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Abstract: Object detection is one of the most promising research topics currently, whose application in
agriculture, however, can be challenged by the difficulty of annotating complex and crowded scenes.
This study presents a brief performance assessment of YOLOV7, the state-of-the-art object detector, in
comparison to YOLOV4 for apple flower bud classification using datasets with artificially manipulated
image annotation qualities from 100% to 5%. Seven YOLOv7 models were developed and compared
to corresponding YOLOv4 models in terms of average precisions (APs) of four apple flower bud
growth stages and mean APs (mAPs). Based on the same test dataset, YOLOv7 outperformed
YOLOV4 for all growth stages at all training image annotation quality levels. A 0.80 mAP was
achieved by YOLOv7 with 100% training image annotation quality, meanwhile a 0.63 mAP was
achieved with only 5% training image annotation quality. YOLOv7 improved YOLOv4 APs by
1.52% to 166.48% and mAPs by 3.43% to 53.45%, depending on the apple flower bud growth stage
and training image annotation quality. Fewer training instances were required by YOLOV7 than
YOLOV4 to achieve the same levels of classification accuracies. The most YOLOv7 AP increase was
observed in the training instance number range of roughly 0 to 2000. It was concluded that YOLOvV7
is undoubtedly a superior apple flower bud classifier than YOLOV4, especially when training image
annotation quality is suboptimal.
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1. Introduction

Object detection is the computer vision task of identifying and locating target object
instances in digital images. Since the invention of AlexNet for the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) in 2012 [1], convolutional neural networks (CNNs)
have attracted much research attention and become the dominant mechanism for analyzing
image spatial patterns in modern object detectors. CNNs are a type of feedforward neural
network that are able to learn deep image features through sliding kernels performing
element-wise product at multiple convolutional layers along with pooling layers and
fully connected layers [2]. Object detectors usually highlight individual object instances
using rectangular bounding boxes, while a further extension of object detectors, instance
segmenters, mark individual object instances more precisely using pixel-wise masks [3,4].
Such functions of CNN-based algorithms allow the types, counts, and densities of objects
in images to be conveniently estimated [5,6], which can be rather challenging to traditional
rule-based image processing techniques.

With the rapid advancement of sensing technologies in recent years, optical instru-
ments such as cameras are being extensively implemented in a broad spectrum of agri-
cultural applications [7], from fruit grading, counting, and yield estimation to weed,
insect, and disease detection [8]. As a result, algorithms such as object detectors that
are able to extract valuable high-level information from complex image data have sig-
nificant implications for agricultural research and farming [9,10]. Being widely known
and adopted in computer vision systems [11,12], each generation of the you look only
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once (YOLO) series arguably represented the state of the art of one-stage object detec-
tors at the time of releasing. In contrast to two-stage detectors such as the region-based
CNN (R-CNN) series, one-stage detectors combine region detection and object classi-
fication in straightforward architectures to achieve higher inference speeds [13], and
much success has been achieved over the past decade by such algorithms [14]. Since
the creation of the original YOLO detector by Redmon et al. [15] in 2015, researchers
have continuously contributed to the expansion of the YOLO family, which now includes
YOLO [15], YOLOv2 [16], YOLOV3 [17], YOLOv4 [18], YOLOV5 [19], PP-YOLO [20], Scaled-
YOLOv4 [21], PP-YOLOvV2 [22], YOLOR [23], YOLOX [24], YOLOV6 [25], YOLOV7 [26], etc.
As one of the newer members to the YOLO family, YOLOvV7 was reported to outperform
its predecessors in terms of both inference time and accuracy [26]. YOLOv7's architecture
features a proposed extended efficient layer aggregation network (E-ELAN) backbone
for continuously enhanced image feature learning through a expand, shuffle, and merge
cardinality manner, a compound model scaling approach to optimize network architecture
search (NAS) for computing device fitting, a planned re-parameterized convolution module
for detector performance improvement without inference-time cost, and finally an auxiliary
head for model training assistance and a lead head for final classification output [26].

As modern object detectors are generally based on supervised learning, the quality of
ground truth, or manual image annotations of target objects, is immensely important [27].
Existing research has reported that improved training image annotation quality can in-
crease object detector performance and alter the difficulty of object detection tasks [28].
While image annotation preparation for large datasets is always time-consuming and
tedious, it is not necessarily difficult for individual images containing only a few target
objects. However, in the context of agriculture, crops such as fruit trees can have complex
structures and densely distributed organs such as stems, leaves, buds, flowers, and fruits
that are challenging to identify in images even for humans. When such objects need to
be annotated, significant manpower will be required for timely training dataset prepa-
ration. Yet, oftentimes, the ambiguity in plant characteristics, the subjectivity in human
judgement, the inconsistency in annotation style, and the incompleteness in object labelling
can lead to low-quality training image annotations, and thus, reduced object detector
performances [29].

Evaluating object detectors regarding image annotation quality with a focus on agri-
culture is a niche and underexplored research topic. For example, the Microsoft COCO
dataset, one of the gold standard benchmarks widely employed by researchers to assess
state-of-the-art computer vision models, does not have many agriculture-related object
classes and contains on average only 7.7 object instances per image [30]. Consequently;, it
is generally unknown how a newly invented object detector would perform against com-
plicated agricultural datasets, which may contain hundreds of object instances per image
with imperfect image annotations. Moreover, current object detectors are being updated
at an increasingly higher frequency than they have ever been, yet it is unclear whether
the algorithmic advancements are meaningful to agricultural research. For example, there
was only a two-month interval between the releases of YOLOvV6 [25] and YOLOvV7 [26] in
2022. Meanwhile, YOLOv4 [18], which was released in 2020 and reported to underperform
YOLOV7, is still being actively adopted in various disciplines and has been cited more than
4000 times in 2022 alone according to Google Scholar. Constant, timely evaluations of state-
of-the-art object detectors using a dedicated agricultural benchmark can provide insights
to researchers on whether a newly developed algorithm has only a marginal or substantial
performance improvement compared to the existing ones, and whether it is worthwhile to
upgrade outdated detectors for more accurate plant target location and classification.

In the preceding works to the current study, YOLOv4 was utilized to classify apple
flower bud growth stages [29] and examined in detail regarding its capacity to resist test
image distortion and low training image annotation quality in terms of completeness [31].
It was discovered that training instance number was a critical factor that affected YOLOv4
accuracy, whose minimum number for optimal classification results was in the rough range
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of 3000 to 4000 for individual object classes. Under the same total training instance number,
YOLOv4 models trained with fewer images but higher image annotation qualities outper-
formed those trained with more images but lower image annotation qualities, indicating
the importance of training image annotation quality over training dataset size. On the
basis of the previous works, the current study focused on, practically, how a state-of-the-art
object detector compares to and has evolved from an antiquated predecessor in terms of
apple flower bud detection accuracy and ideal training image annotation workload. Using
YOLOV7 as a representation of state-of-the-art object detectors and YOLOv4 as a baseline
reference, the objectives of the study included: (1) investigating the accuracy improvement
of YOLOV? at various training image annotation quality levels; (2) determining the optimal
training instance number of YOLOv?7.

2. Materials and Methods
2.1. Apple Flower Bud Image Dataset

The image dataset used in [31] was employed in the current study. A drone-based
red—green—blue (RGB) camera with a 90° pitch and a 1920 x 1080 resolution was used to
collect the images over an apple orchard (40°4228.5" N, 77°57'15.7" W) on five dates. The
four-row orchard had two apple varieties, including Jonagold and Daybreak Fuji, with
16 trees per row and two rows per variety. Mainly four apple flower bud growth stages were
captured by the images collected on the first four dates from April to May, 2020, namely
tight cluster, pink, bloom, and petal fall. On the last date in September, 2020, images of apple
tree canopies and ground containing no flower buds were collected, serving as “negative
samples” during model training. Although it has been concluded previously that negative
samples do not affect YOLOv4 performance [31], negative samples were still utilized in
the current study so that YOLOv7 and YOLOv4 models were developed using identical
datasets. The image dataset in total consisted of 3060 images, with 450 images from each
of the first four dates and 1260 from the last date. A tiny portion of the dataset contained
motion blur due to either drone or tree movement during data collection. However, most
apple flower buds could still be clearly identified in such images. The image annotations
were prepared by four trained human annotators and the author and double-checked by
the author to ensure annotation completeness, correctness, and style consistency. The
annotation rules were defined in [29] for ambiguous and difficult annotation scenarios.

2.2. YOLOv7 Model Development

Following a commonly adopted data split rule in machine learning research [32,33],
the images from each of the first four dates were split into 70%, 20%, and 10% segments for
model training, model validation during training, and model independent test respectively.
All negative samples from the last date were only used for model training. The training,
validation, and test datasets totally contained 2520, 360, and 180 images respectively.
To simulate low image annotation quality, training image annotations were artificially
manipulated by randomly removing a percentage of annotations from each image. Seven
training datasets were created accordingly, which had identical images but different levels
of image annotation qualities, including 100%, 90%, 70%, 50%, 20%, 10%, and 5%. The
quality levels were chosen to be consistent with the ones adopted in the previous study [31]
for direct and convenient comparison between YOLOv4 and YOLOvV7 models. Figure 1
shows a flowchart of the dataset preparation process, and examples of various training
image annotation quality levels can be found in Figure 2.
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Using the seven training datasets and the same validation and test datasets, seven
YOLOV7 models were developed using CoLaboratory (Google LLC, Mountain View, CA,
USA). As mentioned above, previous YOLOv4 models were also trained, validated, and
tested using the identical datasets [31]. A few customized YOLOv7 model hyperparameters
included a batch size of 32, an epoch number of 3000, which was much more than necessary
to ensure sufficient model training, and an image size of 480, which was consistent with
previous YOLOv4 model development [31]. All other hyperparameters were kept to be
the default values as provided by the authors of YOLOv7 [26]. Model performances were
evaluated based on average precisions (APs) and mean APs (mAPs) at 50% intersection
over union (IoU) [34]. The APs and mAPs of YOLOv7 and YOLOv4 models were compared
based on relative change (RC) in terms of percentage.

/ Negative empty orchard image samples / / Positive apple flower bud image samples /

A 4

Manual image annotation

A 4

/ 100% quality image annotation /

A 4

70:20:10 data split

A

, | , '

/ 100% quality training dataset / / Validation dataset / / Test dataset /

A 4

Random image annotation removal

/ 90% quality training dataset / / 70% quality training dataset / / 50% quality training dataset /

/ 20% quality training dataset / / 10% quality training dataset / / 5% quality training dataset /

Figure 1. Flowchart of the preparation process for the seven training datasets with different image
annotation qualities, one common validation dataset, and one common test dataset.



AgriEngineering 2023, 5

417

Tight
cluster

Figure 2. Sample training images containing apple flower buds at four growth stages with different
levels of image annotation qualities.

3. Results and Discussion
3.1. Training and Validation Datasets

For model evaluation purposes, training and validation datasets are not as objective
and appropriate as test datasets. Models can be overfitted to training datasets to achieve
high accuracies, while validation datasets can be biased towards superior model perfor-
mance results since validation images are also exposed to models during training. For this
reason, YOLOV7 performances on the training and validation datasets are not discussed in
detail. Nonetheless, the information is provided in this section for reference.

Table 1 shows the APs for individual apple flower bud growth stages, as well as mAPs
of the YOLOv4 and YOLOv7 models trained with different image annotation qualities
according to the training datasets. The APs of both YOLOv4 and YOLOvV7 decreased for
all growth stages as training image annotation quality decreased, which was the result of
both lower model performance and lower ground truth quality. In other words, failing to
recognize a flower bud that is correctly annotated and successfully recognizing a flower
bud that is not annotated can both lead to reduced classification accuracies. However, as is
shown below, training image annotation quality was the major reason for the extremely
low AP and mAP values in Table 1, as the same models were able to achieve much better
results for the validation and test datasets. Interestingly, when training image annotation
quality was low, YOLOv7 was able to achieve much higher APs or follow “false” ground
truths much better than YOLOv4. Using the most extreme case as an example, the AP



AgriEngineering 2023, 5

418

of YOLOV? for petal fall at 5% training image annotation quality was 609% higher than
that of YOLOv4. Yet, such an AP improvement was not because YOLOV7 learned random
patterns unique to the training datasets or YOLOvV7 was overfitted to the training datasets,
since YOLOV? still outperformed YOLOV4 for the validation and test datasets as shown
below. Additionally, YOLOv7 had greater potential to improve the weaker YOLOv4 APs
and mAPs, or less potential to improve the stronger YOLOv4 APs and mAPs. For example,
when training image annotation quality ranged from 100% to 70%, where YOLOvV4 also
had its best performances, YOLOvV? either had minimal performance improvements or
performance decreases compared to YOLOv4. YOLO? was able to improve the APs of
petal fall the most and tight cluster the least, which were also in general the least and most
accurate growth stages for YOLOV4 respectively.

Table 2 shows the APs and mAPs of YOLOv4 and YOLOV7 according to the validation
dataset. Similarly, YOLOv4 and YOLOvV7 generally had lower APs and mAPs as training
image annotation quality decreased, which indicated poorer model performances. For
tight cluster, pink, bloom, and petal fall, YOLOv7 achieved 0.75 to 0.92, 0.60 to 0.77, 0.72
to 0.87, and 0.45 to 0.64 AP ranges respectively. No extremely low AP and mAP values
were observed for either YOLOv4 or YOLOvV?7, as the image annotation quality of the
validation dataset was 100%. YOLOV?7 consistently outperformed YOLOv4 for all growth
stages across all training image annotation quality levels. Again, as YOLOv4 APs and
mAPs decreased, the RCs between YOLOV7 and YOLOV4 generally increased. YOLOv7
demonstrated significantly more robustness against low ground truth quality than YOLOv4
by improving the APs from 1.23% to 184.45% and mAPs from 2.36% to 55.48%, although
the improvement rates were lower than what were achieved for the training datasets. As
is shown in the next section, the results obtained from the validation dataset were very
similar to the test dataset results.

Table 1. YOLOv4 and YOLOv7 model performance comparison based on the training datasets.

Training Image Annotation Quality 100% 90% 70% 50% 20% 10% 5%

Tight cluster 0.939 0.866 0.692 0.525 0.166 0.085 0.043

op Pink 0.855 0776 0.621 0455 0128 0067  0.030
YOLOvV4 Bloom 0923 0844 0671 0.501 0.161 0.079  0.041
Petal fall 0790 0713 0565 0422 0085 0037 0017
mAP 0.877 0800 0637 0476 0135 0067  0.032
Tight cluster 0946 0858  0.699 0552 0252 0114  0.106
Ap Pink 0850 0758 0614 048 0207 0102 0078
YOLOV? Bloom 0914 0830 0672 0509 0243 0112 0.090
Petal fall 0773 0.659 0.569 0447 0193 0087 0117
mAP 0.871 0776 0638 0498 0224 0104  0.098
Tightcluster 0745 0924 0953 5203 51716 34118 146512
AP Pink —0585  —2370 1111 6790 61215 52012  164.865
RC (%) Bloom —0954  —1.635  0.194 1698 50932  41.058  122.963
Petal fall ~2090 -7.535 0708 6050  127.059  133.602  609.091

mAP —0.639 —2.964 0.110 4732 65.803 54.762 202.160
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Table 2. YOLOv4 and YOLOv7 model performance comparison based on the validation dataset.
Training Image Annotation Quality 100% 90% 70% 50% 20% 10% 5%
Tight cluster 0.885 0.875 0.850 0.831 0.727 0.611 0.497
AP Pink 0.753 0.748 0.726 0.695 0.554 0.500 0.374
YOLOv4 Bloom 0.854 0.846 0.831 0.797 0.734 0.669 0.586
Petal fall 0.626 0.622 0.594 0.547 0.362 0.291 0.158
mAP 0.780 0.773 0.750 0.718 0.594 0.518 0.404

Tight cluster 0.915 0.912 0.892 0.879 0.862 0.813 0.748

AP Pink 0.773 0.766 0.735 0.732 0.699 0.651 0.597
YOLOv7 Bloom 0.866 0.867 0.851 0.836 0.817 0.773 0.716
Petal fall 0.638 0.635 0.647 0.592 0.559 0.475 0.450
mAP 0.798 0.795 0.781 0.760 0.734 0.678 0.628
Tight cluster 3.343 4.193 5.003 5.751 18.537 33.061 50.473
AP Pink 2.629 2.420 1.226 5.324 26.287 30.148 59.540
RC (%) Bloom 1.405 2.482 2.456 4.920 11.278 15.477 22.122
Petal fall 1.998 2.156 8.959 8.148 54.377 63.230 184.450
mAP 2.360 2.886 4.133 5.909 23.527 30.913 55.484

3.2. Test Dataset

Table 3 shows the performance comparison between YOLOv4 and YOLOvV7 according
to the test dataset, which is in general agreement with the observations from the training
and validation datasets. YOLOv?7 achieved AP ranges of 0.73 to 0.90 for tight cluster, 0.60
to 0.79 for pink, 0.70 to 0.87 for bloom, and 0.47 to 0.66 for petal fall. Overall, YOLOv?7
showed exceptional robustness against poor training image annotation quality, achieving
a 0.80 mAP at 100% annotation quality, a 0.76 mAP at 50% annotation quality, and a 0.63
mAP at 5% annotation quality. By missing annotating 95% of all apple flower buds in
the training images, YOLOV7 performance only experienced a 0.17 mAP decrease for the
test images.

Again, both YOLOv4 and YOLOV? generally performed worse when training image
annotation quality decreased, which was due to both the reduced training instance numbers
and lowered ground truth quality for the models to learn from [31]. With no exception,
YOLOvV7 outperformed YOLOvV4 for every single growth stage at every single training
image annotation quality level. When training image annotation quality was equal to
or above 50%, relatively similar results were obtained by YOLOv4 and YOLOv7, with a
1.52% to 12.46% AP improvement range and a 3.16% to 6.52% mAP improvement range.
When training image annotation quality was below 50%, YOLOv7 had significantly better
performances than YOLOv4, with a 12.68% to 166.48% AP improvement range and a 23.65%
to 53.45% mAP improvement range.

There was a general positive correlation between the performances of YOLOv4 and
YOLOv?7, whose accuracy changes were mostly consistent as growth stage and training
image annotation quality varied. There was also a general negative correlation between
the APs and mAPs of YOLOv4 and the corresponding RC values. That is, the lower the
YOLOV4 classification accuracies were, the more YOLOv7 was able to improve upon,
as discussed previously. For example, as training image annotation quality decreased,
YOLOV4 performance also generally decreased, while the RC values between YOLOv7 and
YOLOV4 generally increased. Tight cluster and bloom were the two most accurate growth
stages for YOLOv4, which also showed the least improvements by YOLOvV?. Petal fall and
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pink were the first and second least accurate growth stages for YOLOvV4 respectively, yet
they also had the highest RC values especially when training image annotation quality
was low.

Table 3. YOLOv4 and YOLOv7 model performance comparison based on the test dataset.

Training Image Annotation Quality 100% 90% 70% 50% 20% 10% 5%
Tight cluster 0.886 0.872 0.852 0.827 0.710 0.643 0.507
AP Pink 0.727 0.729 0.722 0.691 0.542 0.493 0.364
YOLOv4 Bloom 0.852 0.847 0.833 0.800 0.731 0.664 0.582
Petal fall 0.625 0.626 0.590 0.529 0.391 0.325 0.176
mAP 0.773 0.769 0.749 0.712 0.594 0.531 0.407

Tight cluster 0.904 0.899 0.880 0.865 0.836 0.783 0.734

AP Pink 0.789 0.769 0.742 0.738 0.694 0.660 0.598

YOLOv7 Bloom 0.868 0.868 0.852 0.832 0.824 0.773 0.701

Petal fall 0.634 0.655 0.617 0.595 0.580 0.472 0.469

mAP 0.799 0.798 0.773 0.758 0.734 0.672 0.625

Tight cluster 1.997 3.096 3.250 4.608 17.829 21.754 44.688

AP Pink 8.543 5.444 2.813 6.848 27.950 33.874 64.150

RC (%) Bloom 1.842 2.443 2.281 4.013 12.676 16.468 20.509
Petal fall 1.521 4.616 4.576 12.455 48.338 45.231 166.477

mAP 3.430 3.812 3.163 6.521 23.652 26.506 53.450

A visualized comparison between YOLOv4 and YOLOV? can be found in Figure 3,
where the least accurate YOLOv4 and YOLOv7 models, trained with 5% image annotation
quality, were used to detect apple flower buds on randomly selected test images using a
3% confidence threshold. Expectedly, as total training instance number decreases, overall
model prediction confidence would also decrease, hence a low confidence threshold needed
to be used to show the detection results. In the images, YOLOvV7 was able to detect
substantially more apple flower buds than YOLOvV4 for all four growth stages. Particularly,
YOLOV4 detected only a few pinks and no petal falls in the images with over 3% confidence,
in contrast to YOLOv7's ground truth-like detection results. This performance difference is
also reflected in Table 3, where YOLOV7 improved YOLOv4 APs of pink and petal fall at
5% training image annotation quality by 64.15% and 166.48% respectively.

3.3. Optimal Training Instance Number

Figure 4 shows the relationship between training instance number and AP of the seven
YOLOvV4 models and seven YOLOv7 models at individual growth stages based on the test
dataset. General power laws existed for both YOLOv4 and YOLOV7, meaning the more
annotated training instances there were, the better model performances would be, and the
slower model performance improvement would be. Although YOLOvV? did not improve
the relatively large APs of YOLOv4 in the 0.6 to 0.9 range by a large margin, it was able to
significantly improve the ones under 0.4 to above 0.45. Generally, unlike YOLOv4, where
a clear increasing trend of APs could be observed in the training instance number range
of 0 to 10,000, APs of YOLOvV7 no longer increased at a substantial rate when training
instance number was larger than 5000. The largest AP improvement rate for YOLOV7 can
be observed in the training instance number range of 0 to 2000 approximately, implying
YOLOV?7 requires considerably fewer training instances to learn from than YOLOv4 to
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achieve the same level of model performance. This result could be an indication that
modern object detectors progress mainly in their ability to extract and learn patterns from
limited data. When abundant training data are available, however, newer detectors might
not have a significant advantage over older detectors. Regardless, the improvements
achieved by YOLOv7 implies that difficult annotation scenarios in agricultural contexts are
much less of a challenge to modern state-of-the-art object detectors, even when training
instance number is insufficient. Utilizing techniques such as pseudo labeling [35], it is
promising that future object detectors can be robustly developed involving only little
human image annotation effort.

Ground truth

YOLOv4 YOLOv7

Tight - R ) Y \
cluster o wall Al ¥ Pon A F o .

Pink

Bloom

Petal
fall

Figure 3. Apple flower bud detection results on sample test images based on a 3% confidence
threshold using YOLOv4 and YOLOv7 models trained with 5% image annotation quality.
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Figure 4. Relationships between training instance numbers of individual apple flower bud growth
stages and model average precisions (APs) of YOLOv4 and YOLOv7 with fitted two-term power
series trend lines.

4. Conclusions

Per the examination of the study, YOLOV? is a conclusively superior object detector
than YOLOv4 in terms of apple flower bud classification, which is most likely true for
alternative classification tasks. Although YOLOv7 and YOLOv4 generally showed similar
behaviors towards different training datasets, YOLOv7 demonstrated significantly stronger
robustness against low training image annotation quality and required fewer training
instances than YOLOV4 to achieve similar accuracies. However, only marginal performance
improvements were observed between YOLOvV7 and YOLOv4 when training instance
number was sufficient, indicating the utility of antiquated but well-trained object detection
models such as YOLOv4. Annotating at least 1000 to 2000 training instances for individual
object classes is recommended to ensure optimal YOLOV7 performance for complicated
agricultural datasets.
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