1-picrylhydrazyl (DPPH)
DPPH = 0.94 + 0.0451 Temperature + 0.586 Time +
0.000012 Temperature × Temperature − 0.01290 Time × Time
− 0.001258 Temperature × Time

88.74

Ferric-reducing power (FRAP)
FRAP = 20.2 + 0.338 Temperature + 1.806 Time −
0.000522 Temperature × Temperature − 0.0418 Time × Time
− 0.00198 Temperature × Time

92.89

Moisture Content (MC)
MC = 134.5 − 0.565 Temperature − 4.031 Time +
0.000600 Temperature × Temperature + 0.0350 Time × Time
+ 0.01056 Temperature × Time

99.07
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Table 3. A probability value of response variables extracted from the analysis of variance.

p Value

Source SEC ∆E TPC DPPH FRAP MC

Model <0.001 * <0.001 * 0.004 * <0.001 * <0.001 * <0.001 *
Temperature (T) <0.001 * <0.001 * 0.003 * <0.001 * <0.001 * <0.001 *
Time (X) <0.001 * <0.001 * 0.201 0.019 * <0.001 * <0.001 *
T × T 0.021 * 0.559 0.671 0.951 0.458 0.275
X × X 0.010 * 0.181 0.023 * 0.022 * 0.033 * 0.022 *
T × X 0.983 0.016 * 0.033 * 0.130 0.481 <0.001 *

The values with “*” indicate a significant difference at the 5% level.

The response surface plots for all the response variables and drying parameters are
shown in Figure 5. The optimum level of TPC, FRAP and DPPH were reached at high
temperatures (Figure 5b–d). The optimum total color was reached at low temperature
(Figure 5e), whereas optimum moisture content and SEC were obtained at high temper-
ature (Figure 5a,f). The optimum drying conditions of G. sylvestre leaves using FIR was
determined to obtain minimum SEC and ∆E, maximum values for TPC, DPPH and FRAP,
and the target value of final moisture content. Each response variable was given equal
weight and importance for calculating the optimum drying conditions. The optimum
drying conditions obtained by the desirability function method were 200 ◦C and 8.4 min of
exposure time. These optimum conditions provide 38.6 MJ kg−1 H2O of SEC, 17.0 of ∆E,
29.2 mg TAE/g leaf fresh weight of TPC, 12.3 mg mL−1 of DPPH (IC50), 75.8 µmol g−1 leaf
fresh weight of FRAP and 31% of moisture content (w.b) and the composite desirability
value for these drying conditions was 0.62.
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4. Conclusions

The drying characteristics and antioxidant properties of G. sylvestre dried under far-
infrared (FIR) has not been investigated previously. Therefore, this study investigated the
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potential of far-infrared (FIR) for drying G. sylvestre leaves and its effects on antioxidant
properties. The results revealed that drying G. sylvestre leaves under FIR is an effective
method in terms of energy consumption and antioxidant property. Both temperature
and time influenced the drying and antioxidant properties. Increasing the temperature
decreased the specific energy consumption for drying. Drying G. sylvestre leaves under
FIR significantly (p < 0.05) enhanced the TPC and antioxidant activity compared to fresh
leaves. The changes in TPC and antioxidant activity was temperature-dependent. Lower
temperatures (125 and 150 ◦C) favor the release of TPC and increased antioxidant activity,
whereas prolonged exposure (20 min) of leaves under high temperatures (175 and 200 ◦C)
decreased TPC and antioxidant activity. The optimal drying condition achieved from the
dissimilarity function was 200 ◦C for 8.4 min. Therefore, FIR can be used as an effective
source of drying to produce the dried powder of G. sylvestre leaves at commercial scales
as a rich source of antioxidants. Future studies on applying intermittent FIR drying and
hybrid drying could be explored to reduce specific energy consumption.
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