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Abstract: Driverless transport systems (DTS) or automated guided vehicles (AGV) have been part of
intralogistics for over six decades. The uniform and structured environment conditions in industrial
halls provided the ideal conditions for simple automation, such as in goods transport. Initially,
implementing simply-designed safety devices, e.g., bumpers, could reduce risk to an acceptable
level. However, these conditions are not present in an agricultural environment. Soiling and harsh
weather conditions are anticipated both indoors and outdoors. The state of the art in intralogistics are
light detection and ranging (LiDAR) scanners, which are suitable for both navigation and collision
avoidance, including personal protection. In this study, the outdoor and navigation suitability
of LiDAR is assessed in test series. The aim is to contribute advice on validation of LiDAR as a
possible technology with respect to navigation and collision avoidance in freely navigating automatic
feeding systems.
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1. Introduction

Present-day commercial automatic feeding systems (AFS) only incorporate an incom-
plete automation of the feeding process (“semi-automatic feeding”, stage 2) [1]. Stage 2
indicates that filling, mixing, and distribution of the feed ration is performed automatically
by the system, whereas feed removal from silos and transport from silos to the stable are
performed manually by the farmer. These systems can only remove feed from interim
storage and convey it into mixers. The interim storages, again, have to be filled by a manual
operator. Moreover, the feed mixer is a distribution unit, or it conveys the mixed ration to a
special feed distributor, which then dispenses the feed to the feeding fence. Furthermore,
some of these systems push the feed regularly at programmable intervals. The duration of
the interim storage of silage is limited to a few hours or a few days, as the air supply leads
to rapid fodder spoilage after removal from the silo [2,3]. The removal of the roughage from
the silos and their transport to the mixer or interim storage are, in turn, steps in feeding that
cannot yet be managed by any commercial automatic feeding system. The most significant
challenges here include the safe removal of silage with cutting or rotating tools, and the
safe transport of the vehicles weighing several tons over non-restricted traffic areas.

Contrary to the harsh and complex environmental conditions in agriculture, standard-
ized working industrial environments laid the foundation for the automation of transport
vehicles [4]. The success story of driverless transport systems or automated guided vehicles
(AGVs) in intralogistics began more than six decades ago [5]. There are optimal conditions,
e.g., constant illuminance, paved roads, no changing or demanding weather conditions,
and demarcated areas with trained staff. In the early days of driverless transport systems,
in the 1950s, navigation was based on conductors with current flowing through them laid
in the ground, known as inductive lane guidance [5]. These were simply to be installed in
the already paved surfaces of industrial halls and warehouses. LiDAR technology is now
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used in most AGVs. With the duration and the angle of the emitted laser beams, LiDAR
scanners enable self-driving vehicles to navigate freely in indoor applications. Additionally,
they are often part of perception systems in automated machinery, as they can maximize
personal protection and collision avoidance [6–9]. LiDAR is an optical measuring principle,
which makes it sensitive to external light and optical impairments. Therefore, LiDAR
is only suitable to a limited extent for use outdoors. Dirt, fog, rain, soil conditions, and
light-shadow transitions can substantially impact LiDAR technology [10].

Automatic feeding systems move on a range of floor coverings, and operate both
outdoors and indoors. This makes the use of ground control points difficult or completely
eliminates the need for them. Likewise, using the global navigation satellite system (GNSS)
alone is inadequate for two reasons. First, navigation in buildings is not possible due to
the shading of the signal by the building envelope and, second, additional technologies
are required for direct monitoring of the vehicle environment [8]. LiDAR is an advanced
technology that is highly promising for use in agricultural machinery, as well. This potential
is predominantly seen in two sectors: In the automotive industry and in intralogistics.
LiDAR technology is an important technological pillar for automation [11,12]. Even in
land preparation LiDAR has an important standing, although GNSS and red-green- blue
(RGB) cameras are more commonly used in agricultural automated machinery [13]. This
comes from the open-air environment on fields ideal for GNSS and their main tasks in
identifying crops, rows or weeds ideal for RGB vision. LiDAR can create a precise image of
the near and far range. This makes LiDAR an excellent fit for both navigation [14–16] and
in safety devices [11,12,14,17]. In an experimental setting, a robot vehicle was equipped
with a LiDAR scanner and tested in practical agricultural driving tests. Vehicle navigation
with LiDAR was analyzed using standardized criteria and robustness against challenging
environmental conditions was documented. The aim of this article is to analyze the
navigation of a driverless feed mixer with LiDAR under practical conditions and provide
orientation on how to evaluate these navigation technologies.

2. State of Knowledge

Laser navigation is the most prominent representative of free navigation [11]. It makes
use of the physical characteristics of a laser (light amplification by stimulated emission of
radiation) and implements them in the LiDAR method [18]. LiDAR is a method for optical
distance and speed measurement [19]. It is based on the time-of-flight of emitted laser
pulses and their scattering, known as time-of-flight (TOF) [11,12]. The laser beams of the
LiDAR are electromagnetic waves and can be distinguished by differences in frequencies.
LiDAR is an optical measurement method, which is the reason that the emitted pulses are
absorbed, deflected or scattered by particles, bodies, and surfaces.

For the purposes of this study, LiDAR sensors can be divided into two categories. The
first design principle is called a LiDAR sensor, which contains no moving parts and relies
only on diode arrays. The LiDAR sensors work according to the multi-beam principle.
For this purpose, they are provided with several permanently mounted transmitter and
receiver units arranged horizontally next to each other. The angular resolution depends on
the beam width and the lateral opening angle on the number of beams. Ranges of up to
150 m are possible in this configuration. The advantage of this design is that it does not
have any moving parts. In the automotive industry (e.g., Volkswagen Up, Ford Focus), 2D
LiDAR systems based on the multi-beam principle are used for active emergency braking.
Due to the limited horizontal detection area, their use is limited to longitudinal guidance.
They are not yet used in the AGV industry [20].

The so-called laser scanners are the second type of LiDAR sensor. They are equipped
with one or more mechanically rotating mirrors that redirect the emitted light pulses. The
angle to the object is recorded based on the rotation of the mirror. The exact position of an
object can be determined using the distance to the object and the angular position of the
mirror [20].
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The multi-target capability of the sensors is a critical foundation for navigation, as
several objects can be located in the sensor area. To differentiate between the targets, a
separation ability is required, which among other things, depends on the resolution of
the angle measurement. LiDAR laser beams leave the sensor as spherical waves, which
correspond to strong bundling. Therefore, they can generate high-resolution measurement
data [16].

Classic laser navigation is based on the use of artificial landmarks. These are attached
to walls and pillars at a specific height to avoid shadowing from people or other objects. A
rotating laser scanner can precisely measure these reference marks even over long distances
(Figure 1). Depending on the procedure, at least two or three artificial markings must be
visible to determine the position. The creation of new driving courses is possible directly
via programming or a learning run (teach-in), which guarantees a significantly heightened
level of flexibility with regard to the layout. To avoid the ambiguities of marks, it may be
necessary to code them [5].

Figure 1. The rotating laser scanner is mounted on the vehicle and measures the reference marks on
pillars and walls. Reprinted/adapted with permission from Ref. [21]. 2018, Götting KG.

The coordinates of the reference marks are saved when the vehicle is commissioned
and configured. While driving, the laser scanner continuously detects the positions of
these stationary marks. Therefore, the current position and orientation of the vehicle can
be determined from the comparison of the position data. This position estimate is known
as a feature-based method, which seeks to identify features or landmarks [9]. This can
be achieved in two ways: By means of the relative positions or by means of the absolute
positions (Figure 2). When covering the course, the vehicle computer continuously corrects
the vehicle’s course deviations, which can occur due to various factors [5].

To reduce, omit or support artificial landmarks, information concerning the contours
of the environment is necessary. The laser scanners can output the measured contours to
recognize natural landmarks in an external computer using suitable algorithms. The marks
must be clearly recognizable and their position must not change. A distance measuring
laser scanner can be used, for example, to drive along a wall. If a complete position
determination/navigation is to succeed, additional procedures, such as edge detection or
artificial bearing marks are added. This method of environmental navigation was also
applied in these manuscript’s test series [15].
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Figure 2. Basic sketch of the determination of the relative position between the reference mark and
the vehicle (left) and the absolute position in the coordinate system (right) (Adapted after SICK AG,
in [5]).

If the laser scanner is also swiveled around another axis, it is possible to create a 3D
image of the surroundings. This method is also used by Strautmann und Söhne GmbH
in the “Verti-Q” concept presented in 2017 (Figure 3). This enables quite reliable ceiling
navigation, as the view of the ceiling is usually free of obstacles. Therefore, the disadvantage
is the greater computing and time required for this multi-dimensional recording. At
present, only slowly moving vehicles in the single-digit kilometers per hour range can be
implemented with this technology in a practical manner. Additionally, the method is only
suitable for indoor applications due to its principle [15].

Figure 3. The sequence of images shows the clockwise rotation of the 2D laser scanner (white arrow)
in the direction of travel and the output of the processed scanner data as a 3D point cloud on a
monitor. Visitors to the fair can be seen passing by (yellow arrows). (Own recordings).

3. Materials and Methods

To evaluate the automatic lane guidance by LiDAR scanner, it is validated on the
basis of three characteristics: Accuracy, Precision, and Consistency [22]. For this purpose,
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a dynamic driving test was carried out using a robot vehicle in an agricultural environ-
ment (Figure 4). At the test farm “Veitshof” of the Technical University of Munich, the
vehicle drives along a route in and outside a stable building using a LiDAR scanner. A
“run” was considered to be a series of 10 “test drives”, each completing the total route,
as shown in Figure 5. The climatic environment was consistent throughout test runs
2, 3, and 4 regarding lighting and weather conditions. It was a clouded December day
between 10 a.m. and 4 p.m. at about 5 to 7 ◦C.

The LMS 100 laser scanner was mounted on the front of the vehicle in the middle above
the steering axle. The scanner used a light wavelength of 905 nanometers and updated
measures with a repetition rate of 50 Hz. The measuring range was between 0.5 and 20 m
with an opening angle of 270◦ and an angle resolution of 0.50◦. The scanner was insensitive
to extraneous light up to 40,000 lx. The systematic error of the scanner was 30 mm. The
LMS 100 has fog correction and multiple echo evaluation. The onboard PC ran an Ubuntu
Linux operating system on which the robot operating system (ROS) was installed. The
“Cartographer” program was used to graphically display the LiDAR data. The inertial
measuring system of the type MTi-30-2A5G4 also supports the determination of spatial
movement and geographical positioning.

The route (target trajectory) is programmed using waypoints on a digitally created map.
The digital map is generated using the measurement data from the LMS 100 laser scanner
from Sick AG and the “Cartographer” software program during a teach-in drive [23]. The
target trajectory was conducted over a drive-on feeding alley in the dairy stable (marks 2–3)
around the stable building (marks 3–4–1) and back to the starting point at the feeding alley
(mark 2), which corresponded to a route of about 110.5 m in length (Figure 5). The feeding
alley has a metal catching/feeding fence on both sides and is divided lengthwise by a metal
drawbridge. The walls outside are wooden with a concrete base. Calf hutches are set up
in the eastern area of the barn. The environment offers highly variable conditions: Floor
coverings from gravel (79 m) to concrete (31.5 m), indoor and outdoor lighting conditions
(31.5 m or 79 m), changing distances to reflective objects, changing materials/surface
properties of the reflective objects, both static structural and dynamic living objects, such as
cattle, in addition to dry or rainy conditions.

Figure 4. The robot vehicle with a laser scanner (blue-black) and radar scanner in the early prototype
stage (white). (Own recordings).
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Figure 5. The route with marks 1 to 4. The route of the robotic vehicle did not change during the
runs. Only the starting point has been relocated. (Scale 1:10) (google.maps.de).

The extent to which the test drives (drive trajectories) deviate from the planned route
(target trajectory) (accuracy) should be verified. Moreover, the extent to which the test
drives (drive trajectories) deviate from one another (precision) should be examined. The
criterion consistency is derived from accuracy and precision. The accuracy of a mea-
surement system is the degree of deviation of measurement data from a true value. The
accuracy was calculated by determining the closest neighbors of the drive trajectories to
the target trajectory using the 1-nearest neighbor method (1NN method) and Euclidean
distance calculation [24]. The reproducibility of a measuring system describes the extent
to which random samples under the same conditions scatter over several repetitions (pre-
cision). The precision was calculated by determining the closest neighbors of the drive
trajectories to each other using the 1NN method and Euclidean distance calculation. If the
measurement results of an evaluated test are accurate and precise, then they are consistent
(consistency) [22,25].

In this work, a tolerance limit of 0.05 m is specified for precision and accuracy. As a
result, this tolerance limit is set by the user and assumes a different value for additional
scenarios. This limit has been orientated on real time kinematic (RTK)-GNSS, which is
used, e.g., in guidance of farm machinery on fields and is capable of precision steering
with only small deviations of ±3 cm. This considers other high-precision technologies
for navigation as well as the restricted conditions inside buildings. The deviations of the
individual trajectories are statistically evaluated by multiple assessments, applying the
false discovery rate and using the Welch test.

The raw laser data are processed in real time with a Monte Carlo filter, which is widely
used as a method of laser positioning [26] during the experiment to remove measurement
noise, and thus increase the accuracy of the data. After the test has been carried out, the data
are further maintained using a Kalman filter and the associated high-resolution physical
measuring system. The aim of using a Kalman filter is to eliminate systematic errors [27].
The systematic error is one of three types of errors; it is the only type of error that is
considered avoidable, and can be eliminated a priori. Random errors are random system
errors, in which the cause is largely unknown [25,27]. Chaotic errors are mathematically
inexplicable system errors, in which the cause is unknown [25].

The high-resolution physical measuring system was developed to guarantee the
optimal use of the Kalman filter for the evaluation. This can be described as follows.

γ(t + h) = γ(t) +
·
γ(t) ∗ h + O

(
h2
)

(1)
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Equation (1) describes the mathematical relationship between the position vector γ(t)
at time t and the position vector γ(t + h) at time t + h (actual time plus certain quantity)
and has an approximation quality of O

(
h2).

γx(t + h) = γx(t) + cos(ϕ(t)) ∗
∣∣∣ ·γ(t)∣∣∣ ∗ h + O

(
h2
)

(2)

Equation (2) represents the x-component representation of Equation (1).

γy(t + h) = γy(t) + sin(ϕ(t)) ∗
∣∣∣ ·γ(t)∣∣∣ ∗ h + O

(
h2
)

(3)

Equation (3) represents the y-component representation of Equation (1).

ϕ(t + h) = ϕ(t) +

∣∣∣ ·γ(t)∣∣∣√
γ2

x(t) + γ2
y(t)

∗ h + O
(

h2
)

(4)

Equation (4) describes the mathematical relationship between the heading angle ϕ(t)
at time t and the heading angle ϕ(t + h) at time t + h and has an approximation quality of
O
(
h2). ∣∣∣ ·γ(t + h)

∣∣∣ = ∣∣∣ ·γ(t)∣∣∣+ ∣∣ ..
γ(t)

∣∣ ∗ h + O
(

h2
)

(5)

=

∣∣∣∣ ·
γ(t)

∣∣∣∣+
∣∣∣∣∣∣∣∣const. ∗

·
γ(t)∣∣∣ ·γ(t)∣∣∣ +

∣∣∣ ·γ(t)∣∣∣2
ϕ(t)

∗
(

cos π
2 sin π

2
sin π

2 cos π
2

)
∗

·
γ(t)∣∣∣∣ ·
γ(t)

∣∣∣∣
∣∣∣∣∣∣∣∣ ∗ h + O(h) (6)

=

∣∣∣∣ ·
γ(t)

∣∣∣∣+
∣∣∣∣∣const. ∗

(
cos(t)
sin(t)

)
+

∣∣∣ ·γ(t)∣∣∣2
ϕ(t) ∗

(
cos π

2 sin π
2

sin π
2 cos π

2

)
∗
(

cos(t)
sin(t)

)∣∣∣∣∣ ∗ h + O(h)

with const. = 0.6 m
s

(7)

where the quantity ϕ is provided by

ϕ(t) =

∣∣∣∣∣∣∣∣∣∣

(
cos(ϕ(t)) ∗

∣∣∣ ·γ(t)∣∣∣2 + sin(ϕ(t)) ∗
∣∣∣ ·γ(t)∣∣∣2) 3

2

cos(ϕ(t)) ∗
∣∣∣ ·γ(t)∣∣∣ ∗ a2

y − sin(ϕ(t)) ∗
∣∣∣ ·γ(t)∣∣∣ ∗ a2

x

∣∣∣∣∣∣∣∣∣∣
(8)

and the quantities ax and ay in Equation (8) are provided by the O
(
h2) approximations

ax(t) =
cos
(

ϕ(t) + 10−5) ∗ (const. + 10−5)− cos
(

ϕ(t)− 10−5) ∗ (const. − 10−5)
2 ∗ 10−5 + O

(
10−10

)
(9)

and

ay(t) =
sin
(

ϕ(t) + 10−5) ∗ (const. + 10−5)− sin
(

ϕ(t)− 10−5) ∗ (const. − 10−5)
2 ∗ 10−5 + O

(
10−10

)
. (10)

Equation (5) describes the mathematical relationship between the absolute velocity∣∣∣ ·γ(t)∣∣∣ at time t and the absolute velocity
∣∣∣ ·γ(t + h)

∣∣∣ at time t + h. By decomposing the

acceleration vector
..
γ(t) into its tangential and normal components, one first arrives at

Equation (6) and finally, by means of trigonometric simplifications, at Equation (7). The
radius of curvature ϕ(t) at time t is included in Equation (8). The quantities provided by
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Equations (9) and (10) are required for calculating the radius of curvature ϕ(t) and describe
the x and y components of the acceleration vector

..
γ(t) at time t.

zk = HkXk,k + vk with vk ∼ N(0, Rk) (11)

Equation (11) describes the relationship between the measurement data zk, the mea-
surement matrix Hk, and the actual noise-free position data Xk,k. The noise of the measure-
ment data is modeled using a normally distributed (N(0, Rk)) error vk, where Rk represents
the covariance matrix.

The physical system Equations (1)–(10) and the measurement system are linked by the
mathematical Equations (1)–(11). They form the extended Kalman filter. The results of the
Kalman filter are optimal estimated values for the system state variable zk.

Predicted state estimate:

xk,k−1 = f (xk,k−1) + wk with wk ∼ N(0, Qk−1) (12)

Predicted covariance estimate:

Pk,k−1 = Fk−1 ∗ Pk−1, k−1 ∗ FT
k−1 + Qk−1 (13)

Innovation:
yk = zk − Hkxk,k−1 (14)

Innovation covariance:

Sk = Hk ∗ Pk, k−1 ∗ HT
k + Rk (15)

Near optimal Kalman gain:

Kk = Pk,k−1 ∗ H−1
k ∗ S−1

k (16)

Updated state estimate:
xk,k = xk,k−1 + Kk ∗ yk (17)

Updated covariance estimate:

Pk,k = (I − KmHk) ∗ Pk,k−1 (18)

The prediction Equation (12), which in practice is subject to a normally distributed
noise wk with a covariance matrix Qk−1, is used to predict the true trajectory xk,k−1 and is
then calculated using the Kalman gain update step in Equation (17), which is still improving.
To predict the covariance matrix Equation (13) of the denoised measurement data, the
Jacobian matrix Fk−1, the current covariance matrix Pk−1,k−1 of the denoised measurement
data, and the covariance matrix Qk−1 of the physical system are required. The Jacobian
matrix Fk−1 is approximated by central, finite differences with sufficient accuracy up to an
O
(
h2) accuracy. The matrix Hk in Equation (14) describes the Jacobian observing matrix of

the measurement system and relates the measurement data to the product of the observing
matrix and the predicted position vectors xk,k−1 . Equation (16) represents the optimal
Kalman gain (Kk) and is required for the innovation in Equation (17) to calculate the actual
position vector xk,k. Equation (18) describes the update of the covariance matrix of the
denoised measurement data. The so-called innovation covariance matrix Equation (15) is
required for Equation (16).

In total, four runs were conducted. The first run was a test run, to check that every
aspect of the test setup was working. The second run revealed some issues, which were
tracked down with observations made during the test and the notes in the test protocol.
The robot displayed an erratic driving pattern during the entire run 2 on every journey.
The reason for this was suspected to be the number of waypoints on the programmed
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route. An evaluation did not provide any quantifiable results, which is the reason that
these measurement data were not further considered for data analysis. For runs 3 and 4,
the number of waypoints in the route were increased. The erratic driving pattern could
no longer be observed in runs 3 and 4. In addition to the x and y coordinates for each
measurement point, the measurement time is also saved. This makes it easier to assign
the data. The laser measurement data are recorded as a “.bag” file with every drive with
ROS, and then saved as a text file. This indicates that the measurement data can be used
for evaluation in Microsoft Excel and MATLAB.

4. Results

The results from the tests demonstrate the abilities of the automatic lane guidance
via LiDAR scanner and their evaluation is validated on the basis of three characteristics:
Accuracy, Precision, and Consistency. For a clear and definite assignment in the following
paragraphs, runs and drives are shown as codes, e.g., R3D6 (run 3, drive 6).

4.1. Accuracy

The determination of the accuracy refers to the distances between the target trajectory
and the test drives. The waypoints for the navigation represented the target trajectory,
which in turn formed the true (target) trajectory in the accuracy calculation. Then, the
accuracy for each point of the target trajectory was determined with the help of the 1NN
method. For each point of the target trajectory, the nearest neighbor of all nine considered
trajectories from run 3 in the section [mark 2–3] (referred to as “alley”) inside the facility,
was determined by means of the Euclidean distance (Figure 5).

In Figure 6, a greater deviation of the trajectories at the beginning of section “alley”
during run 3 is visible, which resulted from the previous cornering. The “steering angle”
due to the different speeds of the wheels on the drive axle (rear axle) favored these devia-
tions when cornering. The driving accuracy itself can be very high despite the fluctuations
in the data, since even small steering commands are occurring on the scanners placed
above the front axle enhanced by the lever. These measurement data were also corrected,
assuming that they were influenced by the previous cornering. Nearest neighbors, which
may have been incorrectly assigned, have been adjusted to reduce the systematic error.
This two-stage preprocessing and cleaning of the measurement data led to a reliable data
basis to enable robust evaluation results.

Figure 7 shows an example of how the accuracy of the drives from run 3 in the
route section results in a reference point of the target trajectory. The target trajectory
runs horizontally through the point XTRUE roughly. No regularity was discernible in the
scatter of the measurement points of the drive trajectories around the target trajectory. The
deviation of the closest neighbors to this point XTRUE varied from 0.0058 m (R3D2) to
0.0572 m (R3D7). Therefore, the measured values of the individual trajectories are classified
as accurate in relation to this measuring point.

In Figure 8, this so-called 1NN method is shown as an example in a 1-point scenario.
As can be deduced from the figure, the calculated distance is greater than the actual
deviation. From this, it can be concluded that the deviation is actually smaller than the
evaluation of the data shown. A evident uncertainty behind this finding is that it is not
known how the robot moved between the two measuring points. It can be assumed that
he drove on the direct route. However, it is also possible that he moved irregularly in the
area. Basically, a positive trend can be assumed, which implies that the deviations from the
target trajectory are actually smaller than those determined in the evaluations.
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Figure 6. Plot of the nine considered test drives from run 3 in the route section [2,3].

Figure 7. Selected 1-point zoom in target and single drive trajectories.
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Figure 8. With the 1NN method, the Euclidean calculated distance could only approximate the true
distance. Herein, the calculated distance of a point of the trajectory R3D10 is, for example, greater
than the actual deviation.

The results of the accuracy assessment of all drives from run 3 in the route section
are shown in Figure 9. In total, 171 nearest neighbors were evaluated for the nine trajec-
tories of run 3. Only the adjusted results from the processes described above were taken
into account.

Figure 9. The box plots show the deviations of the closest neighbors (accuracy) for each single drive
from run 3 in the route section. (+—maximum deviation).

4.2. Precision

In contrast to the accuracy calculation, the precision results from the calculation of
the distances between the drives. In the precision calculation, the 1NN method was used
to determine the precision in the repetition of the drives. For each point of the drive, the
closest neighbor of all nine considered drives from runs 3 and 4 was determined using the
Euclidean distance. The data were processed in the same way as for the determination of
the accuracy.
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The closest neighbors are calculated for the measurement data of the nine selected
drives from run 3 in the route section “alley”. As an example, Figure 10 shows how the
precision is calculated between the drives R3D6 and R3D1. A total of 514 closest neighbors
between R3D6 and R3D1 were determined. The trajectories of the drives R3D6 and R3D1
are between 0.0008 and 0.0825 m apart. The average precision for this pair of trajectories is
0.0327 m. Therefore, the pair of trajectories is precise.

Figure 11 shows the statistical relationship between the precision of the nine considered
trajectories from run 3 in the route section [2,3]. A total of 15,584 nearest neighbors form
the data basis for the histogram. Overall, 1.4% of the values were over 0.1 m.

Figure 10. The precision calculated using the 1NN method for the drives R3D6 and R3D1. The
precision was between 0.0008 and 0.0825 m.

Figure 11. The histogram shows the statistical relationship between the precision of the nine drives
taken into account from run 3 in the route section [2,3].



AgriEngineering 2022, 4 501

Figure 12 shows the statistical relationship between the precisions of the nine consid-
ered trajectories from run 3 in the route section. A total of 35,192 nearest neighbors formed
the data basis for the histogram. Overall, 18.9% of the values were over 0.1 m.

Figure 12. The histogram shows the statistical relationship between the precision of the nine drives
taken from run 3 in the route section.

Figure 13 shows the statistical relationship between the precisions of the nine consid-
ered trajectories from run 4 in the route section. A total of 23,437 nearest neighbors formed
the data basis for the histogram. Overall, 27.3% of the values were over 0.10 m, 6.4% were
over 0.20 m, and 1.5% were over 0.3 m.

Figure 13. The histogram shows the statistical relationship between the precision of the nine drives
taken from run 4 in the route section.
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4.3. Accuracy, Precision, and Consistency

In this work, a tolerance limit of 0.05 m is specified for precision and accuracy. This
tolerance limit can be selected by the user, and thus a different value is assumed for other
scenarios. Measured against this threshold value, the navigation performance of the vehicle
with a LiDAR scanner can be evaluated as follows:

In the route section “alley” from run 3, the navigation is rated as accurate and precise,
and consequently consistent. An average deviation of 0.0487 m (Accuracy) or 0.0439 m
(Precision) was determined. The standard deviation was 0.0286 m (Accuracy) and 0.0238 m
(Precision). The maximum value was 0.1406 m (Accuracy) and 0.1511 m (Precision), the
minimum value was 0.0047 m (Accuracy) and 0.00001 m (Precision) (Figure 14).

In run 3, the navigation is assessed as inaccurate and imprecise, and subsequently
as inconsistent. An average deviation of 0.0608 m (Accuracy) or 0.0707 m (Precision) was
determined. The standard deviation was 0.0450 m (Accuracy) and 0.0588 m (Precision).
The maximum value was 0.3337 m (Accuracy) and 0.4162 m (Precision), the minimum
value was 0.0047 m (Accuracy) and 0.0001 m (Precision).

In run 4, the navigation is assessed as inaccurate and imprecise, and subsequently
as inconsistent. An average deviation of 0.0878 m (Accuracy) or 0.0820 m (Precision) was
determined. The standard deviation was 0.0657 m (Accuracy) and 0.0645 m (Precision).
The maximum value was 0.3510 m (Accuracy) and 0.4276 m (Precision), the minimum
value was 0.0099 m (Accuracy) and 0.0002 m (Precision).

The data showed a relationship between the number of measurement data and the
accuracy or precision of the navigation. It can be observed that the drives with a more
extensive measurement data basis as a result of the 1NN method are assessed as more
accurate than the drives with less measurement data basis. This observation can be seen in
all drives.

Figure 14. The diagram shows the average deviation, standard deviation, maximum and minimum
of three different runs, for both accuracy and precision.

5. Discussion

The aim of this article is to analyze the navigation of a driverless feed mixer with
LiDAR under practical conditions and present an orientation on how to evaluate these
navigation technologies.

A practical, realistic environment is characterized by an undefined dynamic. Animals
(cows and calves), people (employees and test staff), and machines (farm loaders and mixer
wagons) are involved in the direct test environment at the TUM “Veitshof” research farm.
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At the same time, the route leads past a differentiated environment and over heterogeneous
ground conditions. This environment is highly demanding on the technology. Particular
challenges include the navigation via the cramped feeding table in the stable building, the
navigation in the outside area with few natural landmarks for direction coordination, and
the condition of the subsoil with inclines, slopes, and changing surfaces. Therefore, the
driverless navigation in and around the stable building can be considered a significant
success. It exhibited an easy yet functional implementation, despite not meeting the self-set
deviation limits.

The selected characteristics are well suited for evaluating laser-assisted navigation. The
accuracy in the repetition of a previously programmed route by the automated vehicle is a
primarily fundamental requirement of the system. However, the navigation performance
cannot be comprehensively assessed through accuracy alone, since chaotic or random
errors can lead to dispersion in the reproduction of the drives. Only by considering the
repeated drives and their deviation from one another (precision) in connection with the
accuracy of the lane guidance does the consistent correctness (consistency) of the navigation
performance result.

The results of the calculation of Accuracy and Precision show that navigation using
the LiDAR scanner is inaccurate and imprecise, depending on the tolerance limit of 0.05 m.
It is important to consider this binary result in a more differentiated manner. First, the
tolerance limit of 0.05 m for Accuracy and Precision can be freely selected and thus adapted
to different requirements. This value was selected in the present experiment since the
routes of an automatic feed mixer wagon can also be located inside buildings and in
confined conditions. As described in the results, it can be seen in the stable building on the
cramped feeding table between the feed fences of the stall that the navigation performance
is significantly improved. The navigation performance in the section “alley” is described
as both accurate and precise, and therefore consistent. The main factors that positively
influence this improved navigation are the paved concrete feeding table and the numerous
objects for detection in the area. On the other hand, in the outside area in the section “alley”,
the navigation performance deteriorates, but remains within an acceptable range. It is
acceptable that the accuracy requirement should be selected to be lower in the outdoor area
due to fewer obstacles or objects in the driving area. Another manufacturer of an automatic
feeding system further showed that the driving accuracy and reproduction were artificially
manipulated or provided with a random or regular offset in order that the floor coverings,
such as tar or pavement are more evenly stressed and do not tend to form gullies. This
does not affect the causality that the navigation performance increases as the number of
objects in the detection area of the LiDAR scanner increases. The most inaccurate and
imprecise places revealed the cornering, especially in the area of the incline at the stable
entrance [mark 2] and the gradient at the stable exit [mark 3]. Herein, the navigation is
impaired by the angular transition of the floor covering from gravel to concrete, the rigid
connection of the laser scanner on the test vehicle, and thus the strong vibrations and
inclinations with a disadvantageous detection area, as well as the inconvenient positioning
of the laser scanner over the front axle at an appreciable distance (lever) to the drive axis.
The smallest steering commands are amplified by the lever up to the laser scanner. This
makes it difficult to steer the vehicle very accurately and precisely. This effect is intensified
by the type of steering of the vehicle, which is solved by different wheel speeds on the drive
axle (rear axle). As a final point, it can be mentioned that the calculated characteristics tend
to worsen the navigation performance. This is due to the 1NN method and the calculation
of the Euclidean distance. Since the target trajectory is subdivided into a limited number
of waypoints, it is not technically feasible for the measurements of the driving trajectories
to be at a perpendicular distance from the target trajectory. It can be assumed that the
vehicle traveled directly between the waypoints and that the navigation performance is
therefore better than determined in the calculations. Due to the circumstances mentioned
throughout the tests, navigation with LiDAR scanners in an agricultural environment can
be classified as absolutely sufficient and suitable. The most antagonistic factors for the
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navigation deviations have been observed within the machine construction, but not with
the LiDAR scanner capabilities.

The scope of the measurement data when determining the accuracy is to be critically
considered. With the inclusion of further measuring points, the informative value and secu-
rity of the parameter could be augmented. Before starting the experiment, more waypoints
or target trajectory positions would have to be stored. Based on fewer measurement gaps
in the sequence, the data cleansing effort could be reduced. Additionally, an increased
number of XTRUE points and a reduction in the distance between two XTRUE points
should improve measurement data accuracy. However, there is also a limitation of the
measurement data, since too many stored waypoints could cause the software to overcom-
pensate, thereby causing the data to be more inaccurate. Moreover, due to the interpolation
between the two waypoints, several waypoints could no longer be approached precisely.
It can be assumed that the influence of discretization is generally higher on curves than
on straight lines. In contrast to the determination of the “Accuracy”, a sufficiently large
database could be used to determine the “Precision”. Although the significance of the
Precision was highly rated, it could be further improved with an increase in the number
of waypoints. As with the Accuracy, the number of possible waypoints is limited to not
be imprecise.

6. Conclusions

The calculation of the characteristics Accuracy, Precision, and Consistency describes
the LiDAR navigation as inaccurate and imprecise. However, a differentiated, analytical
assessment of the test conditions yields the result that LiDAR scanner-based navigation is
a suitable option for automating automatic feeding systems. The potential of the highly
developed technology is also relevant for use on agricultural machines. Beyond that, the
usage of LiDAR in other challenging environmental use cases seems promising, e.g., for
unknown land exploration.

Additionally, the navigation should be tested with the aid of a LiDAR scanner on a
mixer wagon. It should be assessed whether there are restrictions in the use of LiDAR
technology on an agricultural vehicle in long-term tests. Furthermore, it would be ad-
vantageous to evaluate how navigation with LiDAR can be achieved outdoors with few
detectable objects. In this scenario, can artificial landmarks be reinforced that blend in
homogeneously with the surroundings or is it advisable to use GNSS support in addition
to LiDAR in the outside area?

A critical concern in automated vehicles is personal protection and collision avoidance.
Due to their physical properties, laser scanners are only partially suitable as an optical
measurement technology for personal protection in outdoor areas. Herein, it is important
to clarify whether laser scanners are exclusively suitable for these tasks or whether other
technologies should supplement the concept of an automatic feeding system.
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