
Citation: Hill, A.; Laneurit, J.; Lenain,

R.; Lucet, E. Online Gain Tuning

Using Neural Networks: A

Comparative Study. AgriEngineering

2022, 4, 1200–1211. https://doi.org/

10.3390/agriengineering4040075

Academic Editor: Francesco

Marinello

Received: 2 August 2022

Accepted: 6 December 2022

Published: 14 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

AgriEngineering

Article

Online Gain Tuning Using Neural Networks:
A Comparative Study
Ashley Hill 1,*, Jean Laneurit 2, Roland Lenain 2 and Eric Lucet 1

1 List, CEA, Université Paris-Saclay, F-91120 Palaiseau, France
2 Centre de Clermont-Ferrand, Université Clermont Auvergne, Inrae, UR TSCF, F-63178 Aubière, France
* Correspondence: ashley.hill@cea.fr

Abstract: This paper addresses the problem of adapting a control system to unseen conditions,
specifically to the problem of trajectory tracking in off-road conditions. Three different approaches are
considered and compared for this comparative study: The first approach is a classical reinforcement
learning method to define the steering control of the system. The second strategy uses an end-to-end
reinforcement learning method, allowing for the training of a policy for the steering of the robot. The
third strategy uses a hybrid gain tuning method, allowing for the adaptation of the settling distance
with respect to the robot’s capabilities according to the perception, in order to optimize the robot’s
behavior with respect to an objective function. The three methods are described and compared
to the results obtained using constant parameters in order to identify their respective strengths
and weaknesses. They have been implemented and tested in real conditions on an off-road mobile
robot with variable terrain and trajectories. The hybrid method allowing for an overall reduction of
53.2% when compared with a predictive control law. A thorough analysis of the methods are then
performed, and further insights are obtained in the context of gain tuning for steering controllers in
dynamic environments. The performance and transferability of these methods are demonstrated, as
well as their robustness to changes in the terrain properties. As a result, tracking errors are reduced
while preserving the stability and the explainability of the control architecture.

Keywords: mobile robotic control; path following; reinforcement learning; optimal control

1. Introduction

The field of agricultural robotics has enabled many advances in autonomous robotics.
Indeed, an agricultural setting tends to have a wide variety of wheeled systems, soil
types, and unique tasks. Finding methods to solve these problems allows for generalized
solutions in robotics and automation in general. Improvements in sensors and sensor
fusion methods allow for better perception [1], and improvements in sensor filtering for
accurate localization [2] allow for better understanding of the robot’s environment. Further
advances in vision-based obstacle detection and navigation [3] can leverage perception
to navigate and avoid obstacles correctly. Furthermore, by using machine learning-based
computer vision, accurate crop segmentation can be achieved [4], allowing the desired
tasks to be accomplished.

These methods are capable of identifying, locating, and navigating a mobile robot
in an agricultural context autonomously. However, their adaptability to unexpected or
unanticipated conditions still needs to be improved, as these aspects need to be explicitly
defined in advance in the robot behavior algorithm. One possible improvement is to exploit
the latest advances in machine learning, in particular deep reinforcement learning, to
develop a method capable of deriving the desired behavioral algorithm for navigation by
learning in a simulated environment for an extended period of time. Methods such as the
one used for the Alpha-Go [5] experiment, have shown in practice their adaptability to
novel situations, thanks to self-learning generalizations from the training environment,
resulting in a more complete and adaptable behavior algorithm.

AgriEngineering 2022, 4, 1200–1211. https://doi.org/10.3390/agriengineering4040075 https://www.mdpi.com/journal/agriengineering

https://doi.org/10.3390/agriengineering4040075
https://doi.org/10.3390/agriengineering4040075
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriengineering
https://www.mdpi.com
https://doi.org/10.3390/agriengineering4040075
https://www.mdpi.com/journal/agriengineering
https://www.mdpi.com/article/10.3390/agriengineering4040075?type=check_update&version=2

AgriEngineering 2022, 4 1201

Classically, in order to control the steering of a wheeled robot in a path-following
context, a control law should be employed or determined, such as the ones described
in [6–9]. However, with advances in machine learning and deep reinforcement learning,
new methods for determining control laws for a given task have been developed. These ap-
proaches require the complete replacement of the previous classical deterministic controller,
which can be useful when no control law exists, as shown in the article [10]. Unfortunately,
when a control law exists, there is no clear way to integrate both reinforcement learning
and classical control.

Many studies have been conducted with deep reinforcement learning in agricul-
ture [11–13], but some do not compare with existing classic control, and they do not
consider the possible approaches that hybridize both classic predictive control and deep
reinforcement learning.

As a result, this work is based on previous works by the authors [14], in which a
gain tuning method based on deep reinforcement learning is proposed. In this paper, this
method is re-described, and then compared with a classic predictive control law and a
end-to-end deep reinforcement learning steering method. With a validation performed in a
real world context in order to verify the simulated results.

Thus, a classical deep reinforcement learning steering approach for path following is
presented, as well as a the hybrid control strategy by an online parameter tuning method of
an existing control law using reinforcement learning. This work aims first to compare the
performance of these two approaches in the context of off-road trajectory tracking, with an
existing control law method is used as a baseline in a simulated context, followed by real
world experiments in order to validate the simulated results. The goal of this is to compare
the methods in order to distinguish what are the advantages and drawbacks of each of the
three methods, and determine an optimal method for an off-road path tracking task.

In the next section, the details of the modeling method, the simulation, and the control
law are defined in order train and simulate the methods described in the third section.
Then using the methods, the simulated and real experiments are then derived in the forth
section, of which the results are presented and analyzed in order to obtain comparative
results. From these analysis and results, a discussion and the conclusions are then detailed
in the fifth section, which shows the key aspects of each approach for the task off-road
path tracking.

2. Mobile Robot Path Tracking Control
2.1. Assumption and Kinematic Description

In the framework of autonomous navigation, many approaches using dynamical
model keep the bicycle representation, in order to reduce the number of parameters to be
known [15], as the bicycle model is equivalent to a holonomic four wheeled robot with
Ackerman steering. Since this work aims at considering the development of IA approaches
to autonomously control a robot, a dynamical model is here exploited to observe and
simulate the robot behavior. For this reason, we consider the simplest dynamical model
(with as less parameters as possible) shown in [16], here applied to a single steering axle.

In this representation, the position of the center of gravity has to be known, as well
as the robot mass m and the moment of inertia Iz along the vertical axis. The motion is
supposed to be achieved on a flat ground, avoiding the consideration of a bank angle.
Moreover, since we consider that the velocity is changing slowly, the longitudinal motion is
not considered. As a result the contact forces acting at the tire ground patch are considered
to be only oriented along a perpendicular axis with respect to tire’s directions

Using these assumptions, the description of robot motion can be described as a
dynamic model, with a constant cornering stiffness CF, CR, as depicted in [14].

When simulated and in real world experiments, a sliding angle observer [17] and a
cornering stiffness observer [18] are used so to be able to observe these parameters for the
approaches detailed in this paper.

AgriEngineering 2022, 4 1202

2.2. Control Law Expression

Based on a kinematic model from the previously described modeling, a predictive
controller name Romea for the front steering angle can be determined, as described in [6],
which regulates the angular and lateral deviations. This pre-existing control expression
from [6] allows the robot to reach the trajectory (i.e., ensuring the convergence of lateral
deviation y to zero).

From this control expression, two parameters are introduced which allow for the
adjustment of the robot’s behavior:

• Kp: analogous to a proportional gain, it mainly defines the theoretical distance of
convergence with respect to the lateral error.

• Kd: analogous to a derivative gain, it defines the theoretical distance of convergence
with respect to the angular deviation.

• H: it defines the time in seconds for the lookahead horizon of the control law, in order
to anticipate with respect to the action delay.

The predictive component of this controller is derived from the anticipation of the
curvature servoing achieved by the controller, see [6] for a full description of the predictive
aspects. From this predictive system, a third parameter is also defined, the prediction
horizon denoted H of the future curvature. The horizon parameter and controller can in
turn compensate for the convergence time of the steering with respect to the curvature (e.g.,
the action delay).

The control parameters used for this approach were determined experimentally over
real world tests, in order to maximize the reactivity of the controller without oscillations.
As show in the following Table 1.

Table 1. Control parameters used with Romea.

Speed (m·s−1) 1.0 2.0 3.0 4.0

kp (m−2) 1.0 0.7 0.4 0.4

kd (m−1) 0.25 0.1225 0.01 0.01

H (s) 0.5 0.5 0.5 0.5

Previously, the control parameters are tuned experimentally and manually, through
an expert. These parameters rely on the desired velocity and expected grip conditions. In
this paper, one of the proposed methods is used in order to adapt such parameters in an
online fashion.

3. Steer Control with Reinforcement Learning

For the second approach, the control law is replaced with a neural network, which is
trained by an optimizer. This is performed in a model free context, which means that the
neural network only needs a target for optimization in order to train and converge. It is
based on reinforcement learning, as the optimizer optimizes the neural network parameters,
using a guided value that qualifies the desired behavior in a simulated environment, as
opposed to learning a specific output from an input with supervised learning [19,20].

3.1. Neural Network Integration

For the NN controller method, the neural network directly controls the steering of the
mobile robot’s system, as shown in Figure 1 where the neural network takes the errors,
curvature, and speed of reference, then returns the predicted steering control output.

AgriEngineering 2022, 4 1203

Robot State

CMA-ES

NN controller

Errors, curva-
tures, speed, C,
CR/CF, β f /βr

Objective
Function

Steering

Parameters

Figure 1. Overview of the RL steer method. Dashed section designates the optimizer that is only
used for training.

The neural network is trained in a simulation using the Covariance Matrix Adaptation
Evolutionary Strategy (CMA-ES) [21] optimizer depicted as the Optimizer in Figure 2, which
takes as input the objective function value and returns the neural network parameters. The
neural network takes as input the same information as an existing steering controller, which
is the lateral error, angular error, curvature, and future curvature (20 sampled points over a
5s horizon of prediction, chosen in order to approximate the useful future curvature within
3 times the effective delay, while avoiding sub-sampling problem and without increasing
the number of inputs by too much), speed, and the robot’s steering state. In addition it
also takes as inputs the dynamic parameters, such as the cornering stiffnesses (CR/CF), the
sliding angles (β f /βr), and the sensors accuracy encoded in the Kalman covariance matrix
(C). From these inputs, the neural network is then expected to output the steering angle,
with the speed control output being defined as constant (similarly to [22–26]). An Extended
Kalman Filter (EKF) [27] is used as part of the Observer in order to filter the noise from the
robot’s sensors, determine the sensor accuracy, and improve the accuracy of the tracking.
Following the EKF, a sliding angle observer is used [6] in order to estimate the front and
rear sliding angles, which are needed to estimate the front and rear cornering stiffnesses.
The latter are estimated then using a cornering stiffness observer [18]. The Robot block is
the simulation, where the dynamic model of the robot described previously is used with a
Runge–Kutta (RK4) integrator (when run in real world experiments, it is replace with the
robot’s interface), where the environment varies the grip conditions, maximum velocity,
and trajectories for the robot. This was coded fully from scratch in custom C++ code with
libcmaes for the CMA-ES implementation.

RobotRomea ctrl State
Steering

CMA-ES

NN gain tuner

Errors, curva-
tures, speed, C,
CR/CF, β f /βr

Objective
Function

Kp, Kd, H

Parameters

Figure 2. Overview of the gain tuning method. Dashed section designates the optimizer that is used
only for training.

3.2. Training and Objective Function

This environment, however, induces problems with the Markovian hypothesis and the
exploration. The expected time difference reinforcement learning methods such as Twin
Delayed Deep Deterministic policy gradient (TD3) [28] or Proximal Policy Optimization
(PPO) [29] do not converge, due to the inertia and action delay of the system. As such the
CMA-ES optimizer was chosen, as optimizers similar to it were shown to have equivalent
performance when compared to existing time difference reinforcement learning meth-
ods [30]. CMA-ES from [21] is an evolutionary strategy used for stochastic optimization of
a problem space over a given objective function. In order to do this, CMA-ES calculates an
estimate of the covariance matrix over each dimension of the problem space for the target
objective function. When tested over the environment, this method shows the highest
empirical performance out of the tested methods for training the neural network.

The neural network used is a fully connected neural network that is composed of
three hidden layers of 64, 128, and 32 neurons respectively, (approx 15,000 parameters),
with 23 inputs, and 1 to 3 outputs (depending on the required outputs). These values
where determined in order to maximize the predictive capabilities of the neural network

AgriEngineering 2022, 4 1204

(as shown in [31]), while minimizing the issues linked with high dimensional search spaces
for CMA-ES.

Using the simulated model of the robot, the neural network (NN) and the optimizer
CMA-ES, a trained neural network is derived, after 20,000 iterations of CMA-ES have been
achieved, which represents over 2 years of simulated time and 24 h of wall time.

The objective function is defined as a composition of different targets. Indeed keeping
a minimal distance to the trajectory is not sufficient as an optimization target, as it does not
prevent from oscillations when the lateral error is low enough. As the function needs to
return a scalar value from a set of sampled state vectors, an integration must take place. As
such, a discrete integration over the curvilinear abscissa is performed, in order to avoid
any side effects due to speed modulation. The result of the integration is then normalized
over the length of the trajectory in order to keep the objective function values consistent
between each trajectory. The objective function is defined as a compromise between two
sub objectives: minimizing the lateral error, and minimizing the steering error. The results
can be described as such:

obj1 =
1

sN

N

∑
i=0

[
|kyiyi|+ ksteer|Lc(s)− tan(δFi)|

]
∆s (1)

where the objective function for training is defined with an allowed error corridor of
ylim = 0.20 m. It was found experimentally though trial and error that a ksteer = 3,
ky low = 1, and ky high = 10 returned a trained model with the ideal performance. Where N
is the number of samples recorded over the trajectory, sN is the length of the trajectory, and
kyi is a dynamic objective function parameter, that will change the lateral error penalty if
the lateral error exceeds a given limit ylim:

kyi =

{
ky low if |yi| ≤ ylim
ky high else

where ds denotes the rate of change of the curvilinear abscissa over time:

∆s = vs. cos(θ̃)∆t

This objective function is then used as a target for the optimization method, namely
the evolutionary strategy called CMA-ES [21].

4. Online Control Parameter Tuning

Replacing an existing control law with a neural network can be considered excessive.
As the expertise contained in the control law needs to be completely rediscover by the
neural network empirically, which naturally can cause a drop in performance and stability
when compared. As such, the proposed approach is a hybrid method called NN gain
tuner, which consist of preserving the existing control law and using a neural network to
determine the control parameters Kp, Kd, and H in an online fashion. This should allow for
the preservation of the controllers behavior, while adjusting it’s reactivity and behavior to
the environment, which should improve it’s performance considerably.

Due to the similarities between the control task described previously and the proposed
approach, the objective function, neural network architecture and optimizer are identical.
Where only the output of the neural network is changed as show in the following.

Neural Network Integration

For this approach, the neural network predicts the control parameters in real-time.
In this case, they are the steering control gains and horizon, which are then passed to the
controller before it calculates the steering angle. This is shown in Figure 2 where the neural
network takes as inputs the errors, curvature, and speed, then returns the steering control

AgriEngineering 2022, 4 1205

gains and horizon. The control law that is used in tandem is the Romea control law, in
order to preserve the comparability with the previous methods.

The neural network is trained in a simulation using the CMA-ES optimizer, which
takes as input the objective function value and returns the neural network parameters.
The neural network takes as input the same information as an existing steering controller,
which is the lateral error, angular error, curvature, future curvature, speed, and the robot’s
steering state. In addition it also takes as inputs the dynamic parameters, such as the
cornering stiffnesses, the sliding angles, and the Kalman covariance matrix. From these
inputs, the neural network is then expected to output the control parameters. As for
the previous method, an Extended Kalman Filter (EKF), a sliding angle observer, and a
cornering stiffness observer are used.

In order to compare the NN gain tuner method, an existing alternative model based
deterministic gain tuning method is also employed called model gain tuner, that is detailed
in [14]. It consist of using a dynamic model, in order to adjust the control gain with respect
to the time to convergence of the angular speed.

5. Results

The metric used for the analysis of the results is the surface error:

Aerror =
N

∑
i=0

∣∣∣∣vi cos(θ̃i)

(
yi +

vi sin(θ̃i)∆t
2

)∣∣∣∣ ∆t [m2] (2)

This is performed in order to validate and compare the performance of the different
tested methods and parameters, without resorting to the objective function. Indeed, when a
reinforcement learning agent trains to optimize a function, it is possible that the said agent
might exploit the objective function in order to minimize it, without achieving the desired
behavior. As such, using a different metric to measure performance allows for minimal
bias when comparing the methods.

5.1. Simulated Results

A set of simulated runs was computed using the training trajectories. From this,
Table 2 was obtained.

It describes the Surface error from Equation (2), for each method at all the speeds and
trajectories used during the training, with an initial error of 1 m. The underlined and bold
values mean that the result is significant and has a p-value below 10−3, determined using
the Welch-t test [32].

Overall, the average surface error for NN gain tuner is significantly lower than the
other methods at 6.88 m2, whereas the surface error for Romea was 14.7 m2 (a 53.2%
reduction). The surface error for the model gain tuner method was 9.51 m2 (a 27.7%
reduction), and the surface error for the NN gain tuner method was 10.2 m2 (a 32.5%
reduction). From this table, more specific strengths and weaknesses can be observed. The
NN gain tuner was able to match or exceed the performance of the NN controller and
Romea methods in all cases. It was also able to match the performance of the model gain
tuner method at lower speeds and exceed it at 3 m·s−1 & 4 m·s−1, thanks to the additional
information that the NN gain tuner is able to leverage when compared to the model gain
tuner at higher speeds. Specific edge cases can be observed however with the line and
estoril5 trajectories at lower speeds, as the model gain tuner is able to slightly exceed the
performance of the NN gain tuner method, which are likely due to the accuracy of model
used in the model gain tuner having better predictive capabilities at lower speeds.

In order to better interpret and understand the neural network, a gradient based
Feature importance analysis can be used to determine which inputs where useful, and
quantify the utility of each input with respect to each output. See [33] for details on the
theory and implementation of the gradient based feature importance analysis for the neural
network. Using the feature importance analysis, the following results are obtained.

AgriEngineering 2022, 4 1206

Table 2. Surface error in (m2)of each method at all the speeds and trajectories used during training,
with an initial error of 1 m. Bold and underlined numbers show that the results are significant, green
shows the best result, and red show the worst result.

0 20 40 60 80 100
x position - x_pos [m]

0

10

20

30

40

50

y
po

si
tio

n
- y

_p
os

 [m
]

20 0 20 40 60
x position - x_pos [m]

30

20

10

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80 100 120
x position - x_pos [m]

20

10

0

10

20

30

y
po

si
tio

n
- y

_p
os

 [m
]

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

y
po

si
tio

n
- y

_p
os

 [m
]

50 0 50 100 150
x position - x_pos [m]

0

20

40

60

80

100

y
po

si
tio

n
- y

_p
os

 [m
]

estoril5 estoril7 estoril910 spline5 line

1 m·s−1

Romea 4.70 (±0.33) 5.33 (±0.63) 33.12 (±0.91) 7.15 (±1.01) 4.35 (±0.08)

model gain tuner 2.92 (±0.26) 3.11 (±0.53) 27.76 (±1.20) 4.38 (±1.17) 2.89 (±0.12)

NN controller 4.77 (±0.35) 5.14 (±0.63) 24.45 (±1.15) 6.67 (±1.57) 4.74 (±0.30)

NN gain tuner 2.98 (±0.22) 3.09 (±0.51) 22.86 (±1.54) 3.80 (±0.86) 2.97 (±0.09)

2 m·s−1

Romea 6.50 (±0.61) 8.06 (±0.99) 39.17 (±1.79) 10.82 (±1.16) 5.52 (±0.10)

model gain tuner 3.53 (±0.72) 4.46 (±1.30) 33.44 (±2.83) 6.68 (±1.69) 2.99 (±0.22)

NN controller 5.16 (±0.44) 5.87 (±0.96) 20.80 (±1.37) 7.78 (±1.38) 4.36 (±0.21)

NN gain tuner 3.38 (±0.41) 3.88 (±0.94) 19.42 (±2.08) 5.18 (±1.34) 3.11 (±0.14)

3 m·s−1

Romea 12.31 (±1.22) 16.09 (±1.58) 64.85 (±5.14) 19.94 (±1.95) 9.21 (±0.15)

model gain tuner 4.82 (±1.83) 6.78 (±3.05) 46.26 (±9.07) 9.94 (±3.36) 3.32 (±0.44)

NN controller 6.22 (±0.57) 7.19 (±0.88) 23.30 (±2.03) 9.56 (±1.59) 5.12 (±0.30)

NN gain tuner 3.97 (±0.81) 5.01 (±1.54) 20.81 (±3.44) 7.99 (±2.32) 3.27 (±0.23)

4 m·s−1

Romea 13.44 (±1.59) 18.13 (±2.37) 68.75 (±9.39) 22.68 (±3.91) 9.13 (±0.17)

model gain tuner 6.96 (±3.94) 10.02 (±5.53) 73.06 (±24.10) 16.13 (±6.57) 3.66 (±0.72)

NN controller 9.12 (±1.31) 10.51 (±2.00) 35.97 (±6.98) 13.99 (±5.23) 7.83 (±1.01)

NN gain tuner 5.41 (±2.41) 6.93 (±2.52) 30.09 (±12.95) 12.02 (±18.20) 3.59 (±0.30)

From Figure 3, the inputs that contribute the most the outputs of the NN gain tuner
method are in order of importance the rate of change of the angular error denoted dθ̃/dt.
The rate of change of the lateral error denoted dy/dt, which contribute a total of 40% of the
variations of the outputs of the NN gain tuner method. The rest of the inputs seems to have
a uniform importance distribution, which implies that most of the inputs are useful for
predicting the outputs of the neural network, which in turn demonstrates when compared
to the previous feature importance analysis that the addition of these inputs allows for a
richer prediction of the control gains and horizon.

d
/dt

 [r
ad

. s
1]

dy
/dt

 [m
. s

1]
y

[m
]

R
 [r

ad
]

v
[m

. s
1]

 [r
ad

]
fut

ur
e c(s

) [m
1]

C xy
 [m

2]
F [

ra
d]

C F [
kN

. ra
d

1]
ct

rl,
F [

ra
d]

c(s
) [m

1]
F [

ra
d]

C R
 [k

N.
ra

d
1]

0

5

10

15

20

25

30

%
 Im

po
rta

nc
e

uniform importance
KP
KD
HORIZON

Figure 3. The feature importance for the NN gain tuner method for each input, denoted in % of
importance.

AgriEngineering 2022, 4 1207

This shows that the NN gain tuner is correcting the control gains output using most
of the inputs available to it. This allows for a more complex prediction of the gain and
horizon, which allows a higher level of performance with respect to the objective function
and metrics as shown previously. Furthermore, the neural network is able to take into
account the sensor accuracy denoted Cxy as shown previously, as it is considered more
important as the cornering stiffnesses denoted CF & CR that is used by the model gain
tuner shown previously. These factors allows the NN gain tuner to outperform the model
gain tuner when the grip conditions and the sensor accuracy change over time.

5.2. Real World Results

Due to the poor performance and the potentially high instability of the NN con-
troller method to novel environment, it was not exploitable in real world conditions when
tested. Furthermore, when tested the robot exhibited dangerous behavior, which pre-
vented its experimental runs due to safety constraints not being able to be met, such as a
oscillatory positive feedback over the lateral error which induced high lateral errors and
unpredictable motion.

The following experimental results are based on the same experimental tests per-
formed for the authors previous paper [14], with a new analysis to validate the behavior
implied in the simulated results in a real-world setting.

5.2.1. The RobuFast Robotic Platform

The proposed methods have been tested on the RobuFAST robotic platform (Figure 4).
The robot’s mass is about 420 kg, has a vertical moment of inertia of 300 kg·m2, a wheelbase
of 1.2 m from the center of each axles, a center of mass at 0.625 m from the center of the
rear axle, and a front steering response time of 0.45 s. The platform runs on the Robotic
Operating System (ROS) middleware with a control frequency of 10 Hz. It has an Inertial
Measurement Unit (IMU) and a Real Time Kinematics Global Positioning System (RTK-
GPS) which updates the observers and state estimators every 10 Hz. The sliding angles
observer is tuned for a settling time of 0.5 s, and the cornering stiffness observer is tuned
for a settling time of 1.5 s.

The RobuFAST robot, is as robot issued from the FAST project. It has been designed as
an experimental platform, that has been modified in order to reach 8.0 m·s−1. The following
Table 3 denotes the characteristics of the RobuFAST platform:

Table 3. The given RobuFAST characteristics table, for reference.

Mass (m) 420 Kg

Vertical moment of inertia (Iz) 300 Kg·m2

Wheelbase (L) 1.2 m

Front Wheelbase (LF) 0.575 m

Max steering 20◦

Steering action delay (Pure) 0.2 s

Steering action delay (Rise time) 0.25 s

Steering action delay (Total) 0.45 s

Max speed 8.0 m·s−1

Max acceleration 1.5 m·s−2

AgriEngineering 2022, 4 1208

Figure 4. The RobuFAST robotic platform.

The experiments on the platform were run over a sunny warm day and with cloudless
weather. With the following trajectories shown in Figure 5.

Figure 5. The trajectory.

The robot starts with an initial lateral error, with a straight line to observe the stabi-
lization from said error. A sequence of sharp corners to stress the control system. Then, a
straight line to observe the stabilization from the corners. The trajectory starts on concrete,
reaches grass on the corners, and the last straight line on concretes. As such, it has relatively
good grip, and transition on the type of ground (Cr & C f ∼ 15,000 N·rad−1).

5.2.2. The Results

The following results were obtained at 3 m·s−1 over the first trajectory.
As shwon in Figure 6, the error over the entire trajectory is the lowest with the NN

gain tuner method, with the model gain tuner method obtaining some significant errors,
and where the expert gain had the largest error. However, NN gain tuner does oscillate
around 0 m of lateral error.

60 40 20 0 20 40
x position - x_pos [m]

0

10

20

30

40

50

y
po

si
tio

n
- y

_p
os

 [m
] Trajectory path

constant gain
Model gain tuner
NN gain tuner

0 20 40 60 80 100 120 140 160
Curvilinear abscissa - s [m]

1.5

1.0

0.5

0.0

La
te

ra
l e

rro
r -

 y
 [m

]

constant gain
Model gain tuner
NN gain tuner

Figure 6. The trajectory (left) and the lateral error (right), over the total trajectory.

AgriEngineering 2022, 4 1209

A result that is reflected clearly in the surface error in Figure 7. Where the NN gain
tuner method reaches 17.7 m2 or a 29.2% reduction in the surface error, and where the
model gain tuner method reaches 19.4 m2 or a 22.5% reduction in the surface error, when
compared with the Romea controller which reaches 25.0 m2 for the surface error. If we do
not include the starting error, the results are 12.8 m2 (0.696% increase) and 13.0 m2 (2.76%
increase), respectively, when compared with the Romea controller which reaches 12.7 m2

for the surface error.

0 20 40 60 80 100 120 140 160
Curvilinear abscissa - s [m]

0

5

10

15

20

25

Su
rfa

ce
 E

rro
r -

 [m
2]

constant gain
Model gain tuner

NN gain tuner

0 20 40 60 80 100 120 140 160
Curvilinear abscissa - s [m]

0.0

2.5

5.0

7.5

10.0

12.5

Su
rfa

ce
 E

rro
r -

 [m
2]

constant gain
Model gain tuner

NN gain tuner

Figure 7. The surface error Aerror (left) and the surface error Aerror after the initial lateral error (right).

The neural network gains shown in Figure 8 seem to be much higher than the expert
and model gain tuner gains. However a strong modulation between kp and kd can be
observed, allowing for the method to dynamically update the damping factor ξ, which in
turn explains the higher performance using higher gains, because a damping factor below
ξ <

√
2

2 is considered unstable but can allow for a faster convergence to the trajectory if
used correctly.

0 20 40 60 80 100 120 140 160
Curvilinear abscissa - s [m]

0

1

2

3

G
ai

n
va

lu
es

kd
kp

Model gain tuner
NN gain tuner

0 20 40 60 80 100 120 140 160
Curvilinear abscissa - s [m]

0.0

0.2

0.4

0.6

0.8

H
or

iz
on

 -
H

 [s
]

Model gain tuner NN gain tuner

Figure 8. The gains (left) and the horizon (right).

Overall, we can see that the neural network parameter tuning method, is capable
of matching and even outperforming the proposed model gain tuner method at 3 m·s−1

when tested in real world conditions, which confirms the performance seen in simulation.
However, it should be noted that the training of the neural network was unable to exceed
4 m·s−1. It is assumed that this limitation is due to the task being too difficult over the
training trajectories at higher speed. As such, the future experiments also modulate the
maximum speed.

6. Conclusions

In this paper, three methods have been described and their performances analyzed.
The first one is a classical control law existing in the state of the art, tuned with constant
gains. The second is an approach typically explored in machine learning, which consists of
replacing the control law by a trained neural network. Furthermore, the third approach
is a hybrid of the previous methods, where an existing control law is tuned in real time
using a neural network. The simulation results showed that the hybrid control approach
outperforms the other two approaches by 53.2% and outperforms the existing gain-tuning
approaches by 27.7%.

Overall, the real-world experimental results show that the performance observed in
simulation is transferable to the real world. This is demonstrated by the performance of the
NN gain tuner which significantly outperforms the constant gain and model gain tuner.

AgriEngineering 2022, 4 1210

This is partly due to the strong modulation of the damping factor ξ, where the NN gain
tuner punctually selects a ξ <

√
2

2 considered as oscillatory, in order to converge more
quickly to the desired setpoint.

Nevertheless, as can be seen by modulating the gains, the performances of the methods
depend on a defined gain/speed couple. Indeed, the optimal gain varies according to
the speed, and conversely the optimal speed depends on the value of the control gains.
Moreover, there are situations where there are no valid gains for certain speeds (for example,
a speed that is too high for a turn that causes a spin-out). Thus, future work will consider
the simultaneous tuning of speed and gains to further improve performance and allow for
greater adaptability to the environment.

Author Contributions: Conceptualization, A.H., E.L. and R.L.; methodology, A.H., E.L. and R.L.;
software, A.H., J.L. and R.L.; validation, A.H., E.L. and R.L.; formal analysis, A.H.; investigation, A.H.,
J.L., E.L. and R.L.; resources, A.H., J.L. and R.L.; data curation, A.H., E.L. and R.L.; writing—original
draft preparation, A.H. and E.L.; writing—review and editing, E.L. and R.L.; visualization, A.H.;
supervision, E.L. and R.L.; project administration, A.H., E.L. and R.L.; funding acquisition, N/A; All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to organization constraints.

Acknowledgments: This publication was made possible by the use of Factory-IA cluster and
was financially supported by the Ile-de-France Regional Council. It received the support of the
French government research program “Investissements d’Avenir” through the IDEX-ISITE initiative
16-IDEX-0001 (CAP 20-25) and IMobS3 Laboratory of Excellence (ANR-10-LABX-16-01).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Clamens, T.; Alexakis, G.; Duverne, R.; Seulin, R.; Fauvet, E.; Fofi, D. Real-time Multispectral Image Processing and Registration

on 3D Point Cloud for Vineyard Analysis. In Proceedings of the 16th International Conference on Computer Vision Theory and
Applications (VISAPP 2021), Vienna, Austria, 8–10 February 2021; pp. 388–398.

2. Blok, P.M.; van Boheemen, K.; van Evert, F.K.; IJsselmuiden, J.; Kim, G.H. Robot navigation in orchards with localization based
on Particle filter and Kalman filter. Comput. Electron. Agric. 2019, 157, 261–269. [CrossRef]

3. Ball, D.; Upcroft, B.; Wyeth, G.; Corke, P.; English, A.; Ross, P.; Patten, T.; Fitch, R.; Sukkarieh, S.; Bate, A. Vision-based obstacle
detection and navigation for an agricultural robot. J. Field Robot. 2016, 33, 1107–1130. [CrossRef]

4. Su, D.; Kong, H.; Qiao, Y.; Sukkarieh, S. Data augmentation for deep learning based semantic segmentation and crop-weed
classification in agricultural robotics. Comput. Electron. Agric. 2021, 190, 106418. [CrossRef]

5. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,
V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [CrossRef]

6. Lenain, R.; Thuilot, B.; Cariou, C.; Martinet, P. Adaptive and predictive path tracking control for off-road mobile robots. Eur. J.
Control 2007, 13, 419–439. [CrossRef]

7. Jalali, L.; Ghafarian, H. Maintenance of robot’s equilibrium in a noisy environment with fuzzy controller. In Proceedings of the
2009 IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, China, 20–22 November 2009;
Volume 2, pp. 761–766. [CrossRef]

8. Jiang, L.; Deng, M.; Inoue, A. Support vector machine-based two-wheeled mobile robot motion control in a noisy environment.
Proc. Inst. Mech. Eng. Part I J. Syst. Control. Eng. 2008, 222, 733–743.

9. Doicin, B.; Popescu, M.; Patrascioiu, C. PID Controller optimal tuning. In Proceedings of the 2016 8th International Conference
on Electronics, Computers and Artificial Intelligence (ECAI), Ploiesti, Romania, 30 June–2 July 2016; pp. 1–4. [CrossRef]

10. OpenAI; Akkaya, I.; Andrychowicz, M.; Chociej, M.; Litwin, M.; McGrew, B.; Petron, A.; Paino, A.; Plappert, M.; Powell, G.; et al.
Solving Rubik’s Cube with a Robot Hand. arXiv 2019. [CrossRef]

11. Abioye, E.A.; Hensel, O.; Esau, T.J.; Elijah, O.; Abidin, M.S.Z.; Ayobami, A.S.; Yerima, O.; Nasirahmadi, A. Precision Irrigation
Management Using Machine Learning and Digital Farming Solutions. AgriEngineering 2022, 4, 70–103. [CrossRef]

12. Xu, G.; He, X.; Chen, M.; Miao, H.; Pang, H.; Wu, J.; Diao, P.; Wang, W. Hierarchical speed control for autonomous electric vehicle
through deep reinforcement learning and robust control. IET Control. Theory Appl. 2022, 16, 112–124. [CrossRef]

13. Alibabaei, K.; Gaspar, P.D.; Assunção, E.; Alirezazadeh, S.; Lima, T.M.; Soares, V.N.; Caldeira, J.M. Comparison of on-policy deep
reinforcement learning A2C with off-policy DQN in irrigation optimization: A case study at a site in Portugal. Computers 2022,
11, 104. [CrossRef]

http://doi.org/10.1016/j.compag.2018.12.046
http://dx.doi.org/10.1002/rob.21644
http://dx.doi.org/10.1016/j.compag.2021.106418
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.3166/ejc.13.419-439
http://dx.doi.org/10.1109/ICICISYS.2009.5358289
http://dx.doi.org/10.1109/ECAI.2016.7861175
http://dx.doi.org/10.48550/ARXIV.1910.07113
http://dx.doi.org/10.3390/agriengineering4010006
http://dx.doi.org/10.1049/cth2.12211
http://dx.doi.org/10.3390/computers11070104

AgriEngineering 2022, 4 1211

14. Hill, A.W.D.; Laneurit, J.; Lenain, R.; Lucet, E. Online Tuning of Control Parameters for Off-Road Mobile Robots: Novel
Deterministic and Neural Network-Based Approaches. IEEE Robot. Autom. Mag. 2022, 2–13. [CrossRef]

15. Polack, P.; Altché, F.; d’Andréa Novel, B.; de La Fortelle, A. The kinematic bicycle model: A consistent model for planning feasible
trajectories for autonomous vehicles? In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA,
USA, 11–14 June 2017; pp. 812–818.

16. Li, L. Modélisation et Contrôle d’un Véhicule Tout-Terrain à deux Trains Directeurs. Ph.D. Thesis, Université Paris Sciences et
Lettres, Paris, France, 2021.

17. Lenain, R.; Deremetz, M.; Braconnier, J.B.; Thuilot, B.; Rousseau, V. Robust sideslip angles observer for accurate off-road path
tracking control. Adv. Robot. 2017, 31, 453–467. [CrossRef]

18. Deremetz, M.; Lenain, R.; Thuilot, B.; Rousseau, V. Adaptive trajectory control of off-road mobile robots: A multi-model observer
approach. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3
June 2017; pp. 4407–4413. [CrossRef]

19. Sutton, R.S.; Barto, A.G. Reinforcement learning: An introduction; MIT Press: Cambridge, MA, USA, 2018.
20. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
21. Hansen, N. The CMA Evolution Strategy: A Tutorial. arXiv 2016.
22. Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.D.; Monfort, M.; Muller, U.; Zhang, J.; et al.

End to End Learning for Self-Driving Cars. arXiv 2016. [CrossRef]
23. Pomerleau, D.A. Alvinn: An autonomous land vehicle in a neural network. In Advances in Neural Information Processing Systems;

MIT Press: Cambridge, MA, USA, 1988; Volume 1.
24. Pan, X.; You, Y.; Wang, Z.; Lu, C. Virtual to Real Reinforcement Learning for Autonomous Driving. arXiv 2017.
25. Khan, Q.; Schön, T.; Wenzel, P. Latent Space Reinforcement Learning for Steering Angle Prediction. arXiv 2019.
26. Gerdes, J.C. Neural networks overtake humans in Gran Turismo racing game. Nature 2022, 602, 213–214. [CrossRef]
27. Welch, G.; Bishop, G. An introduction to the Kalman filter. Proc. Siggraph Course 1995, 8, 127–132.
28. Fujimoto, S.; van Hoof, H.; Meger, D. Addressing Function Approximation Error in Actor-Critic Methods. arXiv 2018.
29. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017.
30. Salimans, T.; Ho, J.; Chen, X.; Sidor, S.; Sutskever, I. Evolution Strategies as a Scalable Alternative to Reinforcement Learning.

arXiv 2017.
31. Hornik, K.; Stinchcombe, M.; White, H. Universal approximation of an unknown mapping and its derivatives using multilayer

feedforward networks. Neural Netw. 1990, 3, 551–560. [CrossRef]
32. Welch, B.L. The generalization of ‘student’s’ problem when several different population varlances are involved. Biometrika 1947,

34, 28–35. [CrossRef] [PubMed]
33. Hill, A.; Lucet, E.; Lenain, R. A New Neural Network Feature Importance Method: Application to Mobile Robots Controllers

Gain Tuning. In Proceedings of the 17th International Conference on Informatics in Control, Automation and Robotics, ICINCO
2020, Paris, France, 5–7 July 2020; pp. 188–194. [CrossRef]

http://dx.doi.org/10.1109/MRA.2022.3151067
http://dx.doi.org/10.1080/01691864.2017.1280414
http://dx.doi.org/10.1109/ICRA.2017.7989509
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.48550/ARXIV.1604.07316
http://dx.doi.org/10.1038/d41586-022-00304-2
http://dx.doi.org/10.1016/0893-6080(90)90005-6
http://dx.doi.org/10.1093/biomet/34.1-2.28
http://www.ncbi.nlm.nih.gov/pubmed/20287819
http://dx.doi.org/10.5220/0009888501880194

	Introduction
	Mobile Robot Path Tracking Control
	Assumption and Kinematic Description
	Control Law Expression

	Steer Control with Reinforcement Learning
	Neural Network Integration
	Training and Objective Function

	Online Control Parameter Tuning
	Results
	Simulated Results
	Real World Results
	The RobuFast Robotic Platform
	The Results

	Conclusions
	References

