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Abstract: In-season crop production forecasts at the regional or sub-regional scale are essential to
aid in food security through early warning of harvest shortfall/surplus, tailoring crop management
decisions and addressing climatic shock. Considering the efforts to establish a framework towards
quantifying the crop yield prediction at regional scales are limited, we investigated the utility of
combining crop model with the regional weather prediction model to forecast winter wheat yields
over space. The exercise was performed for various lead-times in the regions of Punjab and Haryana
for the years 2008–2009. A numerical weather prediction (NWP) model was used to generate micro-
meteorological variables at different lead times (1-week, 2-weeks, 3-weeks and 5-weeks) ahead of crop
harvest and used within the CERES-Wheat crop simulation model gridded framework at a spatial
resolution of 10 km. Various scenarios of the yield forecasts were verified with district-wide reported
yield values. Average deviations of −12 to 3% from the actual district-wise wheat yields were
observed across the lead times. The 3-weeks-ahead yield forecasts yielded a maximum agreement
index of 0.86 with a root mean squared error (RMSE) of 327.75 kg/ha and a relative deviation of
−5.35%. The critical crop growth stages were found to be highly sensitive to the errors in the weather
forecast, and thus made a huge impact on the predicted crop yields. The 5-weeks-ahead weather
forecasts generated anomalous meteorological data during flowering and grain-filling crop growth
stages, and thus had the highest negative impact on the simulated yields. The agreement index
of the 5-week-ahead forecasts was 0.41 with an RMSE of 415.15 kg ha−1 and relative deviation of
−2.77 ± 5.01. The proposed methodology showed significant forecast skill for extended space and
time scale crop yield forecasting, offering scope for further research and practical applicability.

Keywords: crop-climate model integration; spatial crop yield modelling; winter wheat yield forecasts;
WRF weather model; CERES-wheat model

1. Introduction

Wheat is one of the major food crops and contributes to about 30% of cereal production
globally. India is the second largest producer of global wheat and wheat is the second
most important food crop in the country [1]. About 94% of the wheat in India is grown
under irrigated conditions with gross areal coverage of 30 million hectares, representing
a production of 99.7 million tonnes and average productivity of about 3371 kg/ha [2].
Wheat in India is typically grown in dry winter–spring season, also known as rabi season
extending from November to April. The wheat yield can be analysed from two components
viz. grains per square meters and weight per kernel. Both of the components are strongly
controlled by radiation and temperature when water and nutrient availability are not
constrained [3].

Forecasting food grain yield in developing countries is an important aspect of agri-
cultural management, food security warning and food trade policy [4–6]. Crop yield
forecasting spans across spatial and temporal scales with several approaches viz. empirical,
semi-empirical and physical based methods. Given that the weather is very critical in the
assessment of wheat yield, approaches which address the weather-crop interaction are

AgriEngineering 2022, 4, 1054–1075. https://doi.org/10.3390/agriengineering4040066 https://www.mdpi.com/journal/agriengineering

https://doi.org/10.3390/agriengineering4040066
https://doi.org/10.3390/agriengineering4040066
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriengineering
https://www.mdpi.com
https://orcid.org/0000-0003-2543-8677
https://doi.org/10.3390/agriengineering4040066
https://www.mdpi.com/journal/agriengineering
https://www.mdpi.com/article/10.3390/agriengineering4040066?type=check_update&version=1


AgriEngineering 2022, 4 1055

explicitly required. Crop simulation models, which account for the interactions between
weather, crop, soil, management and their effect on crop yield, are widely used to develop
process-based methodologies rather than regression-based approaches [7]. In particular,
in developing countries, such as India, where long historical records on the crop details
are not available, process-based approaches are quite helpful. One of the major challenges
in the process-based approach is the uncertainty associated with the unknown weather
in the future time scales [7]. Studies have attempted to use seasonal outlooks (typically
having grid sizes >50 km) available from global numerical weather prediction (NWP) mod-
els [8–11] to predict regional crop productions, mainly for regions with sparsely distributed
weather observatories.

In the tropics and sub-tropics, the region-specific circulations and local feedbacks
generated by strong soil-plant-atmosphere coupling induces variability to the large-scale
phenomenon predicted by the coarser resolution global NWP models [12]. Thus, the
season-long outlooks might fail to capture the variances and occurrences of extreme events
at daily time step [13,14], hugely limiting the applicability in crop growth models. The
spatio-temporal uncertainties in the simulated weather parameters during season-long
predictions can be reduced with medium-range forecasts [15]. Ortiz-Monasterio et al. [3],
after analysing winter wheat from 1985–1992 in the district of Punjab, India, suggested
that high temperatures about and after the heading date (which occurred during the
middle of February) had a detrimental effect on the crop yield. Lobell et al. [16] specifically
addressed the extreme heat effects on Indian wheat and reported that a 2 ◦C increase in
temperature during the grain filling stage (post heading date) reduced the simulated yield
by 50% in the crop models. Several other studies [17–19] have also concluded that the heat
stress, particularly during the grain filling stage, had a negative impact on the wheat yield.
Accordingly, the weather events in the post-heading days (towards the end of the growing
season) are a precursor to the Indian winter wheat yield assessment.

As a result, high-resolution medium-extended (10–30 days) range (sub-seasonal scale)
weather forecasts can be very appropriate and cost-effective in acquiring real-time ac-
curate in-season estimates of wheat yield, when compared to full-season predictions.
Bannayan et al. [20] tested the performance of a crop simulation model (CERES-Wheat) to
forecast within-season wheat yields across the United Kingdom. They used synthetically
generated weather forecasts from a weather generator for the forecast period, which started
at different growth stages of wheat viz. leaf senescence, 150 days after sowing, flag leaf ap-
pearance, heading and milking stages. The forecast period set at the milking stage (towards
the end of the season) provided considerable advantage over the other forecast scenarios
reducing the root mean squared difference in the estimated yield. Marletto et al. [21]
used the downscaled weather forecasts for the last two months before harvest to examine
the skill of NWP models in early wheat yield assessments across Italy. They concluded
that wheat yields showed reasonable predictability (r-squared of 0.65) two months before
harvest and gave comparable yield estimates with those simulated with actual weather
data. Zhuo et al. [22] used a 15-day THORPEX Interactive Grand Global Ensemble (TIGGE)
forecast dataset and concluded that combining TIGGE and historical weather data helped
in medium- and short-term winter wheat yield forecasting.

The major research gap found in general among within-season crop forecasting was the
point-scale setup of the crop simulation model, which failed to address the spatial variability.
The major challenge in spatial crop modeling is the availability of high-resolution weather
information and other ancillary crop/management information. The distinctive objectives
of the present study are (1) Obtaining weather forecasts at various lead-times from regional
NWP, (2) Setting up of gridded crop simulation model after calibration and validation
exercise (3) Coupling of weather and crop models to assess the predictability of within-
season wheat yield at sub-regional scales. In the previous study, the authors, Kirthiga
and Patel [23], focused on methods to improve the resolution of weather forecasts in the
spatial and temporal domain using regional scale NWP model (Weather Research and
Forecasting (WRF) model). The current work is an extension, where the Global Weather
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Research and Forecasting (GWRF) model, with nesting options and improved land surface
parameters, was used to forecast the micro-meteorological weather variables at the various
lead times viz. 1-week, 2-weeks, 3-weeks and 5-weeks. The simulation date for the
lead-time scenarios was formulated to match with respective days prior to the end of
the rabi season of 2008–2009. The verification of the weather forecasts was done with
15 weather stations across the states of Punjab and Haryana and the accuracies were
reported. As the wheat crop’s lifecycle progresses from mid-season towards maturity, the
predictability of the yield was proved to be high, owing to the significance of weather in
grain filling [21]. Thus, the applicability in predicting regional level yields by the weather
forecasts were tested, particularly towards end of the season. The different simulation
scenarios depicted the weather forecasts of variable lead-times applied to the calibrated
simulation model (CERES-Wheat), implemented at 10 km resolution. The National Centre
for Environmental Prediction (NCEP)—Climate Forecast System Reanalysis (CFSR) data
represented the weather input until the forecast date in the various scenarios. Remote
sensing and geospatial techniques were utilized to create spatially varying high-resolution
(grid size of 10 km) crop and management related inputs. The derived spatial wheat yield
estimates from various scenarios viz. 1 week, 2 weeks, 3 weeks and 5 weeks ahead of
the harvest for the crop year 2008–2009, were validated with the district-level reported
crop yields to address the efficiency at sub-regional levels. To test the performance of the
methodology at a higher spatial scale (10 km), the leaf area index (LAI) derived from the
Moderate Resolution Imaging Spectroradiometer (MODIS) was used to validate the model
simulated LAI at various growth stages.

2. Materials and Methods
2.1. Study Area

The major wheat cultivating regions of Punjab and Haryana was chosen as the study
area (Figure 1). Punjab and Haryana collectively contribute 30% of the total output with
the highest productivity and roughly covers about 30% of the entire area under wheat,
hence playing a significant role in the wheat economy of India. The study area has diverse
climatic conditions, including arid, semi-arid and sub-humid climate types and topography
comprising plains, undulating plains, dissected foot-hill zone and sub-mountain undulating
region. The winter/rabi wheat growing period in the region extends from November to
April, with maximum temperature ranging from 8 to 30 ◦C and minimum temperature
varying from 3 to 20 ◦C. The winter season brings in disturbances, and considerable rainfall
is observed. The sub-mountain regions of the domain receive about 100 mm rain during
the winter season. Figure 2 shows the spatial map of rainfall and temperature averaged
across the years 2001–2013 for the winter wheat growing season (November to April) to
elucidate the spatial variability across the study region.

2.2. Weather Forecast Model—Model Specifications and Simulation Protocol

Weather Research and Forecasting (WRF) [24] model (version 3.4.1) is a regional cli-
mate model widely used to forecast/downscale micro-meteorological weather variables. In
the study, WRF-ARW (Advanced Research WRF) core, a fully compressible non-hydrostatic
(with hydrostatic option) system of equations, was used. WRF-ARW is a limited area model,
which depends on the global models for initial and boundary conditions, and hence the
forecast capability is reduced to the forecast lead time and the quality of the global models.
Additionally, the artificial boundaries created from the use of different models having
different model physics and dynamics had been proven to introduce errors in weather
simulations [25]. Thus, Global version of WRF (GWRF), released in 2008 [26], was used
in the study. GWRF is a functional system for nested non-hydrostatic global simulations
and aims at coupling weather systems on global and regional scales with the same physics
and dynamics options. Initial validation and global sensitivity studies [25] showed a better
performance in capturing the global mean climatology.
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Figure 1. Study area—location map with meteorological station network. Figure 1. Study area—location map with meteorological station network.

The model was initialized with Global Forecast System (GFS) forecast data, down-
loaded at 0.5 degree resolution with 47 pressure levels. GWRF was set up with a global
domain and two nests conforming to 1:5:5 ratios were implemented as two-way nesting.
The model had 36 vertical levels with the top of the model atmosphere located at 10 hPa.
The SST update was enabled in the parent domain to have a realistic pattern of the influ-
ences of the ocean in the atmospheric modelling for extended simulations. The physics
options and model configurations are listed in Table 1. The critical land surface parameters,
such as topography, landuse/landcover (LULC) and leaf area index (LAI) were altered in
the study based on results from Kirthiga and Patel [23].
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Table 1. Regional climate model setup details.

Physics Options

Convective scheme Kain-Fritsch cumulus parameterization scheme [27]

Microphysics scheme Lin scheme [28]

Planetary boundary layer
(PBL) scheme Yonsei University (YSU) boundary layer scheme [29]

Longwave radiation scheme Rapid radiative transfer model (RRTM) [30]

Shortwave radiation scheme Dudhia scheme [31]

Land surface model Multi-layer Noah land surface model [32]

Spatial Domain

Domain 1 250 km (144 × 68 grid points) Global coverage

Domain 2 50 km (722 × 339 grid points) Asian and African continents

Domain 3 10 km (3611 × 1695 grid points) Northern India

Simulation Protocols

1 week 7 April 2009–17 April 2009

2 weeks 31 March 2009–17 April 2009

3 weeks 24 March 2009–17 April 2009

5 weeks 10 March 2009–17 April 2009

The forecast was performed for different time scales of 1, 2, 3 and 5 weeks before the
harvest date. The average harvest date was selected to be 17 April 2009 for the study region
through a combination of crop model simulations, MODIS LAI temporal products and
state-wide reports. The details of the time period for each forecast are given in Table 1. Each
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simulation was initialized at 0300 Universal Time Coordinated (UTC) (to match with local
time) and a spin-up time of two days was given. Forecasts of maximum temperature at
2 m; the minimum temperature at 2 m; solar radiation, and precipitation, relative humidity
at 2 m; and wind speed at 10 metres were derived from the weather model.

2.3. Weather Forecast Model—Quality Assessment

Considering the main objective of the study (in-season wheat yield forecasting) and
brevity of the manuscript, the accuracy of the generated weather forecasts is briefly dis-
cussed in this section. The forecasts from WRF model were validated with fifteen automatic
weather stations (AWS) data, installed by Indian Space and Research Organization (ISRO)
and three global summary of a day (GSOD) stations (NOAA 2010) within Punjab and
Haryana (Figure 1). These stations were selected to ensure that they are spatially dis-
tributed, representing the variation in terrain and climatology across the study region. The
bilinear interpolation method was used to select the representative/closest model grid cell,
which was nearest to the observation station. Performance analysis for weather variables
(minimum temperature at 2 m (◦C), maximum temperature at 2 m (◦C), relative humidity
at 2 m (%), wind speed at 10 m (m/s), rainfall (mm) and solar radiation (MJ/m2)) were
investigated for different lead-time scenarios.

Table 2 lists the root mean squared error (RMSE) values for the weather variables across
the lead times. The simulated weather showed good agreement with the observed weather,
yet the agreement decreased with increase in the lead-time. The continual growth and
accumulation of error as a result of initial condition and model errors across the forecast
times is a common challenge in medium/extended range weather forecasting [33,34].
However, the model produced least error for certain variables viz. minimum temperature,
solar radiation and wind speed even with the longest lead time. Studies [35,36] have shown
that the temperature is the most predictable parameter of the micrometeorological variables.
In the present study, the minimum temperature had least error for all the lead times, when
compared to the RMSE of maximum temperature, which showed steep increase with
increase in lead time. In their study, de Perez et al. [36] recorded better performance
of NWP models in forecasting cold waves over the tropics, while the predictability of
heat extremes varied across space [37]. They also suggested that models that represent
better land-surface interactions were likely to improve the predictability of the heat waves.
Furthermore, the sharp increase in the error growth rate of maximum temperature across
the higher lead times could be resultant from using GWRF for extended range forecasting
(3 and 5 weeks). The operational global circulation models (GCMs) maintained by various
governmental agencies are well formulated with sophisticated data assimilation systems
and better representation of the land-sea interactions, when compared to GWRF. This
could have led to the error growth getting amplified in the simulated variables. However,
the other variables record lesser RMSE, owing to the simulation time of the year (peak
summer in India—pre-monsoonal conditions), where high variability is present largely in
the maximum temperature, when compared to the other micrometeorological variables [35].

Table 2. RMSE of weather variables at various lead times.

Lead-Time
Maximum

Temperature
(◦C)

Minimum
Temperature

(◦C)

Solar
Radiation
(MJ/m2)

Relative
Humidity (%)

Precipitation
(mm)

Wind Speed
(m/s)

1 week 3.32 3.66 5.96 21.03 3.02 2.21

2 weeks 4.06 3.80 5.86 18.46 4.29 2.37

3 weeks 5.41 3.99 3.75 17.95 5.84 2.40

5 weeks 8.71 4.33 4.32 23.40 6.75 2.66
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The 1-, 2- and 3-weeks lead-time forecasts performed well for most of the variables
(maximum temperature, minimum temperature and solar radiation). The 5-weeks forecast
seemed to be slightly unsteady, considering the magnitude of errors and the increased
uncertainty ranges (not shown here) for most of the variables. The inherent problems with
using GWRF, when compared to the operational GCMs can be attributed as the major
reason for the amplification of the errors in the longest forecast lead time (5 weeks). Since
we did not have access to the extended range forecasts (3 and 5 weeks) from operational
NWPs and we sought to quantify the utility of GWRF, the model was chosen for the
study. The weather forecasts from GWRF were also compared with the National Center for
Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) (referred as
NCEP hereafter in the article) data to quantify the spatial quality of the generated forecasts
against the widely used NCEP data (in agricultural and hydrological impact studies). The
NCEP mostly overestimated minimum temperatures, solar radiation, precipitation and
wind speed, while it underestimated maximum temperatures and relative humidity. The
biases were reduced with GWRF simulations with an average improvement factor of 30%
over the NCEP data for the given season across all the observation stations.

2.4. Crop Simulation Model—Description

The Decision Support System for Agrotechnology Transfer (DSSAT) version 4.7 is a
software application program that includes crop simulation models for over 28 crops [38].
The Crop Environment REsource Synthesis (CERES)-Wheat model [39] used in the study
simulates growth, development and yield as a function of the soil-plant-atmosphere (SPAC)
dynamics. The model has been popularly applied in a variety of applications, ranging from
on-farm precision farming to regional impact assessment studies [40,41]. The driving vari-
ables are weather, soil, management parameters and cultivar-specific genetic coefficients,
while the state parameters are LAI, biomass, yield. The model simulates the crop growth at
a daily time step.

The methods used in the present study to represent critical processes within the model
were exponential with LAI method for light interception accounting, radiation use efficiency
(RUE) method for biomass production, FAO Penman-based evapotranspiration estimation,
Soil Conservation Service (SCS) method for representing infiltration processes and Canopy
Photosynthesis Response Curve method for photosynthesis calculation.

2.5. Gridded Implementation of the Crop Model—Input Data Preparation

The minimum data required for the crop model includes planting details, weather
data, soil data, irrigation data, fertilizer data and plant species-specific genetic coefficients.
The agricultural zones of Punjab and Haryana do not experience much of the limitation, as
it is one of the best-managed regions in the country. With most of the districts having an
irrigation extent greater than 90%, the average water used during wheat production ranges
between 1900–3400 m3 per hectare [42] and the fertilizer consumption across the region
is widely estimated to be greater than 200 kg per hectare [43]. Thus, the cropping area,
sowing dates, weather and soil properties data were considered to be spatially varying,
while the other inputs (crop cultivar, water and nutrient management) were considered
spatially invariable throughout the study region. Gridded implementation was done with
grid cells of 10 km × 10 km size (Figure 3), aligned to match with the outputs from the
weather model. A total of 1040 grids covered the study region, and the center of each grid
cell is the point-site used for DSSAT CERES-Wheat simulations. The methodology helped
in enabling spatial mode for the DSSAT model.
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Crop cultural and management practices followed in the simulation and are listed
in Table 3. The assumption of one single cultivar throughout the regions of Punjab and
Haryana might introduce some uncertainty in the methodology. However, PBW-343 was
a mega-cultivar during the simulation period and occupied major area in north-western
plains of India [44]. Additionally, the study focused on inter-comparison between various
scenarios generated by altering the weather input, and thus the uncertainty in the inherent
assumption (on the cultivar type) is common across the scenarios. The preliminary selection
of the additional details on planting, irrigation and fertilizer applications were based on
earlier studies on winter wheat in Punjab and Haryana [45,46].



AgriEngineering 2022, 4 1062

Table 3. Crop cultural and management practices.

Crop Details

Crop cultivar species PBW 343

Crop duration Long duration to about 155 days

Maximum crop height 94.4 cm

Cultural Practices

Planting method Seed sowing technique

Planting distribution Row-wise method with 20 cm row
spacing

Plant population 70 plants/m2

Sowing depth 6 cm

Irrigation Application

Irrigation method furrow type

Total irrigation depth 70 cm

Stages of irrigation application

Crown root initiation (20–25 days
after Sowing (DAS))

Late tillering (40–45 DAS)

Late jointing (65–75 DAS)

Flowering (90–95 DAS)

Milking (110–115 DAS)

Dough-formation (120–125 DAS)

Fertilizer Application

Urea (Ntirogen) 110 kg/ha (applied at the time of
sowing and during first irrigation)

Phosphorous 50 kg/ha (applied initially at the
time of sowing)

Pottasium 40 kg/ha (applied initially at the
time of sowing)

The land use/land cover (LULC) data were acquired from the National Remote
Sensing Centre (NRSC) for the time between 2008–2009, prepared at a scale of 1:250,000.
The eight-day surface reflectance of MODIS was used to derive the enhanced vegetation
index (EVI) at 500 m resolution for the whole crop period from September 2008 to May
2009. An algorithm similar to Vyas et al. [47] was used to identify wheat pixels from
the temporal profile of EVI. The output was validated against the reported district-wise
wheat area and an overall accuracy of 88% was obtained. The temporal profile (8-day
composite) of EVI for the selected wheat pixels was smoothened using Savitzky-Golay
filter to remove the noise in the data. The slope of the temporal profile was used to identify
the inflection point and derive the sowing date [47]. Three sowing dates resulted, viz.
25 October 2008, 6 November 2008 and 14 November 2008, with the majority of pixels
belonging to 6 November 2008 category. The dates matched very well with the national
crop calendar and earlier studies [18]. Figure 3 exhibits the areal extent of wheat and the
spatial spread of the sowing dates. The sowing date that had a maximum frequency within
the 10 km grid cell was selected as the sowing date for the 10 × 10 km grid.

Soil properties survey data were obtained from soil resource database of India pub-
lished by National Bureau of Soil Survey (NBSS) at 1:1 million scale. A total of 240 unique
soil classes were derived from the data. DSSAT requires soil surface data, such as soil
type and texture, surface slope, albedo, drainage rate and runoff curve number, which was
derived from NBSS soil survey map. The model also requires soil horizon data where the
field capacity equivalent, permanent wilting point equivalent, field saturation, saturated
hydraulic conductivity, root growth factor and physical and chemical properties need to
be specified. All the above-mentioned parameters were assumed based on soil taxonomy
classes from the soil map. The major soil type from the NBSS survey map within each grid
cell was selected for simulation at 10 km resolution.
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National Center for Environmental Prediction (NCEP) Climate Forecast System Re-
analysis (CFSR) was completed over a 36-year period (1979–2014) [48]. The NCEP was
executed as a high-resolution atmosphere-ocean-land-surface-sea-ice coupled global model,
intended to provide the best estimate of the state of the atmosphere. All the available
conventional and satellite observations were assimilated into the NCEP-CFSR model. The
data were downloaded in daily time steps at a spatial resolution of 25 km. NCEP had been
suggested as a valid option for regional analysis when weather stations are not evenly
distributed [49,50]. Bi-linear interpolation method was used to downscale the 25 km reso-
lution NCEP data to match with the WRF resolution (10 km). Bi-linear interpolation was
considered to be sufficiently adequate for interpolating smoothly varying variables [51].

2.6. Crop Simulation Model—Calibration and Sensitivity Analysis

A sensitivity study (manual method) for the CERES-Wheat model was done to un-
derstand the most sensitive parameters. The cultivar-specific parameters, such as genetic,
ecotype and phenology parameters, were considered for calibration based on results of
sensitivity analysis. MODIS leaf area index (LAI), at a spatial resolution of 1 km and
temporal resolution of 8-day, was also used for the calibration along with district-level
yields. In general, the temporal evolution of biomass can be closely correlated with LAI,
and thus calibration with satellite-derived LAI was considered to be more realistic [52]. The
crop season of 2007–2008 was used for calibration, while 2008–2009 was used for validation
of the parameter values. Both the selected crop years (2007–2008 with yield of 4507 kg/ha
and 2008–2009 with yield of 4462 kg/ha) were normal years with much less deviation from
average wheat yield of 4410 kg/ha (calculated from 2000–2011 wheat crop yields in the
states). The results of sensitivity analysis, calibration and validation are discussed in the
results section.

2.7. Simulation Experiments and Validation

A total of five forecast scenarios were generated to forecast crop yield at different lead
times by varying only the weather input. The details of the scenarios are given in Table 4.

Table 4. Winter-wheat crop forecasting scenarios.

F1 Whole-season NCEP-CFSR weather data

F2 NCEP-CFSR + 1-week WRF forecast

F3 NCEP-CFSR + 2-weeks WRF forecast

F4 NCEP-CFSR + 3-weeks WRF forecast

F5 NCEP-CFSR + 5-weeks WRF forecast

The simulated yields at 10 km resolution were aggregated (area-weighted averaging)
at the district level and validated with district-level actual yields obtained from the crop
cutting experiments by the state agricultural department. The NCEP weather data-based
crop yield simulation for the whole growing season of 2008–2009 was used as reference
simulation (abbreviated as F1). The other simulations were compared against the reference
simulation and relative improvements were also addressed.

To validate regional crop simulations at a higher spatial resolution than just with
district-level aggregations, MODIS LAI was used. The maximum values (across the season)
of the simulated LAI were validated against the maximum values of the MODIS LAI for
every grid. The maximum leaf area of wheat was considered, since it had been widely
correlated to yield. Studies [53,54] have shown that the maximum leaf area is attained
10–20 days before flowering/heading to 10 days after flowering/heading in wheat, which
is the critical period impacting the magnitude of yield. Since the forecast scenarios, F2 and
F3, were close to harvest date, the spatial validation procedure was restricted to F1, F4 and
F5, where the variations in leaf area index were substantial. The suggested procedure was
demonstrated to be reasonable for validating crop simulation performance on a regional



AgriEngineering 2022, 4 1064

scale, given that other sources of finer/sub-regional scale yield/state variable (biomass,
LAI) estimates were not available [55].

The statistical measures, such as root mean square error (RMSE), mean bias (MB), mean
absolute percent error (MAPE), relative deviation (RD), R-squared (R2) and agreement
index were used to evaluate the performance of the crop model simulations. Another
statistic, improvement factor for evaluating the percent improvement of a simulation over
another simulation, was also used [56].

3. Results
3.1. Calibration and Validation of Crop Model

The results of sensitivity analysis showed that the model was highly sensitive to photo-
synthetically active radiation (PAR) conversion to dry matter ratio before the last leaf stage
(PARUV) parameter. A +/− 10% change from the optimal value of PARUV has a +/− 5–7%
impact on the simulated yield values. Vernalization sensitivity coefficient (P1 V) had a
considerable impact on the model simulated yields, a +/− 25% change caused a +/− 6–10%
change in the yield values. Potential kernel growth rate (G2) parameter underestimated
(over-estimated) the yield when reduced (increased) from optimal values. A +/− 10%
change in G2 values impacted +/− 2–3% of simulated yield. The Kernel number per unit
stem to the spike weight at anthesis (G1) also had an impact on the model’s simulations and
an increase/decrease in the value-simulated low yields, while optimal value maximized
the simulated yield. Model simulation was significantly impacted by temperature response
during grain filling, especially by the optimal temperatures for increase in grain weight (T
(opt1), T (opt2)) parameter values. Crop model was also found to be significantly sensitive
to other parameters, such as P1, P2, P3 and PHINT.

Calibration was performed with the identified sensitive parameters at a spatial scale.
At the end of calibration, the model simulating LAI and crop yield was in close agreement
with the satellite observed values. The relative deviation for LAI and yield were −8.9% and
−4%, respectively. The simulated LAI recorded an RMSE of 0.15 m2/m2 and an r-squared
value of 0.91 (Figure 4a).
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Figure 4b shows the validation of the model’s performance with calibrated parameters
for the crop season of 2008–2009. Appreciable agreement of 85% was obtained with an
RMSE of 0.4 m2/m2 and r-squared of 0.78. The LAI and yield simulations recorded a
relative deviation of −9.5% and −6.3%, respectively. There is a wide disagreement between
the MODIS LAI and the model simulated LAI during the peak growing season and during
both calibration and validation periods. Overfitting the model simulated LAI values to
match MODIS LAI caused a higher deviation from observed yields. One probable reason
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could be the inherent overestimation concerns with MODIS LAI algorithm for vegetation,
as reported by Yang et al. [57]. Additionally, MODIS LAI is not particularly intended for
retrieval of deterministic LAI values and the errors due to pixel geolocation mismatch
might have introduced deviations [57]. Table 5 tabulates the adjusted values of the sensitive
parameters after calibration and validation of the crop model.

Table 5. Cultivar (PBW-343)-specific critical parameters and values after sensitivity analysis
and calibration.

Parameter Type Parameters Parameter Description Units Value

Genetic parameters of
cultivar (development)

P1V Vernalization sensitivity coefficient %/d of unfulfilled
vernalization 20

P1D Photoperiod sensitivity coefficient % reduction/h near threshold 80

P5 Thermal time from the onset of
linear fill to maturity

◦C.d (Growing Degree Days) 610

Genetic parameters of
cultivar (growth)

G1 Kernel number per unit stem to
the spike weight at anthesis #/g 20

G2 Potential kernel growth rate mg/(kernel.d) 55

G3 Standard stem and spike weight
when elongation ceases g 1.5

PHINT Thermal time between the
appearance of leaf tips

◦C.d 90

Ecotype (phenology)

P1 Duration of phase end juvenile to
terminal spikelet

◦C.d 270

P2 Duration of phase terminal
spikelet to end leaf growth

◦C.d 350

P3
Duration of

phase end leaf growth to end spike
growth

◦C.d 185

P4 Duration of phase end spike
growth to end grain fill lag

◦C.d 200

PARUV and
PARUR

Photo-synthetically active
radiation (PAR) conversion to dry

matter ratio
g/MJ 2.8

Species temperature
response during

grain filling

T (base)
Base

temperature, below which increase
in grain weight is zero

◦C 0

T (opt1)
1st optimum

temperature, at which increase in
grain weight is most rapid

◦C 16

T (opt2)

The 2nd optimum
temperature, highest temperature
at which increase in grain weight

is still at its
maximum

◦C 25

T (max) Maximum temperature, at which
increase in grain weight is zero

◦C 38

3.2. District-Wise Aggregated Yields

The district-level aggregated yields showed good agreement with the actual yields.
The RMSE, MAPE, RD and agreement index for different forecast scenarios are tabulated
in Table 6. Maximum RMSE of 622.52 kg/ha was recorded in the F1 forecast scenario
(NCEP-CFSR weather data), capturing only 66% of the variability in the yield. The F4
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(3 weeks prior to harvest forecasts) simulated yields were in close agreement with the
actual yields giving the least RMSE of 327.75 kg/ha and 86% agreement with the reported
yields. The F5 (5 weeks prior to harvest forecasts) scenario recorded RMSE of 415 kg/ha
with 41% agreement index. The F5 case highly over-predicted the yield with a relative
deviation of 8.91%, while the other forecasts recorded an under-prediction in yield values
across the districts (Figure 5). Figure 6 shows the spatial distribution of predicted yield.
The districts of Panchkula and Amristar recorded the lowest deviations with F1 and F2
simulations. The districts Kapurthala, Jalandhar and Amritsar gave good results with
the F3 scenario. Many districts performed well in the F4 scenario with an average RD
of –3.1, yet a few districts, such as Kurukshetra, Bhiwani, Rewari and Karnal, showed an
average relative deviation of –10%, and Ambala recorded 4% relative deviation. In the F5
scenario, major underestimation (RD of –17%) was observed in Fatehgarh Sahib, Faridabad
and Moga districts, while Ambala, Hoshiarpur, Panchkula, Nawanshahr (now known as
Shaheed Bhagat Singh Nagar district), and Kapurthala showed substantial overestimation
(RD of 17%) of yield in the F5 scenario. Figure 7a–e show the correlation plots for yield
simulations across the forecast scenarios with the r-squared values. Figure 7f exhibits the
box plots of the simulated yield values against the actual yield values.

Table 6. Simulated yield error statistics across districts.

Forecast Scenarios RMSE (Kg/Ha) MAPE (%) RD (%) Agreement Index

F1 622.52 13.35 −11.53 0.59

F2 505.23 10.77 −10.77 0.77

F3 422.82 8.33 −8.27 0.82

F4 327.75 6.26 −5.35 0.86

F5 415.15 8.05 2.77 0.41
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3.3. Spatial Variability Yield Simulations

The LAI maximum values across the season obtained from MODIS and model simula-
tion with the F1 scenario is shown in Figure 8. In general, the LAI maximum values were
attained 10–20 days before flowering and the model simulated LAI maximum reflected
NCEP weather data for most of the forecast cases. Thus, F4 and F5 showed similar behavior
as that of F1 with no significant deviation. The comparison served to understand the spatial
performance of the simulated LAI values (as proxy for yield). An average RD of –0.17% and
mean bias of −0.3 m2/m2 was observed between F1-simulated LAI and MODIS LAI. The
low and high bias values were −2.5 m2/m2 and +1.85 m2/m2, respectively. The LAI values
in districts Sangrur, Ludhiana, Kaithal, Mansa, Patiala, Kapurthala, Jind and Karnal were
widely underestimated (−1 to −0.5% deviation), while in districts Rupnagar, Firozpur,
Muktsar, Sirsa and Hoshiarpur, the values showed over-estimation (1 to 2% deviation).
This is evident from the 1:1 correlation plot (Figure 9) with a moderate value of coefficient
of determination (R2 = 0.51).
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The spatial yields generated for Punjab and Haryana states are shown in Figure 6.
As mentioned earlier, the F1 scenario was assumed to be the best attainable spatial yield
output at the present data-scarce condition. The relative deviation from the reference yield
was calculated for the other scenarios. F2 showed a negligible deviation of 2–4% across all
the districts. The F3 scenario showed an RD of 15–19% for pixels in districts of Gurdaspur,
Hoshiarpur, Sirsa and Rothak. It also recorded an RD of −2.2% for few parts of Rupnagar.
F4 scenario showed a significant deviation of 17–28% for parts of Sangrur, Mansa, Sirsa,
Hisar, Muktsar, Karnal and Faridabad districts. Some pixels in Panchkula, Ambala and
Rupnagar recorded RD of −4.5%. An RD of 35–42% was observed in the F5 case for parts
of Ambala, Panchkula, Rupnagar, Karputhala, Kurukshetra, Faridabad and Patiala. Parts
of Bathinda, Rothak and Fatehgarh Shaib recorded a −2% relative deviation from the
F1 scenario.

4. Discussion

The forecast scenarios F1, F2, F3 and F4 have performed well for low-yielding and
medium-yielding districts, while they have widely underestimated yield in the high-
yielding districts (Figure 6). The WRF forecasts were coupled with the NCEP merely
after the flowering stage in the present study, where the critical stages (peak vegetative
stages and flowering stages) were represented by weather data from NCEP-CFSR data.
As discussed earlier, the NCEP data had intrinsic biases, and the uncertainties introduced
from the interpolation method used caused non-realistic conditions, consequently, lead-
ing to the underestimation of yield in the forecast scenarios. Table 7 shows the optimal
values of weather variables required at different growing stages. The overestimation of
minimum temperatures, underestimation of relative humidity, overestimation of wind
speed, unrealistic rainfall values in the NCEP data have hindered the crop model from
realizing the actual yield. Figure 8 captures the spatial ambiguity, where the F1 scenario had
greatly underestimated the LAI values during the peak growing stage for the high-yielding
districts in central Punjab (Sangrur, Ludhiana and Patiala) and Haryana (Kurukshetra,
Kaithal, Jind and Karnal).
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Table 7. Sensitivity of crop growth stages to weather variables—specific to study region.

Growth
Stages Emergence

Crown Root
Initiation

(CRI)
Tillering Jointing and

Booting Flowering Grain Filling Maturity

Growth
Period Nov Early Dec–

Mid-Dec

Mid-Dec–
Early
Jan

Mid-Jan–
Late
Jan

Early Feb Mid-Feb–
Mid-Mar

Late
Mar–Early

Apr

Optimal Max
Temp (◦C) 20–35 21–29 20–29 18–28 19–22 20–24 28–35

Optimal Min
Temp (◦C) 3.5–5.5 6–13 7–16 6–9 7–10 7–12 8–18

Optimal RH
(%) 50–70 40–90 40–90 55–95 55–80 30–75 40–75

Sunshine
hours

(hrs/day)
3.5–8 4–7.5 4–7.2 4.5–6.5 4.5–6.5 9–11 9–11

Rainfall
(mm) 0–4 4–19 4–24 15–115 40–142 20–60 0–10

The underestimation (Figures 6 and 7) decreased with the increase in lead time until
F4 (3 weeks prior to harvest forecast), which was due to the improvement of WRF forecasts
over the NCEP data for critical weather variables. The F2 showed much less deviation
from F1, since the modification of the weather was done only towards the end of growing
season, where the crop is fully matured and ready for harvest. F3 recorded a significant
impact, since it had improved weather inputs during the final stages of maturity in early-
sown crops and the intermediate stages of maturity in late-sown crops. Thus, the high-
yielding (Figure 6a), late-sown crops (Figure 3) in the districts of Kurukshetra, Karnal,
Kapurthala and Jalandhar were well simulated with F3 (Figures 6d and 7c). F4 was the best
performing case-improving yield simulations for most of the districts (Figure 6e). The F4
forecast replaced the NCEP weather data from early maturity for early-sown crops and the
intermediate to final stages of grain filling in the late-sown crops. LAI plots for the low-
yielding district (Rupnagar) and high-yielding district (Sangrur) are shown in Figure 10.
Although the post-maturity LAI values have no major impact on yield simulations, the
improvement in the LAI profile demonstrates the reduction in deviation by F4 scenario.
Despite the fact that the weather for 3 weeks prior to harvesting forecasts had biases,
they were well within the optimal range (Table 7), representing close to the real-time
scenario and, subsequently, simulating better yields. In addition, the F4 simulation had
performed well for some high-yielding districts and all medium- and low-yielding districts.
Some of the high-yielding districts, particularly the early-sown regions were not well
simulated, owing to the biases in NCEP data and due to the issues with calibration, as
discussed earlier.
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The F5 forecast scenario behaved slightly differently from the other cases. The scenario
had improved yield estimations for the districts in plains, while the districts that lie in
sub-mountainous regions performed to a lower level. There was significant over-prediction
for the yields in those districts due to the substantial bias in the weather simulations
for the 5 weeks prior to the harvest weather forecast [14]. These regions exhibited an
under-prediction of minimum temperatures and solar radiation, with over-prediction
of relative humidity in the 5 weeks prior to harvest forecasts. Thus, the scenario had
represented unrealistically optimal conditions for the crop growth, consequently, leading
to the overestimation of yields. The F5 case had performed well for some districts in the
plains, where the bias in the 5 weeks prior to harvest weather forecast was comparatively
less. However, the error was reduced when the results were aggregated at district level.
Since the implementation was at a spatial scale and in combination with the NCEP data,
the impact was not linear, as in case of a similar study by Togliatti et al. [14]. The 3 weeks
ahead of harvest forecasts performed well in capturing the spatial yield variability [58].

5. Conclusions

The study is a unique effort to test the applicability of using an improved version of
NWP-generated forecasts for extended range regional level end-of-season yield predictions.
The major objectives of the present study were (1) obtaining weather forecasts at various
lead times from regional NWP, (2) setting up of gridded crop simulation model after
calibration and validation exercise, (3) coupling of weather and crop models to assess the
predictability of within-season wheat yield at sub-regional scales.

The forecast length of the weather forecasts caused significant impact on the accuracy
of the simulated yield [59]. However, since the implementation was on spatial scale and in
combination with the NCEP data, the impact was not linear as in case of a similar study by
Togliatti et al. [14]. The 3-weeks ahead of harvest forecasts performed well in capturing the
spatial yield variability. Two major observations were recorded, the critical crop growth
stages were highly sensitive to the errors in weather forecasts and district-level aggregations
were helpful in averaging out the spikes created by uncertain weather forecasts. It is also
evident from the results that the complexity of crop-weather interactions decreases towards
the end of the growing season, and thus a reasonable representation of weather with known
uncertainty ranges are essentially sufficient [58].

The results highlight that there is a definite requirement to reduce the input and
model-based errors in mesoscale weather modelling. Data assimilation techniques can
help in improving the initial and lateral boundary conditions [60]. Ensemble methods can
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increase the uncertainty ranges being represented within the weather model [61]. Bias
correction of the near-surface simulated weather would also help in improving spatial yield
predictions [10,58,62]. Recommendations from the Agricultural Model Intercomparison
and Improvement Project (AgMIP) [63] state that the gridded model output needs to be
quantified for uncertainty by comparison with observed site information, and the bias
correction factors require global development. They strongly believe that the bias corrected
gridded output can provide vital feedbacks to develop hybrid response systems across the
globe. Spatial-wide calibration and data assimilation strategies need to be strengthened for
spatial implementation of crop growth models [64].

The current work is highly relevant to develop quick response systems during region-
wide crop production failures/surplus and to handle market uncertainties in changing
climatic regimes. This study is a unique effort in coupling the climate and crop model
for generating real-time extended in-season yield predictions at finer regional scales. The
results of the preliminary study were satisfactory and offer a vast scope for practical
application. Future research will be focused on intensive testing of the methodology for
other seasons, years and crops across the country.
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