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Abstract: In this study, we have compared YOLOv4, a single-shot detector to Faster-RCNN, a two-
shot detector to detect and classify whiteflies on yellow-sticky tape (YST). An IoT remote whitefly
monitoring station was developed and placed in a whitefly rearing room. Images of whiteflies
attracted to the trap were recorded 2× per day. A total of 120 whitefly images were labeled using
labeling software and split into a training and testing dataset, and 18 additional yellow-stick tape
images were labeled with false positives to increase the model accuracy from remote whitefly monitors
in the field that created false positives due to water beads and reflective light on the tape after rain.
The two-shot detection model has two stages: region proposal and then classification of those regions
and refinement of the location prediction. Single-shot detection skips the region proposal stage
and yields final localization and content prediction at once. Because of this difference, YOLOv4
is faster but less accurate than Faster-RCNN. From the results of our study, it is clear that Faster-
RCNN (precision—95.08%, F-1 Score—0.96, recall—98.69%) achieved a higher level of performance
than YOLOv4 (precision—71.77%, F-1 score—0.83, recall—73.31%), and will be adopted for further
development of the monitoring station.

Keywords: object detection; convolutional neural network; whiteflies; web app; insect trap; IoT

1. Introduction

The infestation of silverleaf whitefly, Biotype B Bemisia tabaci Gennadius, is a globally
identified challenge when it comes to vegetable and cotton production. Of the crops
affected by whitefly, cucurbits are some of the most severely affected and support the
highest levels of whitefly reproduction. One of the issues faced by growers is tracking
whitefly movement in production areas, particularly at adjacent cotton and cucurbit crops.
The timing of whitefly management practices is mostly preventative. Whiteflies can move
into a vegetable or cotton field in two major ways. First, there can be a small, overwintering
population that build ups over 2–3 whitefly generations before it can reach damaging
levels in that field. Secondly, whiteflies can migrate in large numbers from one host
crop to another and quickly overwhelm a crop in a single generation. Early warning of
such infestation and migration could provide farmers and consultants the appropriate
information to apply management strategies in a timely and efficacious manner. Once
whiteflies become entrenched in a crop, it is difficult to manage economically significant
losses.
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Without automated data analysis techniques, detecting and reporting whitefly move-
ment is very laborious and time-consuming. Yellow-sticky cards (YSC) are placed adjacent
to fields and/or across broad landscapes. A person must travel to each location and retrieve
traps to be brought back to the lab and whiteflies counted manually. This requires many
man hours of time in travel and counting. This can also reduce the ability to manage these
pests in an environmentally and economically viable way. Whiteflies are best controlled
while moving from host to host or across landscapes. Once they land and move underneath
the leaves of their host, they are much more difficult to control. Consequently, a trap must
be able to make measurements in a timely manner (1× to 2× a day), be deployed for at
least 3 months without maintenance and report this information to farmers, researchers,
consultants and extension personnel. This requires the ability to disregard dust and reflec-
tions from water droplets when detecting and counting insects. Finally, insect species such
as whiteflies, aphids and thrips are extremely small pests and require a system that can
continually measure and report infestation or population dynamics of insect species.

Previous whitefly detection studies have been mainly based on image processing to
detect objects in an image and then use machine learning algorithms to classify them. A
method for counting whiteflies on the leaves of crops was proposed by [1]. In the study, a
hypothesis framework was defined to distinguish pests from other particles in an image;
then, color, texture and shape analysis was performed. In color analysis, the RGB (Red
Green Blue) picture is converted into a gray-scale image. In texture and shape analysis,
entropy properties and morphological openings with structuring elements are used. An
image processing approach using MATLAB for detecting and counting the number of
whiteflies on the leaves of crops was developed by [2]. They first converted the RGB
picture to an HSV image and then performed background subtraction and morpholog-
ical operations to detect whiteflies. Other studies have explored Principal Component
Analysis [3] segmentation and the Mahalanobis distance classifier for white fly, aphid and
thrips identification [4], machine vision technique for whitefly scouting in greenhouse [5]
and discriminant analysis to identify a European vs. Africanized honey bee [6]. Methods
have also been developed using artificial neural networks (ANN) with input nodes as
features for identifying multiple species of insects such as thrips [7]. They used seventeen
continuous salient features and two binary qualitative measurements of eighteen common
European species of thrips. These methods are generally semi-autonomous and require
some measurements or manual manipulation of data to run the detection algorithm. Con-
sequently, we propose a deep neural network approach that makes it easy to add insect
species’ detection and identification and increase the utility of the model.

Deep Neural Network (DNN) approaches have been widely used in object detec-
tion and identification, especially the Convolutional Neural Network (CNN) algorithm.
The CNN algorithm helps extract representations from the image. Unlike non-neural
approaches, the CNN algorithm takes raw pixel data, trains the model, and then extracts
features automatically for better classification. A convolutional neural network to detect
moths and make the model non-species specific so new insect species could be added later
was used by [8]. A computer vision algorithm, [9], referred to as Moth Classification and
Counting (MCC), based on deep learning analysis of the captured images, tracked and
counted the number of insects and identified moth species. Tracking was implemented to
reduce the potential for counting moths more than once as they walked around on the light
trap. A DNN model cause Squeezenet was developed for the detection of tiger beetles [10].
They found that freezing some of the model layers during training improved accuracy to
90%. An automated monitoring system for fruit flies [11] in crops for pest management
using a CNN was developed. It used a trained ResNet model to detect spotted wing
Drosophila (Drosophila suzukii). A computer vision detector using Haar Cascade and
Deep Learning techniques [12] was developed to automatically count whiteflies on infested
cassava leaves.
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A phone app [13] was created by AI-Dev Lab Makerere University, Kampala, Uganda,
and is available for download on Google Play. It was developed for counting whiteflies on
cassava leaves in real-time in the field by taking a picture of whiteflies on plant material.
There have been several successful whitefly counting algorithms developed for specified
crops. A color segmentation and mathematical morphology to count adults, nymphs,
and exoskeletons on soybean leaves was developed by [14]. Others have also employed
successful algorithmic approaches to whitefly detection and counting on leaves ([15,16])
that are collected and brought to the lab or images taken with a handheld camera on-site
and then analyzed with the developed algorithms. A commercial system for greenhouses
has also been developed, called the Scoutbox [17], which contains a high-resolution camera.
Technicians carry the Scoutbox with them and manually place a yellow sticky card (YSC)
in the box and take a picture. The cards are then analyzed by the company for whitefly
counts.

CNN models can be classified on a higher level as a single-shot or two-shot object
detection model. Deciding between the two is a crucial part of any object detection project.
Whereas two-shot object detectors are very accurate, single-shot detectors are computation-
ally faster while sacrificing accuracy. Two-shot detection models have two stages, the first
being a region proposal, and a second stage which is a classification of those regions and
refinement of the location prediction. Three popular two-shot detectors are Fast-RCNN,
Faster-RCNN [18] and an extension of that called Mask-RCNN [19]. RCNN’s were initially
found to have drawbacks, primarily in slow object detection due to the need of feeding
2000 region proposals generated from selective search algorithm to the CNN every time,
and, therefore, extensions of these models were developed. Fast-RCNN improves speed
of operation by feeding the input image to the CNN to generate a convolutional feature
map instead of feeding the regional proposals, which ensures the convolution operation
to be done only once per image. Faster-RCNN eliminates the slow and time-consuming
process of selective search and lets a separate network predict the region proposals, which
make the model much faster than its predecessors. Faster-RCNN proposes regions in its
first stage and uses the Fast-RCNN detector to identify objects in the proposed regions.
Mask-RCNN is a branch added to Faster-RCNN that creates a binary mask to determine if
a specific pixel in a bounding box is part of an object.

Single-shot detection skips the region proposal stage and yields final localization and
content prediction at once. Elimination of the need for the region proposal network makes
the single-shot detection process much faster than the two-stage processes. The more
popular of these models are YOLO versions (You Only Look Once) [20] and RetinaNet [21].
As mentioned, accuracy is generally sacrificed for speed in these detection models. Single-
shot detectors can also have problems with small and close images, both potential issues
with whiteflies (approximately 1 mm in length), or other small insects.

Our University of Georgia research team has developed a system to detect, count and
report whiteflies trapped on yellow sticky tape (YST) remotely and without maintenance
for up to 4 months. The IoT web-based remote autonomous insect detector (Web-RAID)
stations would be installed across cotton and cucurbit overlapping areas. A graphical
user interface (GUI) would provide current and historical data on whitefly counts for
all monitors in the field and include data graphing capabilities and data download in
.csv format. This graphical user interface would help determine the migration pattern of
whiteflies, providing farmers real-time data on when and where to apply management
strategies.

One crucial step for the system to become operational is to develop the detection
and counting algorithms that can detect and count whiteflies on digital images of YST
taken inside a Web-RAID station using an 8 MP camera (Raspberry Pi V2 camera module,
1920 × 1080). The model selection depends on (1) how much data will need to be trans-
mitted over cellular signal, (2) accuracy of the model and (3) size of the model and the
cost associated with edge versus cloud computation. This information, together with the
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temporal accumulation of whitefly counts and the location of stations, can provide the data
necessary to understand and control whitefly populations.

Objectives:

1. Using a prototype Web-RAID station, collect whitefly images on yellow sticky tape
in a rearing room with an NVIDIA Jetson compatible 8 MP camera for training and
validating DNN models.

2. Use images to train two Deep CNN models, namely YOLOv4 and Faster-RCNN.
3. Evaluate the precision, accuracy and recall for detecting and counting whiteflies for

both models.
4. Develop a web-based graphical user interface to display a graphical distribution of

whiteflies measured by the DNN model.

2. Materials and Methods
2.1. Web-RAID (Web-Based Remote Autonomous Insect Detector) Station

The RAID station is composed of cost-effective electronic and mechanical components.
Costs for individual components, including utility box, computer, motor, camera, LED’s
and modem are approximately USD 400.00. Whiteflies are trapped on 5 cm wide × 12.5 cm
exposed YST. The RAID station advanced the YST using a gear motor so that a fresh surface
was available to capture whiteflies 2× a day at 11:00 AM and 6:00 PM. The exposed YST
was pulled into the monitor, and six LED lights would illuminate the YST and an 8 MP
Raspberry pi camera would take images of the tape. An on-board NVIDIA Jetson Nano
computer would collect and send the image to an on-board data modem (Inseego, Model
SYUS 160). The modem would send images to the webserver to run the trained models to
count the number of whiteflies on the trap. Figure 1 shows a station and its components in
the field.

Figure 1. The web-RAID station opened at the top (left) and bottom (right) to see the main compo-
nents.
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We also required an IP address to provide secure communication between the web
server and web clients (user). The communications protocol between client and server has
been established using a client-server architecture. The client makes a connection request
from the server and begins a client/server session that starts the read/write process of data
transfer using TCP/IP protocol from the client in a remote location to the server at UGA
laboratory office in Tifton, GA. The image is sent as packets of string characters and the
server constructed back to the image after receiving the string and checksum.

2.2. The CNN Model

Figure 2 shows the workflow for selecting the model for the detection of whiteflies.
The first step was to gather a dataset of whitefly images. Then, we chose two CNN models
and labeled the dataset accordingly. In our case, we chose to compare a single-shot detector,
YOLOv4 [22] for its speed, and Faster-RCNN [18], a two-shot detector, for its accuracy.
The next step was to train both models and test those models to determine their accuracy,
precision, F-1 score and recall. Based on the data comparing inference results, we choose
the best model for our application.

Figure 2. This figure shows the general workflow for model selection.

2.3. Data Collection

The whitefly images were taken using a whitefly monitoring station inside a controlled
environment whitefly rearing room. Whiteflies were allowed to feed on cotton plant
seedlings and provide multiple generations. Whiteflies are naturally attracted to the yellow
color of the stations and images were collected two times per day at 11:00 AM and 6:00
PM. Each YST image contained around 60 to 80 whiteflies and resulted in over 8000 labels
(Figure 3).

2.4. Model Selection

Object detection was performed with two different models, YOLOv4 and Faster-
RCNN. YOLOv4 is a single-stage detector model, making it computationally small and
fast. The second model we tested was Faster-RCNN. Faster-RCNN is a two-stage detector
model that is resource-intensive, but is usually quite accurate. As whitefly detection is
going to take place on static images, speed can be sacrificed for accuracy if needed.
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Figure 3. Whiteflies trapped on YST (yellow sticky tape).

2.5. Data Processing and Labeling

The images collected for training were 1920 × 1080 pixels (1080p). Each image was
sub-sampled to a resolution of 640 × 640 pixels, which is a good size to save the image
details and not hamper the time of training a model.

The central prerequisite for training on a pre-trained CNN model is labeling the images.
We used LabelImg v1.8.6 (MIT License) to label all the images as it is very user-friendly. It
permits the user to create bounding boxes around the target (whitefly body) of the image
and afterward give a classification name as indicated by the user. Figure 4 shows the
labeling done in the LabelImg tool. In our scenario, there are two classification labels,
“Whitefly” and “others”. The “Whitefly” label denotes the whiteflies in the image and the
“others” label was used for negative training. Some white spots are formed because of the
light reflecting from the sticky tape.

Figure 4. This figure shows the labeled image using LabelImg tool.
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2.5.1. YOLOv4

Ninety percent of the dataset was used for training and the remaining 10% was used
for testing the YOLOv4 model. Training data was 90% to increase the sample size for
training. A file with “.names” extension is created to store the class name. Each line in the
file is utilized per class name. For YOLOv4, the labels are stored in .txt format. Each label
in YOLOv4 has five parameters. The first parameter is the line number in object names
corresponding to the name of the object class (in our case, we have two classes, i.e., whitefly
(0) and others (1)). The next two parameters are the object’s center coordinates. The last
two parameters are the width and height of the bounding box.

2.5.2. Faster-RCNN

Ninety percent of the dataset was used for training and the remaining 10% was used
for testing the Faster-RCNN. Unlike YOLOv4, which uses .txt files to store the labels, Faster
RCNN uses Pascal VOC .xml file to store its labels. Tensorflow uses the TFrecord file for
training and testing. TFrecord file is a binary file format for the storage of data which has
a significant impact on the performance of the import pipeline and therefore reduces the
training time of the model. A python script was used to convert labels stored in a .xml
file to train.tfrecord and test.tfrecord for training and testing, respectively. Additionally, as
obj.names uses YOLOv4 for storing the classes, TensorFlow uses labelmap.pbtxt to store
classes. Each line is utilized per class name.

2.6. Training and Testing

The training was conducted on a personal laptop with an AMD Ryzen 9 processor,
16 GB of RAM and a 6 GB RTX 2060 MAX-Q Graphics card. Initially, both the models
were trained just to detect whiteflies. The testing showed that there were numerous false
positives detected. Therefore, a new class label called “others” was created to train the
model to recognize water droplets and light reflectance. This negative training (NT) did not
significantly affect the YOLOv4 model performance, but Faster RCNN showed a drastic
performance improvement.

Testing the model to the test data was accomplished on the same laptop as was used
for training. The model was imported onto the webserver computer (8-Core Intel i7, 32 GB
RAM, Nvidia GeForce GTX 1060 6 GB GPU, 1.5 TB HD) to analyze the images from the
remote traps in the field.

2.6.1. YOLOv4

YOLOv4 is quite possibly the most visible and most popular real-time object detector
available today. YOLOv4 is built using the Darknet framework. Darknet is an open-source
neural network framework written in C and CUDA. For training our model, we used the
pre-trained YOLOv4 weights (w). The maximum batch size was set to 6000. In total, 18
filters were used in the convolution layers. The steps were set to (4800, 5400). The steps
determine the number of iterations at which scales will be applied. Scales are coefficients
at which the learning rate is multiplied at a particular step. The training was run on the
dataset for 4000 epochs, the loss started from 18.98 and reach 0.27. The training was stopped
when the loss graph line was almost flat. Figure 5 shows the loss graph for YOLOv4. The
Complete Intersection over Union (CIoU) loss [23] which is used to optimize loss regression
is:

LOSSCIoU = 1 − IoU +
ρ2(b, bgt)

c2 + αv (1)

where b and bgt are the central points of the bounding box, and bounding box ground
truth (B, Bgt), ρ2 (b, bgt) is the Euclidean distance, c is the diagonal length of the smallest
enclosing box covering B and Bgt and α, v represents

α =
v

1 − IoU + v
(2)
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v =
4

π2 (arctan
wgt

hgt − arctan
w
h
)

2

(3)

w and h are the width and height of the bounding box, respectively. The Total Loss function
for YOLOv4 is given by:

TotalLOSS = 1 − IoU +
ρ2(b, bgt)

c2 + αv

−
S2

∑
i=0

B
∑

j=0
Iobj

ij
[
Ĉi log(Ci) + (1 − Ĉi

)
log(1 − Ci)]

− λnoobj
S2

∑
i=0

B
∑

j=0
Inoobj

ij
[
Ĉi log(Ci) + (1− Ĉi

)
log(1 − Ci)]

−
S2

∑
i=0

Iobj
ij ∑

c∈classes
[p̂i (C) log(pi (C)) + (1 − p̂i(C) log(1

− pi(C))]

(4)

C is Class, S is the number of grid cells and p is the probability that Class is detected.

Figure 5. YOLOv4 Loss Graph.
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2.6.2. Faster-RCNN

Google’s Object Detection API was used to train the pretrained Faster-RCNN model
from Google’s Model Zoo. This model was originally trained on the coco dataset. The loss
function of Faster RCNN for any image is defined as

L ({pi}, {ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i ) + λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ) (5)

Here, i is the index of an anchor in a mini-batch and pi is the predicted probability of
anchor i being an object. The ground-truth label p∗

i is 1 if the anchor is positive and 0 if
the anchor is negative. ti is a vector representing the 4 parameterized coordinates of the
predicted bounding box, and t∗i is that of the ground-truth box associated with a positive
anchor. The classification loss Lcls is log loss over two classes (object vs. not object). Lreg is
the regression loss. Figure 6 shows the Loss Graph for Faster-RCNN.

Figure 6. Faster-RCNN Loss Graph.

2.7. The Web-RAID Monitoring System

The Web Application, called “Web-Raid Monitor System”, was designed to help
farmers and researchers to visualize the data regarding whiteflies population and also help
analyze their migration pattern. A Jetson Nano computer processor with its camera, the
Faster-RCNN model running on the server and the web application are all integrated to
give users a seamless and completely automated experience. Figure 7 shows the flow of
this System.
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Figure 7. General Flow of Web-Raid Monitor System.

Each Web-RAID station consists of a Jetson Nano computer, 8-mb Nano compatible
camera, gearmotor, LED lights and a modem. The Nano manages the gearmotor to advance
the yellow sticky tape so that tape that has attracted whiteflies is pulled into the station
until in front of the camera. Then, the LED lights are turned on and the camera takes a
digital image of the sticky tape. The image is sent to the modem (Inseego SKYUS 160),
which in turn sends it to a static IP address hosting the web server. Then, the Faster-RCNN
model detects and counts the number of whiteflies in these images. The data is then stored
in the database connected to the Web-Raid Monitor System. This web app was developed
using the Django Web framework. Programming languages Python, HTML5 and Javacript
were used to build the app. The web application consisted of the following components:
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1. Web-Raid Monitor

Figure 8 shows the home page of our web application with a bubble map of Georgia
that was implemented using JavaScript (HighCharts). The bubbles indicate station locations
in the state. When the cursor is placed over the bubble, it provides the location and count
of whiteflies detected to date. As the count increases or decreases, the size of the bubble
also changes accordingly. This helps provide a quick high-level visual of migration pattern
of the whiteflies to the user. It also provides links to the original image, analyzed image
with labeled whiteflies and a count of the whiteflies between a particular time frame of a
particular location. Figure 9 shows the image link and the count of whiteflies in that image
sorted according to user-specified date and location.

Figure 8. Web-Raid Monitor System homepage.

2. Statistics

Figure 10 shows a graphical view of the number of whiteflies counted across all
locations. The green bar shows the total count of all images taken in the morning and the
red bar is the reading taken in the evening. Data can be filtered by the results according to
the dates. Results can also be downloaded in .cvs format.

3. Admin Panel

The website administration panel is where the data that can be displayed on the
webpage is managed without manually firing any query to update data in the database.
The admin panel provides an interface to directly add/delete different location/posts or
manually add pictures of whiteflies and counts for a particular date (in case there is some
problem for the web app to communicate with the server).
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Figure 9. Results sorted according to date and location.

Figure 10. Bar chart of whitefly counts at each station for AM and PM.

3. Result
3.1. Negative Training

The models were trained just on the whitefly labels. Unlike YOLOv4, the trained
Faster-RCNN model had a significant number of false positives. This occurred due to the
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imperfect placement of the LED’s illuminating the yellow-sticky tape when the image was
taken by the camera as well as the slight angle of the tape to the camera. Figure 11a shows
the false positive detections by the Faster RCNN model. To overcome this issue, negative
training was performed to differentiate the white spots from whiteflies. Figure 11b shows
the model result after negative training.

The YOLOv4 model had high precision right at the beginning because it did very little
false positive detection. Even after negative training, the results were almost the same
(Table 1).

Figure 11. (a) Results of Faster RCNN before negative training and (b) Results of Faster RCNN after
negative training.

Table 1. Performance metrices.

Mean Average
Precision (IoU = 0.5) Accuracy F-1 Score Recall Mean Inference

Time (s)

Faster-RCNN (NT) 96.29% 95.08% 0.96 98.69% 23.72

Faster-RCNN 65.19% 60.48% 0.75 89.32% 23.56

YOLOv4 (NT) 97.16% 71.77% 0.83 73.31% 8.94

YOLOv4 96.70% 71.41% 0.82 73.19% 8.78

3.2. Experimental Analysis

The sensitivity or recall, accuracy, F1 score and precision of the models were deter-
mined as follows:

Recall = TP/TP + FN (6)

Accuracy = TP + TN/TP + FP + FN + TN (7)

Precision = TP/TP + FP (8)

F1 Score = 2 ∗ (Recall ∗ Precision)/(Recall + Precision) (9)

where TP is the number of true positives detected by the model, FN is the number of false
negatives detected by the model, TN is the number of true negatives and FP is the number
of false-positive labels in the given dataset.

Testing revealed that the two-shot detector, Faster-RCNN, was more accurate and
more suitable for our application. Faster-RCNN obtained an accuracy of 95.08%, whereas
YOLOv4 obtained an accuracy of 71.77%. Table 2 shows all the performance matrices
for Faster-RCNN with Negative Training (NT), Faster-RCNN without negative training,
YOLOv4 with Negative training (NT) and YOLOv4 without Negative Training. Faster-
RCNN (NT) had the best F-1 Score, Recall and accuracy.
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Table 2. Faster-RCNN Confusion Matrix.

True Positive False Positive False Negative True Negative

Faster-RCNN (NT) 832 32 11 0

FasterRCNN 753 402 90 0

Figures 12 and 13 show the detection results of Faster-RCNN and YOLOv4 respectively
deployed on the Web-Raid-Monitor system for two images. Tables 2 and 3 show the
confusion matrices for Faster-RCNN and YOLOv4, respectively.

Figure 12. Two examples of detection results forFaster-RCNN model with negative training using
yellow sticky tape image from web-RAID monitor.

Figure 13. Two examples of detection results for YOLOv4 model with negative training using yellow
sticky tape image from web-RAID monitor.

Table 3. YOLOv4 Confusion Matrix.

True Positive False Positive False Negative True Negative

YOLOv4 (NT) 618 18 225 0

YOLOv4 617 21 226 0

4. Conclusions

The developed Web-Raid-Monitor system will be very useful in determining the
migration pattern of whitefly insects. The Faster-RCNN model deployed on the Web-Raid-
Monitor system accurately detects and counts whiteflies. The visual representation (Bubble
Map, Graphs) provided on the Web-Raid web app will help farmers and researchers to take
precautionary measures against whitefly infestation. From the experimental analysis, the
accuracy of Faster-RCNN was 95.08% and that of YOLOv4 was 71.77%. YOLOv4 being a
single-shot detector is small and compact with inference time of 8.94 s to that of 23.72 s for
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the Faster RCNN, but Faster-RCNN is more accurate and better suited for this application
since the image analysis is not required to be real-time and can be conducted in the cloud.
Adding new species of insects, in the future, will be simply done by using additional
training datasets of insects on sticky tape. The Web-Raid-monitor stations can then detect
and count multiple species attracted to the YST.

Author Contributions: Conceptualization, G.C.R., D.R. and J.M.S.; methodology, G.C.R., D.R., C.U.P.,
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