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Abstract: Annual cane pruning of grape vineyards is a time-consuming and labor-intensive job,
but no mechanized or automatic way has been developed to do it yet. Robotic pruning can be
a perfect alternative to human labor. This article proposes a systematic seven-stage procedure to
design a kinematically optimized manipulator, named ‘Prubot’, to manage vineyards’ cane pruning.
The manipulator structure was chosen, resulting in a 7R (Revolute) manipulator with a spherical
shoulder and wrist. To obtain the design constraints, the manipulator task space was modeled.
The robot’s second and third link lengths were determined by optimizing the global translational
version of the measure of manipulability and the measure of isotropy of the manipulator arm section.
Finally, simulations confirmed the appropriateness of the manipulator workspace. Furthermore,
sampling-based path planning simulations were carried out to evaluate the manipulator’s kinematic
performance. Results illustrated the impressive kinematic performance of the robot in terms of path
planning success rate (∼= 100%). The simulations also suggest that among the eight single-query
sampling-based path planning algorithms used in the simulations, Lazy RRT and KPIECE are the
best (≤ 5 s & ∼ 100%) and worst (≥ 5 s & ≤ 25%) path planning algorithms for such a robot in
terms of computation time and success rate, respectively. The procedure proposed in this paper offers
a foundation for the kinematic and task-based design of a cane pruning manipulator. It could be
promisingly used for designing similar agricultural manipulators.

Keywords: multi-objective optimization; kinematic design; agricultural robot; manipulator; grapevine
pruning; manipulability; design procedure; sampling-based path planning

1. Introduction

Due to population growth and labor shortage, introducing new technologies into agri-
culture is inevitable. Grapevine winter pruning is a labor-intensive and time-consuming job
executed annually for both major methods of pruning: spar pruning and cane pruning [1].
Some machines are able to carry out spar pruning partially, but manual labor is needed
to complete the task [2]. However, because cane pruning needs specific expertise and the
working environment is unstructured, there are no machines able to work on this task. The
only solution is to apply robotics.

An integrated pruning robotic system may consist of cameras, manipulators, a com-
puter, sensors, and a cabin platform containing other system parts and straddling the vine
row [3,4]. Few studies have been reported on a robotic pruning system [3,5–10], most
of which did not focus on the manipulators’ mechanical design—which can significantly
enhance the manipulator’s operational performance—and rather concentrated on machine
vision, algorithm design, and path planning issues. Furthermore, a cane pruning robot
has never been designed; the main focus of previous studies was on spar pruning [3,9].
The only mechanical design of a pruning robot was reported by Zahid et al. (2020) [7],
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in which a three rotational (3R) end-effector was proposed for apple tree pruning. The
end-effector was integrated with a three prismatic (3P) manipulator to form a pruning robot.
Simulations and field tests evaluated the manipulability performance and workspace of the
end-effector and the integrated robot. Nevertheless, the authors did not state the design
procedure or the method they came up with this design for the end-effector. In addition,
a commercial vineyard robotic system is also designed by Vision Robotics Corporation
(VRC) [4], but detailed information is not available.

Although some research has been carried out to develop and introduce proper me-
chanical design indices [11–15] and methods to globalize them [16] for manipulators, many
engineers still design manipulators based on empirical estimations [17], which could lead
to a robot’s inappropriate operational performance. In order to meet the design needs for a
robotic manipulator, proper design indices should be taken into account to be optimized in
a single-objective or multi-objective optimization process.

Serial manipulators are suitable for light-duty low-energy tasks. Still, parallel ma-
nipulators are better choices due to their ability to withstand heavy loads when it comes
to heavy-duty ones. In addition, serial ones can offer a larger workspace and dexterity
compared to parallel manipulators [18]. Since a grapevine-pruning robot is a light-duty
robot that needs high maneuverability to be capable of working in its unstructured and
cluttered task space and must have a large workspace that holds all or a major part of the
vine body, it must be a serial manipulator to fulfill the job appropriately.

For light-duty manipulators, kinematic design is a major part of the design pro-
cess [19]. Thus, the following is a literature review regarding design optimization of the
non-agricultural and agricultural serial manipulators, especially those concentrating on
kinematic design. Harvesting robots are roughly similar to pruning robots in terms of the
task itself and the working environment. In recent decades, researchers have put a lot
of effort into harvesting robots, though only a few studies proposed design procedures
based on proper mechanical design indices [20–25], and it seems others only designed
their manipulators empirically and evaluated the mechanical performance to validate the
design [26]. A review of harvesting and pruning robots can be found in [27–29].

Limited studies have been carried out on multi-objective design optimization of
non-agricultural manipulators with manipulator design indices as their objective func-
tions [30–32], none of which have designed the robot for a specific job but rather only
aimed to enhance the performance indices (i.e., condition number, manipulability, etc.)
of a commercially available industrial manipulator. At the same time, it may result in an
inappropriate workspace for some specific tasks. Even the index-based design optimization
procedures proposed in the abovementioned studies of harvesting manipulators [20–25]
and non-agricultural manipulators [30–32] suffer from one or both of these major draw-
backs: (i) not globalizing or appropriately globalizing the design indices and (ii) using
single-objective optimization methods for solving multi-objective optimization design prob-
lems, which leads to missing the design Pareto front of trade-off answers which, otherwise,
could provide the designer with the opportunity of choosing from a range of optimized
answers. Most agricultural robots, especially tree pruning and tree harvesting robots,
should be designed through an optimization task-based approach. This approach decreases
the design cost function and results in a more suitable and optimized robot for the job [24].
Nevertheless, no systematic design procedure has been proposed in previous studies. Such
a procedure can pave the way for manipulator design for engineers and researchers. There
might be a specific design approach in some research [21,22,24] but not a systematic and
well-defined procedure.

In this paper, a task-based kinematic design of a grapevine cane pruning manipulator
was proposed for the first time. The design was carried out according to a well-defined
systematic design procedure which was introduced for the first time in this paper and
adds a certain novelty value to the study. First, the manipulator structure which is a
7R (Revolute) serial one was chosen. Then, the lengths of the second and third links
were determined by optimizing two well-globalized translational manipulability indices.
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Other manipulator parameters were determined according to their task space and duty.
Simulations proved that the robot workspace was appropriate, and the robot’s kinematic
performance was evaluated by sampling-based path planning simulations, which indicated
the robot’s impressive kinematic performance. The proposed design procedure in this
paper offers foundations for task-based and kinematic design of tree pruning manipulators
and other similar manipulators, including tree harvesting robots.

2. Design Procedure

The following is a systematic procedure for task-based kinematic design optimization
which can be used to design any agricultural manipulator. It was utilized to design the
serial pruning manipulator in this paper. The prototyping and modeling (i.e., the first and
second) stages of this procedure establish the connection between the manipulator and
its task.

I Prototyping: The first step of the design procedure is to empirically choose or define
a suitable joint arrangement for the manipulator. In other words, the number and type of
joints (i.e., prismatic or rotational) and the way they are arranged is defined according to the
robot’s task and environment. This is the common method used in designing agricultural
robots [22,24,25,33]. In this stage, the manipulator link lengths and/or the unknown angles
between joints’ axes are defined as the design parameters.

II Modeling: This stage is the major part of a task-based manipulator design. The
manipulator and its task space must be modeled in order to set the robot position with
respect to the tree and derive the design constraints, especially constraints on link lengths.
This can be performed by one of the following approaches:

A. Measuring the structure of several sample trees and the vineyard’s (or orchard’s)
environmental properties. The data are used to derive appropriate models. Until now,
this method has been the most accurate method of agricultural robot task space modeling
offered and was proposed for the first time by Bloch et al. in 2015 [24].

B. The designer can estimate an overall and rough model for tree and task space
according to the trellising and pruning methods of the orchards and vineyards that the
robot will work in. This is not a precise method, though it can lead to a typical model that
is helpful in the manipulator design process.

III Deriving design optimization objective functions: Suitable kinematic design in-
dices [11–15] shall be chosen as the optimization design objective functions. Since a pruning
or harvesting manipulator works in a cluttered and unstructured environment, it is essen-
tial to consider kinematic manipulability indices. Generally, the more design indices are
considered, the more precise and suitable the design is.

IV Extra design considerations: Depending on the design problem, there may be some
design considerations, such as manipulator body shape and joint ranges, that remain to
decide on. This stage is required to complete some of the following stages, including stages
V and VII. Hence, depending on the manipulator in hand, this stage may be carried out at
any design phase, and it does not necessarily happen at stage IV, as stated here.

V Globalizing the objective functions: In contrast to industrial manipulators, agricul-
tural manipulators work in a cluttered and unstructured environment, and their workspace
is not restricted to some specific points. Therefore, it is crucial to globalize the local design
objective functions for achieving a globally optimized manipulator [16].

VI Optimization problem solving: So far, the objective functions and constraints of
the design problem are defined. Now a suitable optimization algorithm must be chosen to
solve the problem. In the case of a design problem with more than one objective function,
it is vital to use multi-objective optimization methods to avoid missing the Pareto front
of trade-off answers, which offers the opportunity to choose among a range of optimized
solutions [34]. At the end of this stage, the design answer is obtained.

VII Evaluations: After the design of a manipulator is completed in terms of all aspects
of kinematics, dynamics, control, links strength, etc., it is essential to evaluate the overall
performance of the robot in a field test in the real world. However, when it comes to only
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kinematic design, as proposed in this study, simulations can be a good tool for evaluat-
ing the manipulator’s kinematic performance, including workspace and manipulability.
Kinematic simulations have been used in agricultural manipulator assessments by other
researchers [8,22,24,35]. They let the designer correct the kinematic design where necessary
and then go forward to the following design aspects: dynamic, control, etc. Moreover, in
problems with two or three objective functions, comparing the obtained Pareto front with
the Phenotype space (i.e., the feasible design space or a space where the coordinate axes are
the design objective functions), is beneficial to validate the optimization step visually. At
the same time, it is not enough to evaluate the manipulator kinematic performance because
of the simplifications and approximations that might have been applied during different
steps of the design procedure. Hence, a kinematic simulation is also required to validate
the kinematic performance of the designed manipulator.

To the best knowledge of the authors, there is no method to find the optimized joint
arrangements for a manipulator. Hence, the researchers empirically choose or define an
arrangement based on the task. To find the best joint arrangements, one must design several
manipulators with different joint arrangements according to the above procedure and finally
choose the manipulator with the best magnitudes of objective functions [22,36,37].

3. Prototyping

In grapevine cane pruning, most of the cut-points are near the trunk body and vine
head (i.e., the upper part of the trunk). In addition, many canes grow out of or near the vine
head, which makes it a dense area for the pruning manipulator. A grapevine cane pruning
manipulator is equipped with a sharp shear-like end-effector. Therefore, it must be highly
manipulative to avoid collisions with the vine trunk, head, and canes. Otherwise, the
collision can hurt the dormant buds, hence impacting vine growing and fruiting negatively.
Therefore, such a robot should be a kinematically redundant manipulator. A 7-Degrees of
Freedom (DoF) manipulator, with one DoF of redundancy, could be a good choice, since
more degrees of redundancy increase the trajectory planning and design computational
costs extremely. In addition, this manipulator needs a vast workspace to reach all the
cut-points (this will be clarified in Section 4). In research by Hollerbach [38], the researcher
tried to find an optimum structure for a 7-DoF redundant manipulator by taking four
major criteria into consideration including (1) elimination of internal singularities by
increasing the manipulator manipulability, (2) optimization of the workspace by offering a
structure with a vast workspace, (3) easily solvable kinematic equations for decreasing the
computational costs, and (4) simple mechanical construction. Eventually, the design led
to a manipulator structure with a 3-DoF spherical Roll-Pitch-Roll type wrist and shoulder
and a revolute 1-DoF elbow, as shown in Figure 1. All the manipulator’s joints are revolute
because revolute joints offer both translational and rotational velocities in the end-effector
as well as a larger workspace, while prismatic joints only offer translational velocities in the
end-effector and a smaller workspace [38]. Taking all these into consideration, we chose
this structure as the prototype for the cane pruning manipulator, so the link lengths are the
design parameters.
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Figure 1. Structure of the manipulator prototype.

The Denavit–Hartenberg (D-H) parameters of the prototype in Figure 1 are listed in
Table 1, from which the manipulator’s Jacobian matrix is derived using Maple 18 software
and is shown in Equation (1). The matrix is provided in the Supplementary Materials. In
Table 1, θi is the angle from xi−1 to xi about zi−1, αi is the angle from zi−1 to zi about xi, di
is the distance from xi−1 to xi along zi−1, and finally ai is the distance from zi to zi−1 along
xi [39].

J =

[
[JT ]3×7
[JR]3×7

]
(1)

where JT and JR are the translational and rotational Jacobian sub-matrices of the manipula-
tor in Figure 1, respectively and the Jacobian properties are as follows:

Table 1. The Denavit–Hartenberg parameters of the prototype in Figure 1.

θi αi di ai Joint

θ1
π
2 l1 0 1

θ2
π
2 0 0 2

θ3
−π

2 l2 0 3
θ4

π
2 0 0 4

θ5
−π

2 l3 0 5
θ6

π
2 0 0 6

θ7 0 l4 0 7

1. None of the elements of J are dependent on l1, thus l1 cannot be determined through
optimizing performance indices derived from J;

2. Every l4 in the elements of J is multiplied by at least three sines and/or cosines,
hence for simplicity, terms containing l4 could be ignored;

3. None of the elements of JR are dependent on manipulator link lengths, thus in
order to determine the robot’s link lengths, there is no need for taking this sub-matrix
into account.

Hence, the manipulator design parameters boil down to the lengths of the second and
third links, i.e., l2 and l3.

4. Modeling

Despite the fact that the first approach of modeling introduced in Section 2 is more
accurate, in this study the second approach is used because the first approach requires
a specific measurement device which was designed by Bloch et al. in 2015 [24] and the
authors did not have access to this device. Therefore, the modeling is carried out based
on the information in scientific texts and the authors’ previous experiments in vineyards.
In Figures 2 and 3, a simple task space model of a grapevine winter cane pruning robot
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and the pruning cut points are illustrated according to the vine anatomy, trellising system,
and pruning principles stated in [1,40–42]. In Figure 2 inline post, trellis wires, vine trunk,
vine head, two-year-old canes, canes, the ground, robotic system, manipulator shoulder,
cane cut-points, head cut-points, and trunk cut-points are illustrated. According to the
pruning principles [1], after pruning, the vine will only have two canes and two short
spares attached to the vine head. Then, the two canes must be laid on Wire1 horizontally in
a way that they become the following year’s two-year canes.

Figure 2. Robot winter cane pruning task space.

Figure 3. Robot winter cane pruning task space in the yz plane.

As illustrated in Figure 2, in the vine trellising system each vine is approximately
symmetrical with respect to the yz plane that passes through the middle of the vine trunk,
hence the manipulator’s shoulder is located exactly in front of the trunk and has a distance
of R from the trunk. In Figure 2, O1 shows the point where the trunk meets the ground, O2
is the cane cut-points, S is the manipulator’s shoulder, A is the vertical distance between
the ground and wire 1, B is the vertical distance between wire 1 and O2, C is the distance
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between S and the point O2 in the yz plane, D is the distance between S and the point O1
in the yz plane, h1 is the vertical distance between the ground and S, and finally h2 is the
vertical distance between S and O2.

In a row of the grapevine trellising system, the vines are about 1.83 to 3.36 m (6 to
12 feet) apart depending on the vine variety [40]. In the case of our pruning robot, this
distance is assumed to be 2 m, thus the distance B will be half of it (i.e., B = 1 m), because
B is the length of one cane that remains after pruning and half of the distance between the
trunks of two vines in a row [40,42]. In addition, we assume that the condition A = 1 m is
also satisfied [42].

The manipulator needs to be mounted on a mobile platform. The platform wheels
shall have a distance of at least 0.5 m from the crop row to avoid root system damages due
to soil compaction [42] so that the distance of the manipulator’s shoulder to the crop row
(i.e., R) is assumed to be 0.8 m.

In order to prune the vine, the manipulator needs to reach all the cut-points easily.
This means that the manipulator must reach the two most extreme cut-points, i.e., the
cane cut-points and any trunk cut-point which may grow near the ground. Hence, the
magnitude of l2 + l3 must be determined in such a way that the manipulator is capable
of reaching points O1 and O2 in Figure 3. Therefore, l2 + l3 = max(C, D) must satisfy.
Obviously when h1 = h2 is satisfied (i.e., D = C is satisfied), then l2 + l3 is at its minimum
and can be determined as in Equations (2) and (3).

h1 = h2 =
A + B

2
=

1 + 1
2

= 1 (2)

l2 + l3 = D = C =
√

R2 + h22 =
√

0.82 + 1 = 1.28 ∼= 1.3 (3)

To make certain of an adequate reachable workspace, l2 + l3 could be considered a
little more than 1.3 m, for example, 1.4 m. Hence, the design constraint could be defined
as Equation (4).

1.3 ≤ l2 + l3 ≤ 1.4 (4)

In addition, the canes with cane cut-points, are chosen in a way that they do not lean
forward or backward too much; otherwise, the canes may break while being laid on wire 1.
However, these canes may lean towards the right or left (in Figure 2) and it brings about
no difficulty, because if the manipulator length is enough to reach the cane cut-points (i.e.,
point O2) on a vertical cane, then it will easily reach the cane cut-points on the leaned canes
too. Therefore, the constraint in Equation (4) is valid for any situation.

5. Deriving Design Optimization Objective Functions

The vine head area is a very dense space for the pruning manipulator since lots of
spares and canes grow out of the head and most of the cut-points are located in this area.
Because the manipulator is equipped with a sharp shears-like end-effector, the pruning
robot must be highly manipulative to work in this area without damaging the dormant
buds. The measure of manipulability and the condition number of the manipulator’s
Jacobian matrix are the two major and well-known kinematic manipulability indices, which
are widely used in robot design [7,20,23,30–32]. These indices, which both are local criteria,
are taken as the design objective functions for the pruning manipulator and are defined
as follows:

1. Measure of Manipulability: The further the Jacobian determinant is from zero, the
further the robot is from singularity. Hence, the Jacobian determinant could be a good
measure of the robot’s manipulability. Yoshikawa has defined the measure of manipulability
as in Equation (5) [11],

w =
√

detJJT (5)
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where J is the manipulator’s Jacobian matrix and is an m× n matrix. m is the dimension of
the Cartesian space Rm (the work space) of the robot and n is the dimension of the robot’s
configuration space Rn.

2. Condition number of the manipulator’s Jacobian matrix: This index is sometimes called
dexterity or manipulability index and is defined as in Equation (6) [12,15,20,43].

cond(J) =
σmin
σmax

(6)

where cond(J) is the condition number of the Jacobian matrix, σmin and σmax are the min-
imum and maximum singular values of this matrix, respectively. On the other hand,
because the elements of the Jacobian matrix, hence the singular values, are functions of link
lengths which are unknown and joint values which are local measures, it is impossible to
distinguish between the maximum and minimum singular values. Therefore, the condition
number cannot be expressed analytically. To compute the condition number, one method is
to use numerical methods, though they lead to high computational costs. The other method
is to use the measure of isotropy instead of the condition number, which expresses the same
concept as the condition number and is defined as in Equations (7)–(10). In contrast to
the condition number, this index uses all the singular values and is expressed analytically,
hence reducing computational costs extremely [14]. The measure of isotropy is bounded
between 0 for singular conditions and 1 for optimum isotropic conditions.

M = m
√

det
(
JJT) = m

√
λ1λ2 . . . λm (7)

Ψ =
trace

(
JJT)

m
=

λ1 + λ2 + · · ·+ λm

m
(8)

∆ =
M
Ψ

(9)

σi =
√

λi ∀i = 1, 2, . . . m (10)

where λi is the ith eigenvalue of JTJ, M is the geometric mean of the eigenvalues of JTJ, Ψ
is their arithmetic mean, ∆ is the robot’s measure of isotropy, and σi is the ith singular value
of the matrix J.

The measure of manipulability and the measure of isotropy (i.e., the condition num-
ber) represent the volume and isotropy of the manipulability ellipsoid, respectively. By
optimizing these two indices, we aim to increase the volume of the ellipsoid and transform
the ellipsoid into a sphere [11,20].

As the major translational and rotational movements of the end-effector are performed
by the arm section and the wrist section of the manipulator, respectively [44], mechanical
design indices derived from the translational and rotational Jacobian sub-matrices could be
utilized to design the arm and the wrist of the manipulator, respectively, [13,20]. Moreover,
by taking advantage of this concept, there is no need for Jacobian unit normalization [45]
for our revolute manipulator.

In a study by Gosselin and Angeles in 1991 [16], it was substantiated that, in terms of
global conditioning index (i.e., global condition number), Roll-Pitch-Roll is the optimum
structure for an open-loop spherical wrist. Furthermore, in Section 3, we have accepted
this wrist structure for the manipulator and now we only need to design the arm section of
the manipulator. Hence, for determining the design parameters (i.e., l2 and l3), we need to
optimize the translational manipulability indices of the manipulator. This means that the
objective functions must be derived from [JT ]3×7. Thus, the design objective functions of the
manipulator are the translational measure of manipulability and the translational measure
of isotropy. However, [JT ]3×7 is a 3× 7 matrix and causes cumbersome calculations. Hence,
in this study, for simplicity, the arm section of the manipulator is considered an independent
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manipulator as illustrated in Figure 4; its Denavit–Hartenberg parameters are stated in
Table 2, and Equation (11) shows its Jacobian sub-matrices.

J′ =
[
[J′T ]3×4
[J′R]3×4

]
(11)

where J′ is the Jacobian matrix of the manipulator in Figure 4 and J′T and J′R are its transla-
tional and rotational Jacobian sub-matrices. This matrix is calculated in Maple 18 software
and is provided in the Supplementary Materials. The Jacobian properties are as follows:

Figure 4. Arm section of the prototype.

Table 2. The Denavit–Hartenberg parameters of the arm in Figure 4.

θi αi di ai Joint

θ1
π
2 l1 0 1

θ2
π
2 0 0 2

θ3
−π

2 l2 0 3
θ4 0 0 l3 4

1. J′ is not dependent on l1 so this length cannot be determined through design indices
derived from J′.

2. J′R is not dependent on the manipulator’s link lengths, so to determine the robot’s link
lengths there is no need for taking this sub-matrix into account.

Because the arm in Figure 4 performs the major part of translational movements
of the manipulator in Figure 1 and the indices derived from J′T can describe the major
part of translational movement of the arm in Figure 4, it is demonstrated that the indices
derived from J′T can also describe the major part of the translational movement of the 7-DoF
prototype manipulator in Figure 1. In addition, J′T has three fewer columns compared to
JT . Therefore, for the sake of simplicity and declining the computational costs, J′T could be
utilized instead of JT to compute the translational design indices of the 7-DoF prototype.

6. Extra Design Considerations

In addition to determining the manipulator’s design parameters, there are some
additional criteria that must be taken into consideration in the robot’s final design:

1. No holes should exist on the surface of the robot body, especially near its joints, be-
cause canes could enter them and damage the robot and/or the vine. Considering the
commercially available robots, a good choice is the body design of KUKA LBR iiwa.

2. The manipulator’s joints are assumed to have the same ranges as KUKA LBR iiwa’s, as
simulations indicated that these joint ranges eliminate a vast range of self-collision con-
figurations. The joint ranges are: Joint1 = ±170, Joint2 = ±120, Joint3 = ±170,



AgriEngineering 2022, 4 615

Joint4 = ±120, Joint5 = ±170, Joint6 = ±120, Joint7 = ±170. Arranging the
joint ranges is vital to globalizing the design indices.

3. The robot links should be as thin as possible in order to make it easier for the ma-
nipulator to avoid obstacles. In the present study, the robot link radius is assumed
to be 10 cm for modeling and simulation purposes by referring to the properties of
commercially available robots.

7. Globalizing the Objective Functions

The two indices mentioned in Section 5 are local measures and only can optimally
design a robot for some restricted configurations. As it is stated in Section 4, unlike
industrial robots, a grapevine winter cane pruning robot works in an unstructured and
cluttered environment; thus, designing this robot demands global performance indices.
In a study in 1991, Gosselin and Angeles [16] suggested a general method, illustrated in
Equations (12)–(14), by which the global version of any local indices could be computed.
This calculation results in an index that is independent of robot joint values and is a function
of the design parameters.

G =
A
B

(12)

A =
∫

W
P dW =

∫
R

P|Det (J)| dθn . . . dθ2 dθ1 (13)

B =
∫

W
dW =

∫
R
|Det(J)| dθn . . . dθ2 dθ1 (14)

where P is any local performance index and G is its global version, |Det(J)| is the ab-
solute determinant of the Jacobian matrix, W is the manipulator’s workspace in the
Cartesian space, R is the manipulator’s configuration space and B is the volume of the
robot’s workspace.

In this study, the global translational measure of manipulability and the global trans-
lational measure of isotropy of the arm in Figure 4 (i.e., the volume and isotropy of the
corresponding global translational manipulability ellipsoid) are derived from J′T and utilized
to determine the design parameters, i.e., l2 and l3. The two aforementioned indices have been
computed in MATLAB V5 R2016a (MathWorks, Inc., Natick, MA, USA) and Maple 18 and are
provided in Supplementary Materials and expressed in Equations (15) and (16),

w′TGlobal
= l2

2 l2
3

(
0.216436574907681l2

2 + 0.365860471299765l2
3

)
(15)

∆′TGlobal
= f

(
l3
l2

)
(16)

where w′TGlobal
and ∆′TGlobal

are, respectively, the global translational measure of manipulabil-
ity and the global translational measure of isotropy derived from J′T . The two equations

indicate that w′TGlobal
is a function of (l2, l3) and ∆′TGlobal

is a function of
(

l3
l2

)
.

8. Optimization Problem Solving

The design constraints and objective functions were derived in Sections 4 and 7,
respectively. In optimization, bounded objective functions are preferable, but the global
translational manipulability does not have an upper bound. In addition, the authors
prefer minimization, while both the objectives could be optimized through maximization,
therefore the objectives should be rewritten to meet these needs. Taking these all into
consideration, the design optimization problem can be defined as in Equations (17)–(20).
Equation (19) is the design constraint and Equation (20) is the geometric constraint [46],

minimize Objective1(l2, l3) = e−w′T Global (17)

minimize Objective2(l2, l3) = −∆′TGlobal
(18)
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1.3 ≤ l2 + l3 ≤ 1.4 (19)

lb = 0.1 ≤ l2, l3 ≤ 1.3 = ub (20)

where all the magnitudes are in meters, and lb and ub, respectively, denote the lower bound
and upper bound for both l2 and l3.

The design problem is a multi-objective optimization design. Instead of an answer, a
multi-objective optimization problem has a set of answers called the Pareto front, which
provides the designer with the chance of choosing an optimized answer that best fits the
design circumstances. In this study, the Non-Dominated Sorting Genetic Algorithm II
(NSGA-II) [47] is used to solve this problem, and the design constraints are also taken into
account by applying the method of penalty function. Computations have been carried
out in MATLAB V5 R2016a (The MathWorks, Inc., Natick, MA, USA) and provided in the
Supplementary Materials.

9. Results and Discussion of the Design Optimization

By substituting 1,000,000 feasible random pairs of (l2,l3) in the objective functions
in Equations (17) and (18) and satisfying Equations (19) and (20), the design feasible
space is obtained as in Figure 5. Figure 6 illustrates the section of Figure 5 where the
Pareto front is located. Figure 7 indicates the Pareto front achieved by NSGA-II with a
population size of 250, 150 iterations, and the crossover and mutation probabilities of
80 percent and 50 percent, respectively. Comparing Figures 6 and 7, it can be seen that the
optimization algorithm has found the Pareto front of trade-off answers successfully and
the answers in Figure 7 represent the optimized design for the manipulator in terms of the
objective functions.

Figure 5. The design feasible space of the optimization problem.
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Figure 6. The section of Figure 5 where the Pareto front is located.

Figure 7. The Pareto front of the design optimization problem.

As stated in Equations (15) and (16), objective 1 and objective 2 are functions of

(l2, l3) and
(

l3
l2

)
, respectively. If the design optimization was defined as a single objective

optimization problem with the volume of the translational manipulability ellipsoid as its
only objective function, then the optimized answer would be point 1 in Figure 7 which
suggests l2 = 0.5553 m and l3 = 0.8442 m. However, if the objective was the global
translational measure of isotropy, the optimized answer would be point 2 of Figure 7,
which suggests l2 = 0.8289 m and l3 = 0.5547 m. It demonstrates that although
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both the objectives represent kinematic translational manipulability, their attitudes toward
considering different aspects of the translational manipulability ellipsoid (i.e., the volume
and the isotropy of the ellipsoid respectively) lead to a Pareto front of trade-off answers
in this study. This Pareto front provides the designer with the chance of choosing an
optimized answer that best fits the design circumstances. It proves that considering one of
the above objective functions is not enough for an appropriate kinematic design in terms
of kinematic manipulability. However, in some of the previous studies, only one of these
indices was taken into consideration and the other one was ignored [23].

Between the two extreme answers of point 1 and point 2 in Figure 7, there are 248 other
answers of which 40 answers approximately satisfy l2 = l3 = 0.7 m and are located in
the middle of the Pareto front. In this paper the condition l2 = l3 = 0.7 m is chosen as
the final answer for designing our pruning manipulator which is named ‘Prubot’ as an
abbreviation of ‘Pruning robot’. Prubot is illustrated in Figure 8.

Figure 8. Prubot manipulator without end-effector (the body design is based on KUKA LBR iiwa design).

10. Simulation Evaluations

The pruning robot and the task space objects (e.g., vines, posts and wires) are mod-
eled in SolidWorks 2013 software and the kinematic simulations are performed using a
laptop computer with an Intel Core i7 4500U CPU 1.8–2.4 GH processor and in the envi-
ronment of CoppeliaSim Edu software version 4.1.0 (rev. 1). The design optimization led
to l2 = l3 = 0.7. At this stage, a 44-cm-long pruning end-effector (i.e., l4 = 0.44 m),
designed by the authors in another research, is attached to the manipulator which forms a
longer pruning manipulator. Simulations show that the best manipulator performance hap-
pens when its base is attached to a wall rather than a floor or a ceiling which is illustrated in
Figure 9 in which l1 = 0.45 m must be satisfied to make sure that within the manipulator’s
second joint’s range of movement, the robot elbow does not collide with the wall the robot
base is attached to. In fact, the base of the manipulator must be attached to the walls of a
platform that straddles the vine row. The platform moves forward as the robot is finished
with a vine. The platform is not proposed in this paper but the walls are represented in
Figure 9. However, such a platform is provided by other scientists [3,4]. Therefore, the
word “wall” does not invoke a static wall, but rather it is an integral part of a platform. The
vine and trellising dimensions that are introduced in Section 4 are also used for modeling
the robot task space. However, due to attaching an end-effector to the manipulator, it is
vital to fine-tune the position of the manipulator’s shoulder through simulations. It led
to an increase in R (i.e., the distance of Prubot’s shoulder from the vine trunk) from 0.8 to
0.96 m.
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Figure 9. Prubot’s task space (lengths are in meters).

Prubot’s reachable work space is shown in Figure 10 in which 300,000 feasible positions
are illustrated by 300,000 random cloud points. The work space contains a vine completely.

Figure 10. Prubot’s reachable workspace in different views.

Simulations indicate that to cane prune a vine row from both sides completely, two
Prubot manipulators located symmetrically with respect to the crop row are required
because the trellising system practically blocks the manipulator’s access to the other side
of the row. In Figure 11, the dimensions of the task space of a grapevine-pruning robotic
system with two Prubot manipulators are illustrated.

Figure 11. The task space of a grapevine-pruning robotic system with Prubot manipulators (lengths
are in meters).
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A typical vine model is designed according to grapevine anatomy and cane pruning
properties [1,41]. This model is used in the simulations. The cut-points of both sides of the
vine model are illustrated in Figure 12. Each of the sides is pruned by its corresponding
manipulator in Figure 11.

Figure 12. The cut-points of (a) the left side of the vine model, (b) the right side of the vine model.

The kinematic performance of Prubot in pruning the vine model is assessed through
path planning simulations in CoppeliaSim software. For this purpose, the script of an
example simulation named “motionPlanningDemo1”, provided by CoppeliaSim, is used
and adjusted for the pruning manipulators. Path planning consists of three phases. In
the first phase, the end-effector moves from an initial point to a pre-pruning point with
a distance of 10 cm from the target cut-point and an appropriate orientation for cutting
the cane, as shown in Figure 13. This phase is planned by a single-query sampling-based
path planning algorithm, while collision avoidance (but not self-collision avoidance) is
also taken into account. If any self-collision happened during the path, the simulation
would be canceled and repeated. In the second phase, which is planned by computing the
robot inverse kinematics, the end-effector moves from the pre-pruning point to the target
cut-point by traveling along the linear path between the two points. The third phase takes
place after the cut and is simply the reverse of the traveled path in the second phase, and
finally, the end-effector stops at the pre-pruning point in Figure 13. Now, the robot is ready
to plan a path to the next cut-point or the simulation could be stopped.

Figure 13. The end-effector at the pre-pruning point (Lengths are in meters).
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As illustrated in Figures 11 and 12, in the robotic system, the manipulator on the
left side of the vine row must prune seven cut-points and the manipulator on the right
side must prune four cut-points. Two different simulation tests were carried out in which
eight common single-query sampling-based path planning algorithms are used. Com-
pared to other path planning methods, such as energy field, combinational methods, and
multiple query sampling-based (e.g., Road Map algorithm), the properties of the single-
query sampling-based path planning algorithms make them the best choice for a pruning
robot [8,48]. Eight common single-based sampling-based algorithms, named RRT, LazyRRT,
RRTConnect, KPIECE, BKPIECE, LBKPIECE, EST, and SBL, which are also used in previous
studies [35,49] are used in this study. The test definitions are as follows:

1. Test 1 definition: Test 1 evaluates the success rate of the manipulator’s capability of
path planning to all its corresponding cut-points consecutively (i.e., the manipulator must
prune all its corresponding cut-points, one by one and without interruption) in a way that
the initial point of the path planning to a cut-point is the pre-pruning point of the former
cut-point. Therefore, most of the end-effector path planning initial points would be in the
vine canopy and different for each cut-point’s path planning. This is the case for a pruning
manipulator in the real world and is the main feature of this test. The test is performed two
times per manipulator in the robotic system. The test is also repeated for each of the eight
path planning algorithms. To the best knowledge of the authors, it is the first time that such
a test has been reported for a pruning manipulator.

2. Test 2 definition: In test 2, some simulations are carried out in which the end effector’s
initial point is out of the vine canopy and the same for all the cut-points. Test 2 is performed
once per cut-point in order to determine the path planning computation time and the
success rate of the path planning’s first phase. The test is also repeated for each of the eight
path planning algorithms.

Note that in both test 1 and test 2, a path planning trial is considered to fail if a
collision happens or the path planning calculations fail. Although the simulation algorithm
script is not an optimized one and it does not lead to a trajectory planning result (the
differences between path planning and trajectory are clarified in [48]), it still can be a good
tool for evaluating Prubot’s kinematic performance and estimating the sampling-based
path planning algorithms’ performance for Prubot and its task space.

11. Results and Discussion of Simulation Evaluations
11.1. Workspace

The corresponding simulation to Figure 10 indicates that the work space is so vast that
it easily holds the vine entirely and no cut-points are located near or outside of the reachable
work space borders, which helps the robot to avoid external singularities. Moreover, the
cloud points of end-effector positions are dense in the regions where the cut-points are more
likely to exist. Hence, it is demonstrated that Prubot can offer an appropriate workspace
for the job.

11.2. Test 1

As illustrated in Figure 14, results indicate that in test 1, Prubot is 100% successful in
all of the path planning algorithms except in KPIECE and EST, in which success rates are
25% and 75%, respectively.

The results of test 1 demonstrate that in the case of utilizing the aforementioned path
planning algorithms, apart from KPIECE and EST, Prubot can kinematically and reliably
consecutively prune the cut-points in the vine’s cluttered environment, where the path
planning initial point is in the vine’s dense canopy.
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Figure 14. Success rate of Prubot manipulator in test 1 for each of the path planning algorithms.

11.3. Test 2

The success rate of Prubot in test 2 is illustrated in Figure 15. The box plot of the path
planning’s first phase computation time is also illustrated in Figure 16.

Figure 15. Success rate of Prubot manipulator in test 2 for each of the path planning algorithms.

The success rate of the algorithms KPIECE and EST are higher in test 2, because in
test 1, the initial point of path planning to every cut-point, except the first cut-point, is in
the vine’s cluttered canopy, but in test 2 the initial point of path planning to every cut-point
is out of the vine’s canopy.

Figure 16 indicates that Lazy RRT and KPIECE are respectively the best and the worst
algorithms in terms of path planning computation time (≤ 5 s and ≥ 15 s) and success rate
(∼= 100% & ∼= 72%).

Since in Section 9 the kinematic design optimization of the manipulator’s arm per-
formed well and the manipulator’s wrist proved to have an optimized structure in terms of
GCI [16], the good kinematic performance in the simulations was predictable.
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Figure 16. Path planning computation time (in seconds) of Prubot in test 2.

The results of the path planning simulations are highly perfect, because in these
simulations, only the kinematic features of the robot are taken into consideration and its
dynamics, vibration, control, etc. aspects are ignored, which otherwise could interfere with
the perfect results. Nevertheless, in the kinematic phase of design and before the dynamic,
control, etc. phases of design, path planning simulations can be a good tool for evaluating
the kinematic performance of a manipulator.

12. Conclusions and Future Works

In this study, a 7R manipulator, named Prubot, was kinematically designed for cane
pruning of grape vineyards through a systematic seven-stage design procedure. First,
a suitable joint arrangement was taken as the prototype. Then, task space modeling of
the manipulator was carried out to derive the design’s constraints. Next, the second
and third link lengths were determined by optimizing the global translational form of
both the measure of manipulability and the measure of isotropy of the arm section of
the manipulator. The optimization process was carried out successfully. Although both
the objectives represented a kind of manipulability index, they were directly related to
(l2, l3) and

(
l3
l2

)
, respectively, and led to a Pareto front of trade-off answers from which

the final design point (i.e., l2 = l3 = 0.7 m) was chosen in this study. Finally, the
manipulator’s work space and kinematic performance were evaluated via simulations
which indicated that the design provides a suitable workspace and impressive kinematic
performance in terms of success rate. The simulations also suggest that among the eight
single-query sampling-based path planning algorithms used in the simulations, Lazy RRT
and KPIECE are the best and worst path planning algorithms for such a robot, in terms
of both computation time and success rate. This study can offer a foundation for the
task-based kinematic design of a pruning manipulator.
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