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Abstract: The intensive advances in robotics have deeply facilitated the accomplishment of tedious
and repetitive tasks in our daily lives. If robots are now well established in the manufacturing
industry, thanks to the knowledge of the environment, this is still not fully the case for outdoor
applications such as in agriculture, as many parameters are varying (kind of vegetation, perception
conditions, wheel–soil interaction, etc.) The use of robots in such a context is nevertheless important
since the reduction of environmental impacts requires the use of alternative practices (such as
agroecological production or organic production), which require highly accurate work and frequent
operations. As a result, the design of robots for agroecology implies notably the availability of highly
accurate autonomous navigation processes related to crop and adapting to their variability. This
paper proposes several contributions to the problem of crop row tracking using a four-wheel-steering
mobile robot, which straddles the crops. It uses a 2D LiDAR allowing the detection of crop rows in
3D thanks to the robot motion. This permits the definition of a reference trajectory that is followed
using two different control approaches. The main targeted application is navigation in vineyard
fields, to achieve several kinds of operation, such as monitoring, cropping, or accurate spraying. In
the first part, a row detection strategy based on a 2D LiDAR inclined in front of the robot to match a
predefined shape of the vineyard row in the robot framework is described. The successive detected
regions of interest are aggregated along the local robot motion, through the system odometry. This
permits the computation of a local trajectory to be followed by a robot. In a second part, a control
architecture that allows the control of a four-wheel-steering mobile robot is proposed. Two different
strategies are investigated, one is based on a backstepping approach, while the second considers
independently the regulation of front and rear steering axle position. The results of these control
laws are then compared in an extended simulation framework, using a 3D reconstruction of actual
vineyards in different seasons.

Keywords: agricultural robotics; laser scanner-based navigation; four-wheel-steering mobile; row
tracking

1. Introduction

Autonomous navigation of off-road robots arises as a central question for the ecological
transition of agriculture in the framework of vine production. Required chemicals reduction,
together with the use of bio-control products, leads to increasing the accuracy of tasks to be
achieved, as well as the frequency of field interventions. The lack of manpower and the
painfulness of such tasks promote the development of autonomous robots, especially those
working in vineyards. Indeed, more and more agricultural robots are deployed in farms in
order to relieve the work of the farmer by reducing the drudgery of certain manual tasks [1].
The role of these robots does not end there, they also allow a better agricultural yield,
reduce the exposure of workers to certain chemical products sprayed on the plantations,
and allow a more efficient and precise agriculture. Indeed, navigation in vineyards requires
a centimeter-level accuracy with respect to the vegetation, especially on a straddle robot.
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Solutions that are based on Global Navigation Satellite System (GNSS) that can provide
precise localization technology with real-time kinematic (RTK) corrections allows this kind
of precision, as shown in previous authors’ work [2,3]. However, this implies a prior
definition of a global path allowing to integrate the vineyard row information. Generating
a trajectory using prior information of the environment can be performed through a
collection phase of way-points along the field. The reference path is then provided as
a global path created by manually surveying the field using RTK-GNSS. The absolute
localization provided by the RTK-GNSS system is then considered as the ground truth
[4,5]. The precise localization of the robot is derived by the fusion of the RTK-GNSS and
additional sensors such as the odometry of the robot and an IMU, while using the most
commonly used tool—a Kalman Filter [6–8], for instance. This also has the advantage
of overcoming the eventual loss of GPS signal in large canopies, especially in vineyard,
orchard applications, greenhouses, or when experiencing signal perturbations [9].

Line detection from row crop fields emerges as an alternative solution to RTK-GNSS
navigation. This technique differs in the type of data used (e.g., point-cloud or images)
and in the line-fitting algorithm (e.g., RANSAC (RANdom SAmple Consensus) [10,11] or
Hough transform [12,13]), but also in the used sensor (Vision-based [14–16] or LiDAR-based
[4,10,17,18]).

Vision sensors are often exploited in order to extract the parallel lines in the crop
structure from the input data. For example, Hough transform from images is often used as
a line-fitting method. However, the method is not robust to uncertainty and can extract
incorrect lines that lead to navigation failure. Moreover, it is classically performed under
the assumption of prior knowledge of the field such as row spacing or the number of
crop rows [19,20], and it is sensitive to the environment with a significant presence of
weeds or dense canopy. In an effort to increase robustness, [13] proposes an approach to
detect crop row patterns in a single step instead of detecting individual lines. However,
vision-based sensors come with the disadvantage of being sensitive to lighting conditions,
which is a major drawback in outdoor applications. LiDAR-based navigation methods, on
the other hand, overcome this drawback and also have the advantage of high resolution
and large field of view, especially in outdoor applications. In [4], a multi-layer LiDAR
(Ouster 16-channel) is used in order to extract the row line using Hough transform. This
is performed with a parameterization based on point-cloud statistics to extract useful
structure parameters such as the number of rows input to the Hough transform algorithm.
However, the use of such 3D sensor appears to be costly regarding the task of structure
tracking. Hybrid solutions allows to have the best of multiple sensor solutions. The solution
proposed in [21] makes use of a laser range finder and RGBD device and a GPS. The laser
range finder and RGBD device are used to perform reactive row following and obstacle
avoidance, while GPS navigation is used for changing from row to row or field to field.
In this paper, we favor the use of a less expensive sensor, a 2D-LiDAR laser scanner, as we
believe it is a sufficient sensor solution for structure tracking.

Once a path is extracted with respect to crops, different control strategies are used
in the framework of path following. Even when the robot is subject to perturbations
such as sliding or non-ideal actuators, the motion still needs to be precisely controlled.
Additionally, the robots must perform maneuvers in crowded areas with limited space and
under heterogeneous terrain conditions [22]. To address this issue in the context of our
application, robots equipped with four independent steering wheels (called 4WS robots)
arise as a good solution to have more degrees of freedom. This allows to increase the agility
and maneuverability, while controlling independently the robot position and orientation,
with respect to the row. Indeed, this kind of robot offers a great range of movements and
allows a reduction of the radius of curvature, especially when moving in narrow spaces
such as encountered in vineyards or when carrying a tool, such as in spraying applications
[23], but it also allows compensating for sideslip angles. As for the control of 4WS robots,
the objective in the classical approaches for path tracking [24] is to linearize the kinematic
model of the robot in order to obtain an expression of the control (i.e., the steering angle of
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the robot), which guarantees the convergence of the lateral deviation towards the desired
one. The exact linearization approach has the advantage of providing a mathematical
expression giving at any time the ideal control depending on the robot state measurement.
Moreover, thanks to the integration of gains in this expression, it is possible to adjust the
dynamics of the robot by defining a time or a convergence distance of the robot towards
the target trajectory. This solution is efficient and accurate, but it only allows to set the
time (or the distance) of convergence to the trajectory. This approach is generally sufficient
when moving in an open environment; in the case of structure tracking, it can become
limiting. Indeed, in order to guarantee tracking of a structure without collision with it,
it can be interesting to control more efficiently the convergence of the robot towards the
structure and in particular its orientation. The work in [25] investigates the possibility of
accurately controlling a 4WS with respect to a path, while maintaining different desired
absolute orientations with respect to the global frame and guaranteeing different desired
lateral deviations. However, depending on the application, the absolute orientation is not
always obtainable.

In this paper, a robust 2D LiDAR-based solution is chosen in order to navigate reac-
tively in the vine field while allowing to account for the variability of lightning, weather
conditions, and the evolution of vegetation. Indeed, we are interested in studying the
generecity of a reactive LiDAR-based navigation strategy throughout the seasons. For this
reason, a GPS free solution is proposed as in the proposed work field, the task is tied to
the evolution of vegetation rather than to a specific positioning. The approach consists
of detecting the expected structure shape of a vine in each laser scan and aggregating the
successive scans into a global map, in the vicinity of the robot’s position. The accumulation
of points in 3D space during the robot’s movement will then define the trajectory to follow.
The proposed navigation algorithm allows a 4WS mobile robot to work on vineyards,
despite the evolution of vegetation toward different seasons. In addition, it is proposed
to illustrate the well-working of the navigation algorithm through two different control
strategies. The first strategy presented considers a backstepping approach to independently
control the longitudinal and lateral controls and thus separate the regulation of the position
and the orientation of the robot. The second strategy presented considers separating control
of the front axle and the rear axle, to ensure they follow the same path.

This paper is organized as follows. First, the row tracking strategy is detailed in
Section 2.1. Then, the control framework is detailed in Section 2.2, where two control
strategies are detailed to illustrate the path tracking. Section 3 presents the simulation
results on an advanced simulation testbed (3D reconstruction of actual vineyard in different
seasons) to illustrate the efficiency of the proposed structure detection algorithm as well as
the two control strategies. Finally, Section 4 concludes the paper and presents some insights
for future works.

2. Materials and Methods

Throughout this section, the methods used to conduct this research are detailed. First,
the row tracking strategy is described in Section 2.1, involving the use of a 2D LiDAR sensor.
This allows the computation of a local reference trajectory to be followed. Secondly, the
used motion control strategies are detailed in Section 2.2. These strategies allow accurate
tracking of lateral and angular deviation with respect to the detected structure. Lastly, the
proposed control architecture is tested on an advanced simulation testbed composed of a
digitized vineyard in two different field configurations related to plant growth.

2.1. Row Detection Strategy

The overall procedure is shown in Figure 1.
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Figure 1. Overall procedure for the row tracking strategy.

The row detection strategy defined in this work is firstly based on finding crop shape
matching an expected model within the LiDAR framework. The idea was initiated in the
author’s previous work [26] where the purpose was to detect the footprint left by tires from
a previous operation on the field. In our case, the goal in this work is to follow a trajectory
defined by the vineyard structure with an autonomous mobile robot, using an inclined
2D LiDAR. The LiDAR is set at the top front of the robot in order to see above the vine
to limit the masking effect (cf. Figure 2 of the robot TRAXX by Exxact Robotics, available
online: https://exxact-robotics.com/produit/traxx (accessed on 22 September 2022)). A
pitch angle is also set on the LiDAR to extend the distance of prediction of the system.

Figure 2. TRAXX Robot and LiDAR positioning.

The approach consists then of detecting the expected structure shape in each laser
scan and aggregating the successive scans into a global map. The accumulation of points in
3D space during the robot’s movement will then define the trajectory to follow.

2.1.1. Pre-Processing

The objective here is to extract the set of LiDAR set-points that are the most represen-
tative for row tracking. The first step consists of reducing the field of view of the LiDAR
in order to reduce the research area to the closest rows. This is performed by keeping the
data that belongs to the range [−30◦, 30◦]. Then, ground variations are removed in order to
compensate for soil inclination present in an uneven terrain of an off-road context, contrary
to the expected model of the vine that is defined on a flat and even surface. Therefore, a

https://exxact-robotics.com/produit/traxx
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preliminary step is to estimate the general profile of the terrain in order to compensate for
the inclination of the ground. This is achieved using the RANSAC algorithm [27]. This
allows the elimination of large variations in the ground and inclinations without minimiz-
ing the other variations representative of the structure of the model. Figure 3 shows an
example of this correction on a simulated uneven terrain.
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Figure 3. Example of result of the ground inclination compensation in the LiDAR 2D point cloud
framework.

2.1.2. Detection Model Definition

Once the general soil inclination has been compensated, the adequate model of a single
grapevine is defined. As shown in Figure 4a, when using 2D laser scanner, the vine can be
approximated by a squared signal whose minimum is set to the ground. The height of such
a model is defined to be the typical height of a vine. The width is tied to the density of the
plant cover. Therefore, the width is smaller in a winter vineyard and larger in a summer
vineyard. An example of simulated LiDAR data and its model is shown in Figure 4a.
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Figure 4. Vine Model Definition in LiDAR framework. (a) Vineyard in Gazebo; (b) LiDAR measure-
ments and corresponding vine model.

2.1.3. Correlation Score Definition

The objective is then to find the matching shape of the vine model in the data returned
by the LiDAR. To this end, a correlation between the current LiDAR scan and the previously
generated model is computed. In order to find the position of an expected vine, this score
is computed from a moving offset k in the point index. By denoting N the number of
impact points retrieved from the laser beam, then k will move in between − 2N−1

2 to 2N−2
2 ,

to find the offset that fits the best with the model. An example of results can be seen in
Figure 5a, showing the correlation score with respect to the offset. Figure 5b shows then
the superposition between the point cloud and the vine model at the index k, where the
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correlation score is maximal. Assuming that the model and the laser measurement have
the same number of points, the correlation expression used is defined by:

r(k) =
∑N

j=1

(
zj+k − z̄

)
·
(
mj − m̄

)
∑N

i=1
√
(zi − z̄) · (mi − m̄)

(1)

With:

• r(k) is the correlation score for the offset k between LiDAR data and template;
• z represents the LiDAR measurements on the Z-axis;
• m represents the values of the model data;
• z̄ and m̄ are the mean values of, respectively, LiDAR Z-axis data and model data.
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Figure 5. Results of correlation computation and corresponding maximum value. (a) Correlation
computation and maximum score; (b) Detection point in the LiDAR framework.

Since Equation (1) is normalized, the global maximum of the correlation can be re-
trieved and compared to a threshold value, empirically defined ensuring less false detection
(cf. Figure 5a). Then, the correlation maximum is associated to its corresponding value in
the LiDAR signal as shown on Figure 5b.

At this step, each maximum of the correlation score above the threshold (as depicted in
Figure 5a) can be considered as a candidate for vine detection. At each LiDAR acquisition,
one can then find zero or several candidates. In the next section, we will see how a new
detected point can be classified as a good detection and aggregated with the previous
set-points.

2.1.4. Vine Structure Reconstruction

The purpose of this application is to follow a trajectory defined by a structure of the
vineyard with an autonomous mobile robot, thanks to LiDAR detection. The approach is
then to detect the expected structure in each laser scan and aggregate the successive scans
into an overall map. Points accumulation in 3D space during the movement of the robot
will then define the trajectory to follow. The previously retrieved set-point in the LiDAR
signal is the set-point where the model suits the best data (cf. Figure 5b). To classify it as a
selected set-point for aggregation to the reference trajectory, its distance to the previously
aggregated set-point has to be computed. Hence, the retrieved set-point is expressed in
the global frame using the localization of the robot. In this case, robot odometry is used.
The impact of the drift of such a sensor is limited by a distance removal criterion between
the oldest set-point and the robot location. In fact, the drift in the use of this type of data
will not affect the accuracy of the trajectory tracking, since only a local part will be used to
evaluate the lateral and angular deviations. Indeed, only the data between the impact of
the LiDAR and the robot’s tires are kept; this distance of a few meters is not significantly
impacted by the drift of the odometry. The retrieved set-point, now expressed in the global
frame, is compared to the newest set-point using the following formula:
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lp
d = | − sin(θ)(xr − xp) + cos(θ)(yr − yp)| (2)

With:

• lp
d —the lateral deviation of the retrieved point to the newest set-point in the robot

frame;
• θ—the yaw of the robot computed with the odometry;
• xr and yr—the X and Y coordinates of the retrieved point;
• xp and yp—the X and Y coordinates of the previous aggregated set-point.

If the computed distance is low enough, the point is considered as a set-point and
agglomerated with the others, as shown in Figure 6.

Figure 6. Aggregated set-points along the row structure and linear approximation of the selected
detecions.

2.1.5. Trajectory Computation and Input Control

To match the structure of the vine row, the trajectory is computed using a mean least
squares method, as shown in Figure 6. The detected points represent a local line approxima-
tion of the vine row (assuming low variation in the curvature of the vine structure). Once
the reference trajectory is obtained, it is used to compute the lateral and angular deviation
as inputs to the control law. The lateral and angular deviations with respect to the linear
estimation of the trajectory given by the expression y = ax + b are computed as follows:

y =
a · Xrobot −Yrobot + b√

a2 + 1
(3)

θ̃ = θrobot − tan−1(a) (4)

With:

• y—the lateral deviation with respect to the reference trajectory;
• a and b, respectively, the slope and intercept computed by the least squares method;
• Xrobot and Yrobot—the coordinates of the robot computed through the system odometry;
• θ̃—the angular deviation;
• θrobot—the yaw of the robot computed through the system odometry.

This allows the computed control to always be updated regarding both robot’s motion
and new structure detection.
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2.2. Motion Control

The control objective is to perform accurate path tracking while using both the front
and rear steering angles and compensating for low grip conditions. Two different control
approaches are proposed to investigate the local trajectory tracking of 4WS mobile robots
in vineyards.

The first strategy presented in Section 2.2.2 considers a backstepping approach to
independently control the longitudinal and lateral controls and thus separate the relative
position and orientation regulation of the robot. This strategy has been successfully tested
in previous authors’ work [28] through full-scale experiments while using two kinds of
robots: a 25 kg skid-steering robot and a 520 kg four-wheel-steering robot.

The second strategy presented in Section 2.2.3 considers the control of the front axle
and the rear axle independently, in contrast with the classical viewpoint, which expresses
the relationship between the front and rear wheels. From this point of view, the purpose is
to ensure that the front and the rear center of the axle follow the same path. The control
laws for the rear and front axle have been initiated in previous authors’ work (with respect
to time-derivatives in [29] and with regard to curvilinear abscissa in [30]). This strategy
has been successfully validated and compared to a previously developed adaptive control
law [31] that uses only the front steering axle. It has shown a significant increase in the
accuracy of tracking especially during curves, allowing to reduce the space occupied by
the robot in terms of the reference trajectory. The major contribution of this paper concerns
the proposal of a navigation strategy that makes use of a 2D LiDAR sensor and a 4WS
mobile robot to work on vineyards, despite the evolution of vegetation toward different
seasons. The control algorithms are here to illustrate their well-working and generecity
to achieve fully autonomous agricultural tasks in vineyards. In order for the paper to be
self-contained, details on these strategies are given, as well as the mobile robot modeling.

2.2.1. Mobile Robot Modeling

In this paper, a 4WS mobile robot is considered. The objective is to allow the 4WS robot
to follow a defined trajectory coming from a structure to follow in this case. These type
of robots are generally used in order to enhance motion capability and maneuverability
of vehicles, especially those operating in narrow spaces such as within warehouses or
agriculture areas, such as vineyards, where the maneuver areas are small. The robot is
viewed as a bicycle (i.e., the robot is reduced to two wheels), one for the front axle with a
steering angle denoted δF and the other one for the rear axle with a steering angle called
δR. It is perceived in the framework of path-tracking (as defined in [32]) where the robot is
considered symmetric along its heading and all the wheels are in contact with the ground.
The control variables linked to this kind of robot are v—the velocity at the rear axle, δF,
and δR. Since this work is devoted to off-road application, where high maneuverability is
an important requirement, the classical assumption of rolling without sliding, classically
achieved in mobile robot control, is here not considered as satisfied. For this reason, the
terms βF and βR, which are the sideslip angles, are added to the expressions of the model
in order to overcome the non-ideal grip condition. They denote a front and rear angle,
between the tire orientation and the current speed vector orientation at the contact points
F and R. This means that the orientation of the speed vector are different then from the
tire orientations. By defining βF = βR = 0, the same expression gives a command in the
case where the drift angles are neglected and/or not estimated. A detailed explanation of
the estimation of sideslip angles for a four-wheeled robot is proposed in [30]. Once these
angles are known, the purpose is to define a path tracking control law which is able to
impose the convergence of the robot with respect to the detected structure Γ.

In this work, two control strategies are used. For each strategy, a specific model
is defined with respect to the same variables. In the modeling of the first strategy (cf.
Figure 7a), s is the curvilinear abscissa of the point M along Γ. c(s) is the curvature of the
trajectory Γ at point M. y is the lateral deviation representing the difference between the
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middle of the rear axle R and Γ. θ̃ is the angular deviation, which is the difference between
the robot’s actual heading and the orientation of the tangent to trajectory at point O.

In the second strategy (cf. Figure 7b), in addition to the lateral deviation defined at
point R and denoted in this second model as yR, a second lateral deviation with respect to
point F is considered. It is called the front lateral deviation (denoted yF), and it represents
the distance between F and Γ.
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Figure 7. Extended kinematic model of the robot with respect to the reference trajectory Γ. (a) Robot
Modeling for control strategy 1; (b) Robot Modeling for control strategy 2.

From these representations, it is possible to obtain a common system equation defining
the robot motion with respect to the trajectory to be followed Γ. It can be expressed as:

s′ = v
cos
(
θ̃2
)

1− c(s)y

y′ = v sin
(
θ̃2
)

θ̃′ = v[cos(δR + βR)λ1 − λ2]

(5)

with: 
λ1 = tan(δF+βF)−tan(δR+βR)

L

λ2 =
c(s) cos(θ̃+δR+βR)

1−c(s)y
θ̃2 = θ̃ + δR + βR

(6)

When considering path tracking applications, it may be relevant to impose a settling
distance, in order to control explicitly the robot trajectory. A settling distance is used instead
of a settling time in order to design a control strategy independent of time and speed. For
this reason, the equations of motion have been rewritten w.r.t. the curvilinear abscissa s
instead of w.r.t. time. 

s′ = 1
y′ = (1− yc(s)) tan

(
θ̃2
)

θ̃′ = uθ
1−yc(s)

v cos(θ̃2)
− c(s)

(7)

with

uθ = v cos
(

δR + βR
) tan

(
δF + βF)− tan

(
δR + βR)

L
(8)

The variable x′ denotes the derivative of x with respect to the curvilinear abscissa s, such as
x′ = dx

ds .
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2.2.2. Control Strategy 1: Backstepping Position/Orientation Control

From this point of view, control aims at servoing the relative position and orientation
of the robot independently. For this purpose, the outputs to be controlled are both the lateral
and angular deviation (y, θ̃). The lateral deviation must converge and be maintained to
some desired lateral deviation yd and the angular deviation to some constant. The proposed
algorithm relies on three steps. The first step allows to compute a desired speed vector
orientation to be followed by a reference point on the robot (e.g., middle of the robot).
The desired orientation is determined thanks to the knowledge of the error between the
measured lateral deviation (obtained from the detection algorithm) and the desired one
yd. This allows the robot to reach yd under a desired distance. In the second step of the
algorithm, the desired orientation calculated in the previous step is used as a reference
speed vector orientation to be reached thanks to the control of the front steering axle.
The third step of the control architecture is actuating the rear steering angle in order to
control the actual orientation of the robot w.r.t. the structure to be followed, impacting the
convergence of the lateral error. These steps are detailed hereafter.

Step 1: Computation of the target angular deviation

In the framework of path (or structure) tracking, it is more relevant to define an
angular deviation allowing to reach the trajectory. The goal is to compute an objective for
the orientation of the speed vector θ̃2, which is denoted in the following θ̃

Obj
2 , ensuring the

convergence of the robot towards a desired lateral deviation yd. The error ey = y− yd can
thus be defined as the value to be canceled, after a settling distance, to ensure trajectory
tracking. From the second equation in the motion model (7), the derivative of this error
with respect to the curvilinear abscissa becomes:

e′y = α tan
(
θ̃2
)

(9)

with α and θ̃2 defined in Equation (6). θ̃2 is then considered as an intermediate control
variable. For the sake of simplicity, the term y′d is here ignored. If, for this variable, the
following expression is imposed:

tan θ̃
Obj
2 =

(
kyey

α

)
(10)

then, the dynamic of the error in Equation (9) becomes:

e′y = kyey (11)

where ky is a tuning gain that specifies the settling distance for the convergence of the
robot’s lateral deviation to the desired lateral deviation yd. Thus, it is now possible to define
the control that aims at the convergence of the intermediate control θ̃2 to the value θ̃

Obj
2 ,

guaranteeing the convergence of the robot to the desired offset yd from the trajectory. This
is performed by defining the following error:

eθ̃ = tan θ̃2 − tan θ̃
Obj
2 (12)

The purpose of the rest of the control algorithm is to ensure the convergence of this
error.

Step 2: Control law for the front steering angle

When considering 4WS robots, changing their orientation at null longitudinal speed is
not possible. For this reason, the derivative of the error eθ̃ is derived with respect to the
curvilinear abscissa using Equation (3) in model (7) as follows:
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e′ θ̃ = cos
(

δR + βR
)

α
tan
(
δF + βF)− tan

(
δR + βR)

L cos3
(
θ̃2
) − c(s)

cos2
(
θ̃2
) (13)

This equation is derived while considering a slow varying θ̃ compared to the yaw
dynamics imposed to the robot.

A control law for the front steering angle δF guaranteeing the convergence of the error
to zero is then defined as follows:

δF = arctan

(
tan
(

δR + βR
)
+

L cos3(θ̃2
)

α cos(δR + βR)

(
kθ̃eθ̃ +

c(s)
cos2(θ2)

))
− βF (14)

This expression indeed ensures the following differential equation e′ θ̃ = kθ̃eθ̃ , imposing an
exponential convergence of the error to zero. The gain kθ̃ defines a settling distance of the
convergence of the error eθ̃ towards zero. In order to respect the hypothesis on θ̃ defined
above, the settling distance of the error should be lower than the distance of convergence
of the lateral error ey. To achieve this, we must satisfy the condition |kθ̃ | � |ky|.

The expression of the front steering control law involves the rear steering angle δR,
which is detailed in the following section. However, this expression can be used in the
same way for a robot equipped with a single steering gear simply by setting δR to 0.

Step 3: Control law for the rear steering angle

The expression in (14) ensures the convergence of θ̃2 to the desired value θ̃
Obj
2 . How-

ever, the robot orientation θ̃ stays uncontrolled without a definition of the steering angle δR.
Therefore, this angle will be used to control the orientation of the robot towards a desired
orientation θ̃d by defining the error: er = tan θ̃ − tan θ̃d, and by neglecting the derivative of
the rear steering angle with respect to s (which can be reached by tuning the gains of this
control law). The derivative of error er w.r.t. s is then:

er
′ = e′

θ̃
= kθ̃

(
tan
(

θ̃ + δR
)
− tan θ̃d

)
(15)

The following control law for the rear steering angle guarantees the convergence of
this error to zero:

δR = arctan
(

krer

kθ̃

+ tan θ̃d

)
− θ̃ − βR (16)

This is ensured thanks to the tuning of the gain kr that the angular deviation θ̃ con-
verges to the desired one θ̃d.

The control of the rear steering angle allows to help the robot converge to a set-point if
the robot is far from the desired lateral deviation; otherwise, the rear steering angle ensures
that the robot is parallel to the structure (given that θ̃d is set to be 0). In either case, this
control strategy allows increasing maneuverability by controlling the orientation of the
vehicle while changing the lateral deviation (which is impossible with a single steering
angle). This is very convenient when considering an application in vineyards where the
space for navigation is limited.

2.2.3. Control Strategy 2: Lateral Errors Regulation

The first strategy indeed permits to control the heading of a robot independently
from its lateral position, however, it does not explicitly control the front axle position,
which limits the control on the convergence of the position of the front and the rear axle to
the reference path. The second strategy has been developed in order to reduce the space
around a desired trajectory when achieving maneuvers, especially in narrow spaces. This is
performed by ensuring the convergence of both the rear and the front axle to the trajectory.
In this case, the robot is divided into two independent sub-systems regulating two lateral
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deviations with respect to the same trajectory. For this reason, an additional model for the
tracking errors has to be defined.

Step 1: Modeling of the tracking errors

As explained above, the goal is to make sure both steering axles converge to the
desired trajectory. For this purpose, two models of the derivatives of the tracking errors
yR and yF have to be defined from the representation shown in Figure 7b. yR is directly
obtained from the second equation in the model (7) w.r.t. the curvilinear abscissa:

y′R =
(

1− yRc(s)
)

tan
(
θ̃2
)

(17)

The front axle can be derived w.r.t. the curvilinear abscissa from the geometric proper-
ties of the kinematic model in Figure 7b and using the model Equation (5) as follows:

y′F =

(
1− c(s)yR)

cos θ̃2

(
sin θ̃2 + L cos θ̃(cos(δR + βR)λ1 − λ2)

)
(18)

The definitions of λ1, λ2, and θ̃2 are already given in the model Equation (6). Details
on how this equation is derived can be found in [30].

As one can see, the physical link between the control variables δR and δF is ensured
by the computation of the front tracking error, which is deduced from the rear steering
angle and the robot’s heading. In addition, Equations (17) and (18) constitute the model
that will be used for the design of the control laws in the section below, as they provides
the relation between the control variables and the derivatives of the tracking errors yR and
yF with respect to the curvilinear abscissa.

Step 2: Control law for the rear steering angle

The objective is to ensure the convergence of yR to zero. To achieve this purpose, let us
come back to the model of the derivative of the tracking error yR defined in Equation (17).
This variable is linked to the rear steering angle through the variable θ̃2. The convergence
can then be ensured by imposing:

y′R = −KRyR (19)

with KR—a tuning gain defining the settling distance for the exponential convergence
of yR to 0. The rear steering angle can be then defined by injecting the expression of
the derivative of the tracking error yR (cf. Equation (17)) and the expression of θ̃2 into
Equation (19) defined above, we can obtain:

δR = arctan
(
−KRyR

1− c(s)yR

)
− θ̃ − βR (20)

In classical path tracking applications, the objective is to ensure the convergence of
yR to zero through the control of the rear steering defined above. In this paper, the second
objective is to ensure also the convergence of the front lateral error to zero.

Step 3: Control law for the front steering angle

In order to ensure the convergence of the point F (defined in Figure 7b) to the desired
trajectory Γ, let us return to the model of the derivative of the tracking error yF defined in
Equation (18). In this equation, the evolution of this variable is linked to the front steering
angle δF through the variable λ1. In this case, the convergence can be ensured by imposing:

y′F = −KFyF (21)

with KF—a tuning gain defining the settling distance for the exponential convergence of yF

to 0.
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The front steering angle can then be defined by injecting the expression of the deriva-
tive of the tracking error yF (cf. Equation (18)) and the expression of λ1 into Equation (21)
defined above, we can obtain:

δF = arctan
{

Lλ2

cos(δR + βR)
− KF yF cos θ̃2

(1− c(s)yR) cos(δR + βR) cos θ̃
− B1

}
− βF, (22)

with:

B1 =
sin
(
θ̃2
)

cos(δR + βR) cos θ̃
− tan(δR + βR), (23)

3. Results

In the following, the simulation results on an advanced simulation testbed (3D re-
construction of actual vineyard in different seasons) are illustrated. The efficiency of the
proposed structure detection algorithm, as well as the two control strategies, is shown.

3.1. Simulation Testbed—Digitized Experimental Vineyard with Terrain Variability

To reduce the costs and risks for both robot and vineyard, an advanced simulation
testbed was created. The simulated vineyard has to be representative enough of the reality
to have the closest behavior of the robot in a real vineyard. The proposed autonomous
navigation has been tested on different field configurations, especially related to plant
growth.

Two numeric models of the vineyard have been acquired (cf. Figure 8) to be rep-
resentative of the diversity and check the robustness of the vine row following algo-
rithm. The digitized models have been recorded using a FARO focus 3D (Available online:
https://www.faro.com/ (accessed on 22 September 2022)). which is a high-speed 3D laser
scanner (the device is labeled “Faro Focus 3D” on Figure 8a) and provides a millimeter
precision. It uses laser technology to produce detailed three-dimensional images of complex
environments and geometries. These images include millions of 3D data points, known as
a point cloud. The laser scanner emits a beam of infrared laser light onto a rotating mirror
that effectively paints the surrounding environment with light. The scanner head rotates,
scanning the laser over the object or area. Objects in the path of the laser reflect the beam
back to the scanner, providing geometry that is interpreted into 3D data. In addition to
distance measurement, laser scanners also capture measurements in the horizontal and ver-
tical planes, providing a full range of measurement data. The acquisitions were performed
in several scans (around nine), while positioning the Faro around the vineyard in order to
cover all the views at 360°. Then, the software FARO SCENE was used in order to create
and export texture meshes. Spherical white targets were placed in the environment (as can
be seen on Figure 8a) in order to facilitate the detection of these locations for the software
SCENE and thus allow to realign the different scans. The last step was to customize the
output mesh while selecting different options such as: gap filling while controlling point
densities triangles, maximum number of triangles (around 25,000), density, etc. Indeed,
these options were set for a better trade-off between the quality of the mesh, the available
computational power, and being compliant with the use of it within the gazebo simulator
engine in the simulation framework. The result was a 3D mesh with an accuracy of 0.5 cm:

• The first in summer with vines full of leaves (cf. Figure 8a);
• The second in winter without leaves (cf. Figure 8c).

All the detailed algorithms were implemented within a ROS (Robot Operating System)
framework. The simulation environment (thanks to Gazebo simulator engine) provides
a realistic physical model for a straddle robot and actuators, as well as the digitized
environment imported in Gazebo. A generic 4WS robot library (that is an extension of stan-
dard vehicle controllers (diff_ drive_controller, ackermann_ steering_ controller, four_ wheel_

https://www.faro.com/
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steering_controller) is used that publishes the odometry data with reliable uncertainty com-
putation through an associated covariance matrix and subscribes to the control messages
(steering angles and linear speed). Simulating the robot’s controllers in Gazebo is accom-
plished through ros_control package [33] and a simple Gazebo plugin (available online:
https://classic.gazebosim.org/tutorials?tut=ros_control (accessed on 22 September 2022)).
LiDAR sensors are also simulated in Gazebo through open-source plugins that create a
sensor interface between ROS and Gazebo. In this application, the “sick_ scan_ xd”’ driver
for ROS is used to simulate a sick LMS151 - 2D LiDAR.

(a) (b)

(c) (d)
Figure 8. Illustrations of the summer and winter vineyard. (a) Picture of the summer vineyard;
(b) Digitized summer vineyard; (c) Picture of the winter vineyard; (d) Digitized winter vineyard.

The used parameter input to the row tracking strategies and control laws are summa-
rized in Table 1.

Table 1. The simulation parameters.

Settings/Scenario
Vine Model Parameters LiDAR Position Control Parameters

Width
(Index)

Height
(m)

Corr.
Thresh-

old
x (m) y (m) z (m) θ◦

Strategy
1

Strategy
2

Summer Vineyard 10.0 1.0 0.25 1.0 0 2.0 45
ky = −0.9
kθ = 1.0
kr = 1.0

KF = 0.35
KR = 0.35

Winter Vineyard 5.0 1.0 0.25 1.0 0 2.0 45
ky = −0.9
kθ = 1.0
kr = 1.0

KF = 0.35
KR = 0.35

For the following experiments, the robot was set up further from the leftmost row
at around 1.5 m distance. The robot was also not placed in front of the row, but with its
right wheel facing the row, which leaves its center at around 0.7 m from the center of the
row. This will lead the robot to first correct its position w.r.t. the row, as will be seen below
in the lateral deviation errors as well as the videos. The simulation videos mentioned

https://classic.gazebosim.org/tutorials?tut=ros_control
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below, as well as other videos with different initial conditions, are available at this link:
https://bit.ly/3RBgHAF (accessed on 22 September 2022).

3.2. Validation on Summer Vineyard

The first set of experiments consisted of navigation in the digitized summer vineyard.
Figure 9 shows a global view of snapshots in the simulation environment. In this envi-
ronment, many leaves are present, making them easy for detection. One can then see that
numerous points are detected, allowing a reliable trajectory to be computed.

Selected set-points

Retrieved set-points along all the vineyard 

LiDAR scan

Robot’s position

Figure 9. Snapshots of the simulation in the summer vineyard. The simulation videos for both
strategies are available at this link: https://shorturl.at/iOQ25 (accessed on 22 September 2022).

Two runs were performed, using each of the control strategies. The result on tracking
errors (lateral and angular) and computed steering angles are reported on the Figure 10
(top for the control strategy 1, regulating directly the robot orientation; bottom for the
control strategy 2, regulating independently front and rear lateral errors). In these figures,
one can first see that the lateral deviations remain very close to zero and remain between
±3 cm, with respect to the estimated trajectory coming from the row detection algorithm,
after the stabilization phase at the initialization where the robot has to start navigating in
a blind process in order to gather enough points for the first regression. One can also see
small overshoots punctually in the angular deviations caused by noise in the trajectory
reconstruction. However, such perturbations do not disturb the regulation of the lateral
deviations that quickly converge to zero, maintaining a high degree of accuracy.

https://bit.ly/3RBgHAF
https://shorturl.at/iOQ25


AgriEngineering 2022, 4 841

(a) (b) (c)
Figure 10. Results of the control strategy 1 (top side of the figure) and 2 (bottom side of the figure) on
the summer vineyard. (a) Lateral deviation results; (b) Angular deviation results; (c) Front and rear
steering angles.

Contrary to the control of classical car-like mobile robots, the use of a 4WS robot allows
to regulate the orientation independently. This is directly achieved in strategy 1 where
the desired lateral deviation is set to zero. One can see that despite small perturbation in
the reconstructed trajectory, the angular deviation is well regulated around zero within an
error of ±0.03 rad (i.e., 1.75◦) for strategy 1 and ±0.06 rad (i.e., 3.5◦) for strategy 2. Even if
strategy 2 does not directly control the robot orientation, the fact that the front and rear
wheels follow the same trajectory should cause the robot’s orientation to converge to zero.
This can be checked in Figure 10b (bottom figure), since the angular error remains around
zero. One can also compare the angular errors of both strategies. This can be viewed in
Figure 11, which shows both angular errors superposed. It can be clearly noticed that the
orientation is regulated in the first strategy (compared to the second strategy) as it stays
very close to zero and in a certain constant bound (±0.03 rad).

Figure 11. Comparison of angular errors for both control strategies in a summer vineyard.

On the other hand, if we compare the tracking errors and steering angles with (4WS)
and without (2WS) the use of rear steering angle when using the control strategy 1, we can
notice an important angular error (depicted in Figure 12b in brown plain line) when only
using the front steering angle, especially around 30 m where the error reaches −0.15 rad.
Such overshoot can also be noticed in the steering angle (depicted in Figure 12c in dashed
brown line) where a strong input is used in order to reach the reference trajectory. On the
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contrary, when using the front and rear steering wheels, the front steering angle (depicted
in a plain red line) is decreased thanks to the rear steering angle (depicted in black plain
line). Even though the robot reaches the reconstructed trajectory (as can be seen in Figure
12a) where the lateral deviation converges to zero, the risk of friction with the vegetation is
important (as will be seen in the simulation video available here https://shorturl.at/oCPTZ
(accessed on 22 September 2022)).

(a) (b) (c)
Figure 12. Comparison of tracking errors and steering angles with and without the use of rear
steering angle. (a) Lateral deviation results; (b) Angular deviation results; (c) Steering angle results.

These results permit the validation of the proposed control architecture to track vine
rows in summer conditions, with a lot of points of detection on the vegetation, and a robot
initialized close to the row. One can now analyze the results in winter conditions with the
same initial configuration with respect to the vine row.

3.3. Validation on Winter Vineyard

The second set of experiments consisted of navigation in the digitized winter vineyard.
Figure 13 shows a global view of snapshots in the simulation environment. For this set
of experiments, the same initial condition was used for the initial robot’s position at the
beginning of the vineyard. In this case, the vegetation width is less important than in the
summer vine; for this reason, the model width was decreased (see Table 1). Two runs were
performed, using each of the control strategies. The result on tracking errors (lateral and
angular) and computed steering angles are reported in Figure 14 (top for the control strategy
1, regulating directly the robot orientation; bottom for the control strategy 2, regulating
independently front and rear lateral errors).

Selected set-points

Retrieved set-points along all the vineyard 

LiDAR scan

Robot’s position

Figure 13. Snapshots of the simulation in the winter vineyard. The simulation videos for both
strategies are available at this link: https://shorturl.at/cfHVW (accessed on 22 September 2022).

https://shorturl.at/oCPTZ
https://shorturl.at/cfHVW
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(a) (b) (c)
Figure 14. Results of the control strategy 1 (top side of the figure) and 2 (bottom side of the figure) on
the winter vineyard. (a) Lateral deviation results; (b) Angular deviation results; (c) Front and rear
steering angles.

In this environment, few leaves are present, making it harder for the detection algo-
rithm to be efficient. Indeed, the vegetation width is important and may lead to some
disparity in the maximal correlation score from one LiDAR acquisition to another. This can
be seen from the noise level recorded in the following figures. One can then see in Figure 13
that lesser points are detected, which makes it more difficult then in the summer vine to
have a reliable trajectory to be computed. This can be seen especially at the beginning of
the simulation on the noise level due to the lack of detection, however, the more the robot
advances in the vine, the easier the aggregation of points along the previous trajectory.
This can be noticed in the lateral/angular deviation profiles that quickly converge around
zero (after the stabilization phase) and in the snapshots presented in Figure 13 of the row
tracking.

The same can be noticed regarding the regulation of the orientation in the first strategy
compared to the second one. The angular deviation error when regulated when using the
control strategy 1 (cf. Figure 15) remains regulated very close to zero around ±0.02, while
in control strategy 2, it varies with a pick at 30 m, then stabilizes thanks to the regulation of
the lateral errors.

Figure 15. Comparison of angular errors for both control strategies in winter vineyard.
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3.4. Discussion

The proposed approach shows an accuracy within a few centimeters, despite areas of
vegetation loss (lack of trees within a row, no leaves in winter). It has been tested on an
advanced simulation testbed, using a digitized 3D reconstruction of an actual vineyard in
different seasons. This environment is yet to be improved, as some elements are not taken
into account, such as modeling the reflectivity of objects (if a leaf is wet, for example) or the
interactions within the environment (deformability, elasticity). In addition, some disadvan-
tages of the 3D laser scanning device may affect the accuracy of the environment such as:
the ambient light may blend with the laser and interfere with the scan’s accuracy or the
line of sight; as explained earlier, the scans are taken from many different angles however,
hidden or internal geometry that is not visible to the scanner is unable to be measured.
Ongoing work is dedicated to the creation of more evolved, versatile environment, similar
to Helios using Blender, that models the different elements composing a vine (the leaves,
the trunk, the grapes) independently. Nevertheless, the present enthronement allowed us
to show the robustness of the proposed approach with respect to the presence or absence of
leaves, and the influence of the tuning parameters. It was found that both control strategies
lead to an equivalent theoretical results, as well as in terms of computational efficiency and
complexity, in this type of environment (winter/summer vineyard with straight paths). The
first strategy based on backstepping position/orientation control allows direct regulation
of the orientation of the robot independently from its position. This can be seen directly in
Figures 11 and 15 (for both environments) where the angular errors of both strategies are
superposed. It can be clearly noticed that the orientation is regulated in the first strategy
(compared to the second strategy). Regulating the orientation can have the advantage
of being able to control with precision the work of an embedded tool, such as a sprayer,
with respect to the vegetation, by controlling the orientation of the handled tool. On the
other hand, the control law based on lateral errors regulation allows to ensure that the
front and the rear center of the axle follow the same path. This indirectly makes the robot’s
orientation converge to zero, but it also allows the convergence of the position of the front
and the rear axle to the reference path. This has the advantage of leading to a significant
increase in the accuracy of tracking during curves, allowing to reduce the space occupied
by the robot w.r.t. the reference trajectory. A limitation appears with the tracking method
regarding the minimum number of distant points required to approximate a regression, and
so to compute a relevant control. This means that the robot starts first in a ”blind” process
if another positioning system is not reachable. Another limitation concerns traversing
between rows, which is not considered in this paper. In future work, one can consider
managing the transition by collecting the start and end points using GPS, for instance, of
the desired rows, in order to generate the global path that manages the transition between
the rows while handling the row tracking by the local perception algorithm. This type of
hybrid solution is becoming increasingly common [4,5,34] as it helps reduce the accuracy
requirements of the global localization and the time invested to prepare the task (row
survey).

4. Conclusions

In this paper, several contributions are proposed regarding the development of agricul-
tural robots in a viticultural environment. In particular, the work concerns the problem of
crop row tracking using a four-wheel-steering mobile robot, which straddles the crops. First,
a row tracking strategy is proposed, based on a 2D LiDAR inclined in front of the robot,
to match a predefined shape of the vineyard row in the robot framework. The successive
detected regions of interest are aggregated along the local robot motion, through the system
odometry. This permits to derive a local trajectory to be followed by the 4WS robot. Second,
a control architecture is proposed that allows to control a four-wheel-steering mobile robot.
In this paper, two different control strategies are illustrated. The first strategy presented
considers a backstepping approach to independently control the longitudinal and lateral
controls and thus separate the regulation of the position and the orientation of the robot.
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The second strategy presented considers separating control of the front axle and the rear
axle, to ensure they follow the same path. The simulation results on an advanced simulation
testbed (3D reconstruction of actual vineyard in different seasons) are then illustrated to
show the efficiency of the proposed structure detection algorithm as well as the two control
strategies. A limitation appears with the proposed method regarding the mandatory blind
process at the beginning of navigation induced by the need of a minimum number of
distant points to approximate a regression, and so to compute a relevant control. For this
reason, future works are focused on the extension of the proposed algorithm in 3D space,
thanks to 3D LiDAR that will eventually allow to reduce the blind process phase. Future
work will also be dedicated to the control of an embedded tool, such as a sprayer, with
respect to the vegetation while controlling the robot, as well as to the use of a reconstructed
digital terrain model for traversability analysis, obstacle detection and avoidance through
the use of 3D data. Even though validation has been performed on an advanced simulation
testbed composed of a digitized vineyard, future work will also focus on experimentation
on real vineyards.
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