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Abstract: Crown rot disease is caused by Fusarium pseudograminearum and is one of the major stubble-
soil fungal diseases threatening the cereal industry globally. It causes failure of grain establishment,
which brings significant yield loss. Screening crops affected by crown rot is one of the key tools
to manage crown rot, because it is necessary to understand disease infection conditions, identify
the severity of infection, and discover potential resistant varieties. However, screening crown rot is
challenging as there are no clear visible symptoms on leaves at early growth stages. Hyperspectral
imaging (HSI) technologies have been successfully used to better understand plant health and disease
incidence, including light absorption rate, water and nutrient distribution, and disease classification.
This suggests HSI imaging technologies may be used to detect crown rot at early growing stages,
however, related studies are limited. This paper briefly describes the symptoms of crown rot disease
and traditional screening methods with their limitations. It, then, reviews state-of-art imaging
technologies for disease detection, from color imaging to hyperspectral imaging. In particular, this
paper highlights the suitability of hyperspectral-based screening methods for crown rot disease. A
hypothesis is presented that HSI can detect crown-rot-infected plants before clearly visible symptoms
on leaves by sensing the changes of photosynthesis, water, and nutrients contents of plants. In
addition, it describes our initial experiment to support the hypothesis and further research directions
are described.

Keywords: crown rot disease; plant phenotyping; hyperspectral imaging; computer vison; machine
learning

1. Introduction

Crown rot is a significant stubble-soil fungal disease that affects the cereal industry
worldwide as it has been reported in the U.S., China’s southeast coast region, Africa, central
Europe, and Australasia [1–4]. Fusarium pseudograminearum is the major contributing
pathogen causing crown rot that is commonly found in Australian wheat [5]. Although
wheat can be influenced by other fungal diseases, F. pseudograminearum has been identified
and detected in 48% of fungal disease isolates from wheat in Australia [1]. Crown rot may
cause the appearance of prematurely senescing culms, leading to the failure of grain/seed
establishment, which can result in yield losses up to 89% [1]. F. pseudograminearum almost
straddles the Australian wheat belt, due to the relatively warm and dry climate, with
reports of crown rot in Queensland, New South Wales, Victoria, South Australia, and
Western Australia [6]. In addition, F. pseudograminearum has a rich genetic diversity and
adapts to various types of environments [7]. In 2009, the wheat industry in Australia
suffered from economic losses of approximately AUD80 million as a result of crown rot,
and the potential losses may reach AUD434 million [8,9].

Currently, there is no commercial wheat variety that exhibits obvious resistance to
crown rot and no effective biological or chemical method to manage crown rot exists [10,11].
This problem is exacerbated since the pathogen can survive in soil and plant residues for
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at least three years [8,11]. As a result, the most effective way to manage crown rot is to
use crop rotation to reduce the level of infested stubble, thereby reducing the pathogen
inoculum level in the soil to decrease the risk of crown rot re-infection [12]. If crown
rot disease appears in the wheat field, farmers often have to abandon the cultivation
of wheat for at least two growing seasons and choose to grow non-host crops, whose
economic value may be lower. For instance, after a three-year rotation of sorghum, the
re-infection rate can be reduced to 12%, which is much lower than the 60% re-infection rate
of the continuous wheat cultivation method for three years [13]. In addition to using crop
rotation to reduce pathogen inoculum level, it is necessary to breed crown-rot-resistant
varieties to avoid direct economic loss and further re-infection. The detection of crown rot
in infected crops is a prerequisite of a successful screening process; however, the symptoms
are difficult to detect at an early stage because crown rot disease does not produce clear
visible symptoms at early growth stages. F. pseudograminearum is a soil fungi disease that
attacks the crown and root tissues of wheat by colonizing the xylem and phloem after the
disease infection [14], thus there is no significant increase in fungal biomass and observable
symptoms on the plants during the first four weeks of the disease process [15]. Following
this, the crown rot fungus begins to colonize the plant from the root and crown to the lower
stem [16,17], causing brown discoloration on the stem tissue above the soil surface [3,18].
This symptom only appears on the lower stem of the plant, so it is difficult to identify
in the field [19]. Another typical crown rot symptom is whiteheads that occur at the
late growth stages and are more visible than brown stem discoloration. Whiteheads are
usually present during early grain fill and the infected wheat will mature earlier, but grain
filling is severely inhibited in the shriveled spikelets [20]. The occurrence of whiteheads
is exacerbated in certain cultivars and growing conditions. For example, if wheat, at
the milk stage, experiences reduced rainfall, the probability of whitehead appearance in
the disease-infected wheat crops will greatly increase [21,22]. The pathogen colonizes
and damages the plants’ vascular system, which is responsible for water and nutrient
uptakes in the plant [5], and water stress during or shortly after the wheat flowering period
will increase the symptoms of the disease [23]. Once wheat is infected with crown rot,
the accumulation of a high level of the mycotoxin deoxynivalenol (DON) will make the
grains inedible [24,25]. Additionally, the accumulation of DON will also aggravate grain
development and cause grain shrivel [26,27].

An efficient screening method would not only assist agronomists in better evaluating
crown rot infection to avoid excessive pathogen loads remaining in the soil as early as
possible, but also support breeders to measure the resistance of different varieties of
wheat to crown rot so as to select genotypes with superior resistance [28,29]. There are
two common scoring methods to quantify crown rot severity: one is commonly used
by breeders to score plants at maturity to identify resistant candidates, and the other is
used by researchers to score the disease severity level at early growth stages. In certain
breeding programs, researchers collect the main stems of wheat at maturity and use a
crown rot screening scale to determine the resistance levels through observation of stem
browning [30] on the first internode [2,31]. As infected wheat plants do not have evident
symptoms on upper stems and leaves in the early stage of infection, they have to wait
four months until maturity. Although current screening methods provide a measure of
the resistance levels of individual wheat varieties, they are limited by late detection as
well as high associated costs and their time-consuming and subjective nature. In one
well-established early growth stage crown rot severity scoring method, ‘0’ represents no
symptoms of infection; ‘1’ indicates necrotic lesions on the first leaf sheath; ‘2’ represents
the first leaf sheath and the below sub-crown internode have completely changed to the
brown color; ‘3’ reflects that the second leaf sheath also has partial necrosis symptoms;
‘4’ means that the brown color area has completely occupied the second leaf sheath and
the sub-nodes of the sub-crown; ‘5’ and ‘6’ depict the necrosis of the leaf sheath [32]. By
adopting this scale, pathologists are able to quantify the severity of plant infection 30 days
after infection. However, this screening method cannot be conveniently applied by the



AgriEngineering 2021, 3 926

agronomist to screen large field trials because data collection and manual scoring is labor
intensive and subjective. Therefore, it is crucial to develop an accurate, objective, and
rapid screening approach for general breeders to screen crown rot symptoms in wheat at
early stages. Recently, fast-developing computer vision and hyperspectral imaging (HSI)
technologies have demonstrated potential to detect crown rot disease at an early stage. To
speed up breeding and efficiently manage crown rot disease, this paper reviews advanced
imaging technologies for disease detection with an emphasis on hyperspectral imaging
technologies and provides a new prospect in imaging-based crown rot disease detection.

Our major contributions in this review are:

• Through the review, we provide evidence that the crown can change photosynthesis
(Section 3.2.2) and water and nutrients uptake (Section 3.2.1) in plants, which are
major factors to influence wheat growth and cause yield loss.

• We developed a hypothesis that hyperspectral imaging can detect the changes of
photosynthesis, water, and nitrogen uptake before visible symptoms on the upper
stems and leaves.

• We conducted an initial experiment to support the hypothesis.
• We point out further research directions of using HSI for crown rot detection.

2. Digital Color Imaging

Color imaging is one of the most widely used technologies for plant disease detection.
Digital color cameras capture images at three broadbands: red, green, and blue (Figure 1).
The center wavelengths are about 450 nm, 550 nm, and 650 nm for blue, green, and red
light, respectively [33]. Digital color images contain much less spectral information than
hyperspectral images; however, they usually have much higher spatial resolution. In the
analysis of the digital color image, the color space of hue, saturation, lightness (HSL), hue,
saturation, value (HSV), and lightness, the greens and magentas channel, and blues and
yellows channel (LAB) are most often used. Hue refers to the different colors that the
human eye perceives, and saturation represents the purity of the colors. Lightness or value
represents the intensity of light [34]. Several studies have shown that infected or uninfected
areas of plants can be distinguished through color or textural features extracted from color
images [35,36]. The general process of analyzing digital color images for crown rot could
be: (1) segmentation of region-of-interest: (2) color or textural features extraction; and
(3) classification. The digital color image has great potential for assessing Fusarium wheat
disease at a late growth stage. For example, digital imaging technology can distinguish
between wheat infected with Fusarium head blight and healthy wheat in the late flowering
stage (coefficient of determination (R2) > 0.8) [37]. It is worth noting that because, the digital
color image itself contains limited image information and is similar to the human eye, it
may not produce sufficient data collection to detect the crown rot infection and severity
in its early stage. However, hyperspectral imaging may be able to improve detection and
screening for this disease.
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3. HSI Technologies for Plant Phenotyping
3.1. Hyperspectral Imaging

As a modern and advanced approach, the applications of HSI technologies in agri-
cultural research have become increasingly prevalent. In contrast to digital color imaging
that only captures images at the three broad bands in the visible light range, HSI collects
and processes the spectrum in the visible light as well as in the infrared range, including
hundreds of narrow bands (Figure 1). Hyperspectral images contain significant amounts
of spectral information at different bands, which describe the unique ‘fingerprints’ of
objects and may reveal the composition of the objects [38]. When light hits the surface of
plants, reflection, absorption, or transmission occurs, all of which are influenced by the
cellular structure and chemical and biological properties of the leaves [39]. For example,
the cell structure of a leaf controls the absorption of near-infrared light, and short-wave
infrared light is affected by the water and nitrogen content (Figure 2) [40]. Therefore, HSI
is currently one of the most promising tools for quantifying plant parameters with less
human bias [41].

AgriEngineering 2021, 3 FOR PEER REVIEW  4 
 

 

3. HSI Technologies for Plant Phenotyping 

3.1. Hyperspectral Imaging 

As a modern and advanced approach, the applications of HSI technologies in agri-

cultural research have become increasingly prevalent. In contrast to digital color imaging 

that only captures images at the three broad bands in the visible light range, HSI collects 

and processes the spectrum in the visible light as well as in the infrared range, including 

hundreds of narrow bands (Figure 1). Hyperspectral images contain significant amounts 

of spectral information at different bands, which describe the unique ‘fingerprints’ of ob-

jects and may reveal the composition of the objects [38]. When light hits the surface of 

plants, reflection, absorption, or transmission occurs, all of which are influenced by the 

cellular structure and chemical and biological properties of the leaves [39]. For example, 

the cell structure of a leaf controls the absorption of near-infrared light, and short-wave 

infrared light is affected by the water and nitrogen content (Figure 2) [40]. Therefore, HSI 

is currently one of the most promising tools for quantifying plant parameters with less 

human bias [41]. 

 

Figure 2. Illustration of a typical reflectance spectrum of a green leaf. UV, VIS, NIR, and SWIR refers 

to ultraviolet, visible spectrum, near-infrared, and short-wave infrared, respectively [41]. Near-in-

frared light is affected by the structure of leaf cells, while the SWIR light is dominated by water and 

protein content. 

HSI data are especially sensitive to the light environment, so laboratory-based imag-

ing and field-based remote sensing are quite different procedures. Laboratory-based im-

aging is usually relatively easy to manage and control the lighting environment, while 

outdoor remote sensing is more dependent on sunlight [42,43]. Relatively uncontrollable 

sunlight density, the appearance of clouds, and the angle and height of the sun are factors 

that affect the collection of hyperspectral image data. Laboratory imaging usually has bet-

ter resolution because sensors can photograph plants more closely and there are more 

pixels for representing a single plant, which can provide pathologists with more infor-

mation about disease development [44]. Although laboratory imaging usually has con-

trollable illumination, the self-shadow and the leaf curvature of plants could cause errors 

in hyperspectral images that need to be carefully addressed [41]. The standard normal 

variates (SNV) [45] and hypercube-to-hyper-hue, -saturation, and -intensity (HC2HHSI) 

[46,47] algorithms have proven to be useful to reduce the effects of shadow and leaf angle. 

In the pre-processing of HSI, the first step is to reduce the impact of scatter effects and bad 

pixels. Scatter effects are usually caused by physical change (e.g., cell, leaf or canopy struc-

ture, size, or shape) [39]. Different scatter-correction techniques can be used to reduce the 

influence of scattering effects. For example, multiplicative scatter calibration is a common 

scatter correction method that reduces additive and multiplicative effects by regressing 

the measured spectrum with a spectral reference [48]. SNV transformation uses a normal-

ization method to reduce scatter effects [49,50]. The derivative methods calculate the first 

or higher derivative of reflectance to improve the resolution and correct the baseline shift 

in the hyperspectral data [39]. Savitzky–Golay (SG) derivative [51] and Norris–Williams 

Figure 2. Illustration of a typical reflectance spectrum of a green leaf. UV, VIS, NIR, and SWIR
refers to ultraviolet, visible spectrum, near-infrared, and short-wave infrared, respectively [41]. Near-
infrared light is affected by the structure of leaf cells, while the SWIR light is dominated by water
and protein content.

HSI data are especially sensitive to the light environment, so laboratory-based imaging
and field-based remote sensing are quite different procedures. Laboratory-based imaging
is usually relatively easy to manage and control the lighting environment, while outdoor
remote sensing is more dependent on sunlight [42,43]. Relatively uncontrollable sunlight
density, the appearance of clouds, and the angle and height of the sun are factors that
affect the collection of hyperspectral image data. Laboratory imaging usually has better
resolution because sensors can photograph plants more closely and there are more pixels
for representing a single plant, which can provide pathologists with more information
about disease development [44]. Although laboratory imaging usually has controllable
illumination, the self-shadow and the leaf curvature of plants could cause errors in hyper-
spectral images that need to be carefully addressed [41]. The standard normal variates
(SNV) [45] and hypercube-to-hyper-hue, -saturation, and -intensity (HC2HHSI) [46,47]
algorithms have proven to be useful to reduce the effects of shadow and leaf angle. In the
pre-processing of HSI, the first step is to reduce the impact of scatter effects and bad pixels.
Scatter effects are usually caused by physical change (e.g., cell, leaf or canopy structure, size,
or shape) [39]. Different scatter-correction techniques can be used to reduce the influence
of scattering effects. For example, multiplicative scatter calibration is a common scatter
correction method that reduces additive and multiplicative effects by regressing the mea-
sured spectrum with a spectral reference [48]. SNV transformation uses a normalization
method to reduce scatter effects [49,50]. The derivative methods calculate the first or higher
derivative of reflectance to improve the resolution and correct the baseline shift in the
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hyperspectral data [39]. Savitzky–Golay (SG) derivative [51] and Norris–Williams (NW)
derivative [52] are the two common methods used in this process [53,54]. Bad pixels, in-
cluding dead pixels and spikes, are errors of hyperspectral images that need to be removed.
Bad pixels are permanent and usually caused by the damaged cells on the detectors [55].
Signal smoothing algorithms are usually used to remove the effects of dead pixels or spikes.
In addition, field-based remote sensing can collect plant data in a large area, which can
provide large-scale information of plants for both breeders and agronomists.

HSI usually collects hundreds of images in different wavelengths, providing consider-
able spectral and spatial information [37,56]. Therefore, HSI data must be analyzed with
reasonable computer software that supports state-of-art machine learning methods. As
a popular and well-developed computing analysis platform and programing language,
Python is an ideal option for data analysis. Compared with other programing languages,
Python is an interpreted, advanced, and open-source programing language supporting
multiple programing paradigms, including functional, instructional, structured, object-
oriented, and reflective programing [57]. Moreover, Python is more user-friendly when
it comes to non-programing researchers and free to access. Throughout the past 30 years,
machine learning has developed into a multi-field interdisciplinary subject, involving a
vast number of statistical theories. In particular, there is a strong relationship between
machine learning and computational statistics. Machine learning theory is mainly used to
design and analyze some algorithms that allow computers to automatically ‘learn’. This
is especially helpful in the sense that computers can automatically analyze and acquire
rules from data that can be used to predict unknown data [58]. Notably, Scikit-learn is a
free machine-learning library based on Python, and it can be used for various classification,
regression, and clustering algorithms [59]. Generally speaking, machine learning is divided
into two categories: supervised learning and unsupervised learning. Supervised learning
achieves a function from a given training data set that includes input and output data.
When new data is input, it can predict the result based on the trained function. Compared
with supervised learning, unsupervised learning algorithms do not need training data and
algorithms can learn by themselves. Specifically, the process of analyzing HSI data roughly
consists of four parts: pre-processing, segmentation, feature extraction, and data analy-
sis [41]. The purpose of pre-processing is to improve the image quality and eliminating
noise [39]. Once pre-processing is completed, the region of interest is segmented from the
entire image. In terms of feature extraction, researchers need to interpret the hyperspectral
data into feature vectors that are more descriptive.

In data analysis, statistical analysis, regression, and classification will be utilized
to obtain the relationship between image information and the plant parameters of the
target crop. For example, the support vector machine (SVM) model, a non-probabilistic
supervised machine learning classifier, can classify a large dataset to the greatest extent
while simulating linear and non-linear relationships depend on the kernel functions [60].
SVM also can carry out multiple classification and regression. Its decision boundary is
the maximum margin hyperplane that is solved by learning samples. The algorithm can
analyze the objective’s maximum distance between the decision boundary and the training
sample (support vectors) closest to the hyperplane to achieve HSI imaging classification
purposes [61,62]. For example, SVM was used to predict the nutrient and water contents
of wheat with R2 above 0.5 [63]. As a kind of unsupervised learning method, k-means
can group objects with similar properties together without human guidance. In plant
disease detection, the k-means clustering algorithm can be used to cluster infected pixels
of leaves from uninfected pixels [64]. The reasonable application of k-means to pre-process
data to reduce the size of the data set can provide more support for SVM analysis in
training data [44]. In addition, a principal component analysis (PCA) also effectively
reduces data dimensions to improve analysis accuracy and interpretability, and minimize
information loss [44,65]. PCA as statistical analysis can be used in the simplification of
data sets; it uses an orthogonal transformation to linearly transform a series of variable
values, so as to obtain the principal components of the sample library data to reduce the
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complexity of the data. As one of the simplest approaches in the hyperspectral imaging
analysis method, it has a strength of common method of eigen-decomposition of the
covariance matrix for solving problems in construction of soft classification rules, dealing
with outlying samples and missing data [66]. For the PCA in hyperspectral image analyses,
first a few spectra of images has been extracted to provide principal components, and
then the principal components were used to classify images with an accuracy of 70% [67].
Compared to classification, regression analysis is a quantitative method that associates
spectral response with specific parameters (e.g., yield loss). The most common regression
techniques applicable to HSI data include principal component regression and partial least
squares regression [39].

3.2. HSI and Crown Rot Related Plant Traits

Traditional plant phenotyping methods present challenges in crown rot resistance
plant breeding because the visual symptoms of crown rot generally present at late growth
stages, leading to late decision making and selection. In contrast, the biological and mor-
phological changes at early growth stages caused by the disease can affect the reflectance
of spectra beyond visible light range; thus, HSI might be a potential method for breeders
to detect crown rot at an early stage in a more efficient manner. Notably, numerous stud-
ies have shown that HSI is an efficient and non-destructive method that can accurately
detect traits related to crown rot diseases before human experts are able to observe the
symptoms [68–70].

This section can be broadly classified into two categories: (1) water and nutrient
distribution map in wheat, and (2) hyperspectral and chlorophyll fluorescence imaging
interaction in photosynthesis and deoxynivalenol (DON) screening.

3.2.1. Water and Nutrient Distribution Maps of Wheat

The colonization of F. pseudograminearum of a plant restricts water and nutrient move-
ment in the vascular system of the diseased plant. Although disease symptoms at early
growth stages are not obvious, the mycelium have already occupied the xylem and phloem
of the lower stem of the plant up to the first node [8,71]. At the beginning of the disease
process, F. pseudograminearum enters the leaf sheath tissue through the stomata of the
infected seedling leaf sheath. The eventual abundant growth of the hyphae will occur in
vascular bundles of the whole plant [72]. After the pathogen enters the plant vasculature,
it will first colonize the plant’s xylem vessels, and then spread to the phloem tissues as the
severity of the disease increases [73]. The proportion of vascular bundles colonized in the
prematurely senescent culms is usually greater than non-senescent culms [73]. Around 36
to 99% of the xylem and phloem tissue in prematurely senescent culms are colonized, while
the percentage of vasculature occupied by the fungus in non-senescent culms is relatively
low [74]. There is an established relationship between the extent of F. pseudograminearum
vessel colonization and appearance of visual discoloration, but the extent of tissue discol-
oration is different between varieties, as well as at different infection/incubation dates [75].
In addition, although both xylem and phloem are responsible for the transfer of substances
within plants, the xylem is mainly responsible for transporting water and nutrients from
the roots to the aerial parts of the plant, while phloem transports nutrients (such as sugar
and amino acids) from the leaves to the growing tissue or root storage [76,77]. As such,
while the initial colonization of the fungus is usually within the xylem tissue or vascular
bundles, the severity of phloem colonization is more related to the appearance of premature
senescence. Moreover, F. pseudograminearum is more willing to grow in the nutrient-rich
areas, such as the phloem, thus can quickly restrict the nutrient flow to the plant [73]. As
the infection progresses, the fungus will form a dense hypha network in the epidermal cells
and then extend to the mesophyll tissue and other asymptomatic parts of the plant [74].
Therefore, when wheat is infected with crown rot, understanding the water and nutrient
distribution in a plant could be an important surrogate trait for phenotyping infection level.
This could not only predict the severity of the disease earlier, but also improve support for
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the screening of different varieties at resistant levels. Because the transportation of water
and nutrients is affected by the colonization of crown rot, this trait may differ between
varieties and growth environments.

The analysis of HSI with a partial least square regression method has shown great potential
to predict the distribution of nitrogen and water in plants, as shown in Figure 3 [63,78]. If water
and nitrogen distribution maps of wheat can be created through HSI, the maps could help
quantify the potential impact and yield penalty of crown rot on different wheat varieties.
Some resistance genes may only be expressed at certain disease developmental stages
in the plant, thereby reducing the fungus’s influence on available nutrients and water
transport in the plants’ vascular system [26]. Therefore, a water and nutrient distribution
analysis of young plant at the early stage of infection may be able to provide phenotyping
information to support breeders to find the expression of some resistance genes and plant
phenotypes by genetic mapping. The severity of the crown rot infection is highly likely
to impact the water and nutrient movement within infected plants differently since the
phloem and xylem occupied by a bundle of hyphae are not able to transport water and
nutrients normally leading to serious symptoms and premature senescence [22,79].
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Figure 3. The HSI nitrogen (N) distribution maps of wheat cultivar Yitpi under different N treatments. Different levels
of N% are presented using different colors, with red referring to the highest N% while blue refers to the lowest N% [78].
In image (a), the plant treated with 50 mg/kg N has more blue pixels than the plant treated with 200 mg/kg N, which is
shown in image (b). This means that the leaves of the plant in image (a) contain lower N content than the leaves in the plant
of image (b). The imaging date was 31 October 2019.

Hyperspectral imaging-based high-throughput phenotyping has been employed to
quantify the water content, micronutrients, and macronutrient concentrations of plants in
a non-destructive way [80,81]. A combination analysis of visible light and near-infrared
(VNIR) (400–1000 nm) and short-wave infrared (SWIR) (1000–2500 nm) can improve
accuracy in water and nutrient content predictions (validated R2 = 0.69 in water and
R2 = 0.66 in nitrogen, respectively), while a poor accuracy is obtained by using VNIR alone
to predict the water and nitrogen content of plants (both R2 values are lower than 0.6) [63].
The water distribution map also provides an intuitive representation of the concentration
and distribution of water in plants [63], which might be helpful to analyze the extent of
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fungal colonization of plants that are water-restricted as a result of the infection. The
prediction of the severity of crown rot disease based on changes in nutrient and water
transport should be thoroughly evaluated.

It should be noted that leaf morphological features and shadows have a significant
influence on HSI analysis [82]. Wheat leaves are narrow, and the structure is relatively
irregular and distorted, which can make it more difficult to accurately predict a nitrogen
distribution map [63]. In contrast, corn leaves are wider and relatively regular, which
makes it easier to predict nitrogen distribution. Separate photographic analyses of various
parts of the plant may be a potential solution. Compared with the photograph of the whole
plant, in partial photographs of plant organs (e.g., leaf, stem, and root) it is easier to predict
the nitrogen content [83]. The possible reason for this is that sensors can photograph
plants more closely, providing sufficient pixel resolution for a small region of the plant.
Thus, increased resolution may provide pathologists with the required information about
disease development [44]. Crown rot also gradually spreads from the bottom to the top
of the plant during colonization. Therefore, rather than using the whole plant photo,
partial photos of each plant’s basic parts from root to stem will be more beneficial to the
pathological conditions of screening crown rot at each stage, as well as to observe the
response of plants to disease resistance. In addition, in the process of analyzing plant
nutrient content, plants at different growth stages may need to be analyzed with different
small-range specific wavelengths. The control group and nitrogen stressed plants could
be identified by different ranges of specific wavelengths at 20 days, 30 days, and 70 days
after sowing [84]. For example, after 30 days sowing, stressed and control plants can be
distinguished by reflectance at 350–415 nm and 706–934.5 nm, while at grain filling (70 days)
they can be separated by reflectance at 355–515.5 nm, 617–695 nm, and 726–1075 nm [84].
Similarly, another study indicated that Fusarium-infected plants and healthy plants whose
phenological growth stage is at approximately 70 days are successfully distinguished under
similar wavelengths (682–733 nm and 927–931 nm); the potential reason is the distinct
water loss in the plant’s spike [29]. The nutrient stress in plants caused by crown rot will
change with the growth of the plants as fungal hyphae proliferate in nutrient rich plant
organs. Studies have shown that if, pathogens consume nutrients in a certain area of the
plant, it may reduce the colonization of that area [74]. Further research is required to
determine whether specific wavelengths identifying nutrient and water content of plants
are also useful for screening crown rot infection levels and how dynamic this relationship
is over the development of wheat plants through time.

3.2.2. Hyperspectral and Chlorophyll Fluorescence Imaging Interaction in Photosynthesis
and DON Screening

The interaction of HSI system and chlorophyll fluorescence imaging technology repre-
sents another potential screening approach for crown rot in wheat. The HSI combined with
chlorophyll fluorescence imaging technology has been successfully employed to identify
the ears of Fusarium-infected wheat and healthy wheat with high accuracy, while also
helping to assess the severity of the disease infection [29]. Although the screening of
wheat infection occurred at the flowering or early milk growth stage, the interaction of
the hyperspectral imaging system and chlorophyll fluorescence imaging technology still
has considerable advantages to assist agronomists and pathologists in the analysis of the
severity and region of wheat infection in the field. Chlorophyll fluorescence imaging is able
to assess chlorophyll fluorescence, which is re-emitted by chlorophyll molecules during
the return from excited to non-excited states [85], and most fungal diseases will impact on
plant’s photosynthetic metabolism negatively, such as chlorophyll degradation. Therefore,
chlorophyll fluorescence imaging is an effective way of analyzing plant diseases and is
also considered a non-destructive screening method. For instance, another hemibiotrophic
fungi, Colletotrichum lindemuthianum, can colonize plant leaves and inhibit plant photosyn-
thesis. Previous research successfully used chlorophyll fluorescence imaging to distinguish
healthy and infected plants, also found that the effect of plant photosynthesis on necrotic
lesions is more evident [86]. Consequently, chlorophyll fluorescence imaging can be used
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to evaluate and better understand the physiological state of the leaf or plant—especially
the photosynthesis process.

The severity of the Fusarium disease symptoms is highly correlated with the efficiency
of photosynthesis, and the photosynthetic efficiency of infected plants is significantly
decreased [87,88]. For instance, DON produced by F. pseudograminearum can inhibit protein
synthesis in both stem and leaf cells. When a small piece of mesophyll has been exposed
to a DON solution, DON will whiten portions of tissue after a 48-to-96-h period and is
due to a decline in the content of chlorophyll a and b and total carotenoids [89]. After
the chloroplast begins to lose pigment, the leaf segments begin to lose electrolytes as well.
The light absorption within the chlorophyll zone decreases rapidly with the destruction of
chloroplasts and with the gradual decomposition of chlorophyll in cells that are affected by
fungi. Photosynthesis has been shown to be inhibited after the seedlings are infected by
Fusarium [90]. In this study, the maximum photochemical efficiency in the photosystem
I reaction decreased more significantly compared with that in the photosystem II, and
the oxidation process of the photosystem I reaction was also inhibited. However, as the
infection period increased, the donor and acceptor sides of the photosystem II reaction
center also began to suffer from damage, thus further inhibiting the performance and
coordination of the plant’s photosystem I and II reaction centers. Under such circumstances,
Fusarium will inevitably cause a decrease in tissue photosynthetic activity, which provides
a basis for the application of chlorophyll fluorescence and HSI. Notably, there is a high
possibility to combine chlorophyll fluorescence imaging and HSI to detect Fusarium disease,
since the reduction in chlorophyll content in these cells reduces the potential for internal
photon reflection and reabsorption processes in the relevant HSI wavelength range [91].

When a plant is infected with Fusarium, the epidermis, cell wall, and epidermal
cells inside the plant will undergo changes that can be detected by NIR hyperspectral
imaging [92,93]. There is a significant shift in reflectance between healthy and infected
plants at 680–730 nm [87]. In this paper, it was observed that there is a considerable drop at
this wavelength range for the infected plant as the chlorophyll degrades in the plant.

When the green reflection peak of wheat leaves becomes smooth due to disease
infection, the reflection rate in the near-infrared region also generally decreases [94]. The
decrease in chlorophyll content in cells can not only be detected by chlorophyll fluorescence
imaging, but it also affects the potential of the photon remission and re-absorption processes
of plant leaves in the wavelength range of 690 nm to 735 nm [95]. Consequently, it can be
inferred that HSI technology can be combined with chlorophyll fluorescence images to
improve accuracy in the screening analysis of plant pathology.

The chlorophyll of Fusarium resistant plants exposed to DON decreased less than in
Fusarium-sensitive plants [96]. For example, when a gene encoding ethylene insensitive 2
(EIN2) in wheat was silenced, the wheat leaves were less affected by DON, and the proba-
bility of programmed cell death was significantly reduced [97]. Therefore, hyperspectral
imaging technology is able to interact with chlorophyll fluorescence images to quickly
identify change in leaf greenness area, which could provide a tool for breeders to identify
wheat varieties with strong tolerance to DON. However, compared with other broadleaf
crops (e.g., canola, beans, and peas), wheat leaves, as a grass-like crop, possess smaller
leaf surfaces to absorb radiation at the seedling stage, which poses challenges for the
analysis of chlorophyll content at early growth stages. Notably, neither of the two imaging
techniques can distinguish infected plants at maturity, which is attributed to the fact that
the chlorophyll of the plant head is completely degraded and the tissue water content is
reduced [91]. Therefore, the interaction of hyperspectral imaging system and chlorophyll
fluorescence imaging technology has considerable advantages to help agronomists and
pathologists in analyzing the severity of wheat infection in the field and in predicting the
disease spread region before maturity stage.

Previous work has employed HSI to identify wheat heads affected by F. pseudogramin-
earum and people can apply HSI to understand the water and nutrient content in plant. In
addition, by applying the PCA analysis method, researchers successfully distinguished
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diseased and healthy wheat ear tissues in the wavelength ranges of 500–533 nm, 560–675
nm, 682–733 nm, and 927–931 nm [29]. As a popular machine learning method, the artificial
neural network (ANN) is a mathematical model or computational model that imitates the
structure and function of biological neural networks. ANN can analyze and process image
data through a neural network with input vectors and output vectors (neurons/nodes) [98].
The application ANN distinguished healthy versus infected wheat plant in near-infrared
(900–1700 nm) images and obtained an accuracy of 74.14%, after nine weeks of infection [99].
Such several studies indicate the crown rot could be detected by the HSI as summarized in
Table 1, and there is high probability to develop a rapid method to detection crown by HSI
at infection early stage.

Table 1. Summary information of previous studies using HSI for measurement of water and nutrient content or Fusarium
disease related trait discovery. Included are the sensors, related image types, or special wavelength and further comments.

Sensor Wavelength Range
or Image Type Plant Parameter Comments

Hyperspectral imaging
chamber (WIWAM, Ghent,
Netherlands)

VNIR (400–1000 nm)
and SWIR
(1000–2500 nm)

Wheat Water and nutrient
content

400–2500 nm can predict the
water and nutrient content in
the plant with high accuracy
(validated R2 = 0.69 in water
and R2 = 0.66 in
nitrogen) [63].

VNIR sensor
(FLAME-S-XR1-ES, Ocean
Optics, Germany) and SWIR
sensor (NQ512-1.7, Ocean
Optics, Germany)

VNIR (200–1025 nm)
and SWIR
(900–1700 nm)

Wheat Nitrogen content

The N stressed and controled
plants were distinguished by
the cameras after 30 days of
sowing; the wavelengths of
355–515.5 nm, 617–695 nm,
and 726–1075 nm played the
most important roles [84].

Spectrograph (ImSpector
V10E, Spectral Imaging Ltd.,
Oulu, Finland) and digitally
temperature-compensated
b/w camera (Pixelfly qe, PCO
AG, Kelheim, Germany)

VNIR (400–1000 nm) Wheat

Water loss,
Fusarium culmorum
disease, and
water content

Fusarium-infected plants and
healthy plants were
successfully distinguished in
682–733 nm and 927–931 nm
wavelengths due to different
water loss in plant tissue after
growing for 70 days [29].

Charge-coupled device (CCD)
camera

Chlorophyll
fluorescence imaging Bean

Colletotrichum
lundemuthianum
disease

Chlorophyll fluorescence
imaging can distinguish
healthy and infected plant by
analysis of the plant’s
photosynthesis rate [86].

Spectroradiometer VNIR (360–900 nm) Wheat Fungal Disease,
green reflectance

The fungus-disease-infected
plant showed a difference
between healthy plants in the
550 and 750 nm wavelength,
and the reflectance peak at
near-infrared region was
decreased [94].

3-chip CCD camera (red,
infrared, and green) and type
MS2100 (DuncanTech
company, Redlake Inc., San
Diego, CA, USA)

red (peak
wavelength: 670 nm,
and infrared (peak
wavelength: 800 nm

Wheat
Fusarium spp.
disease,
chlorophyll

Fusarium spp. caused a
chlorophyll defect in wheat
ears and reduced the
photosynthesis rate [92].



AgriEngineering 2021, 3 934

3.3. Preliminary Evaluation of HSI to Detect Crown Rot in Wheat

The literature shows that HSI combined with machine learning technologies can be
successfully applied to sense photosynthetic activity, water, and nutrient content. Thus,
we made a hypothesis that HSI can be applied to detect crown rot infected wheat plants
at an early stage without visible symptoms on leaves by sensing photosynthesis or water
and nutrient contents in plants, and conducted a preliminary experiment to support the
hypothesis. The experiment was conducted in The Plant Accelerator located in the Waite
campus of The University of Adelaide. Four widely grown wheat varieties (Aurora,
Yipti, Trojan, and Emu Rock), which have different levels of susceptibility to crown rot
disease [100], were chosen for study. The plants were grown in soil substrate under
2 disease treatments of “controlled” and “infected” with 26 replicates for 4 varieties,
resulting in a total of 208 pots of wheat plants for the study. To infect the plants, we
placed 10 F. pseudograminearum incubated seeds around the base of the seedling’s shoot
14 days after sowing, defined as the first day after infection (1 DAI). On the same day,
all seedlings were transported to the lanes of the LemnaTec plant phenotyping platform
(LemnaTec GmbH, Aachen Germany) for hyperspectral imaging. Once on the phenotyping
platform, the plants were automatically watered daily to a set target weight. Two cameras
were located in the hyperspectral imaging chamber (WIWAM, Ghent, Netherlands) of
the phenotyping platform for whole-plant imaging, as shown in Figure 4. The FX10
camera (Specim, Oulu, Finland) captured the visible and near infrared (VNIR) data from
400 nm to 1000 nm with 5.5 nm full wavelength at half maximum (FWHM), while the
short-wavelength infrared (SWIR) camera (Specim, Oulu, Finland) operated in the range of
1000 nm to 2600 nm with 12 nm FWHM. Hyperspectral imaging was conducted weekly
starting on 15 July (11 DAI), when the shoots were large enough for side-view imaging, to
2 September 2021 (60 DAI), when the plants were in the early milk stage.
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cameras) in WIWAM hyperspectral imaging system.

After the data collection was completed, all HSI data were firstly calibrated and then
the Savitzky–Golay filter [54] was applied to complete the data smoothing. The least
squares method was used to fit two adjacent spectrums for linear regression to estimate
continued value [78,101]. In the calibrated hyperspectral images, the backgrounds were
segmented from the plants using a crop segmentation method proposed by a previous
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study [78]. After the final plant region segmentation, the original spectral signatures of the
pixels for whole plant in each pot were extracted and averaged. As the aim of this study
was to determine if hyperspectral imaging technologies can detect crown rot disease in
wheat plants in an early stage without obvious symptoms on leaves, the dead and rotting
plants removed from further analysis and therefore only healthy plants and infected plants
without clear visible symptoms on leaves remained for further processing.

The processed data of each individual day was input into a SVM for binary classifica-
tion, and the kernel method was radial basis function (RBF) kernel. The cross-validation
technique was used to divide the data samples into several smaller sub-datasets, so that
the initial sub-dataset was used as the training set, and the other sub-datasets were used to
follow-up confirmation and verification of this analysis. Five-fold cross-validation with
three repetitions was performed to train and validate the models. We used weighted
accuracy, precision, recall, and F1 score to evaluate the performance of classification.

In the VNIR region, F1 score and accuracy have a clear increasing trend until 32 DAI,
at 0.790 in F1 score and 0.790 in accuracy (Figure 5). In the contrast, F1 score and accuracy
in SWIR increased considerably from 11 to 39 DAI and became stable from 39 DAI to
53 DAI, as shown in Figure 6. Notably, although the F1 score and accuracy values at 32 DAI
are 0.756 for accuracy and 0.750 for F1 scores, the peak values of both factors at 60 DAI are
around 0.83. The results showed that both VNIR and SWIR have F1 classification scores
over 0.75 after 32 DAI, which provides support for the early detection of crown rot in the
future by both sensors.

The pathogen does not spread up to the stem immediately after infecting the roots, as
it waits four weeks before it starts to increase biomass [15]. The HSI result suggest that, once
the crown rot starts to colonize the stem region, and even though the leaves do not show
obvious visible symptoms, HSI identifies some difference between infected and control
plants. As previously hypothesized, the VNIR camera might distinguish the infected plants
by detecting differences in photosynthetic capacity in the vegetative stage (18–32 DAI),
while the SWIR cameras identified the infected plants probably by detecting the changing
of water and nutrient content with increasing accuracy through development (11–60 DAI).
However, further investigation should be conducted to find out which wavelengths play
the most important roles for detection.
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Figure 6. Depiction of F1 score and accuracy of the SWIR sensor from 11 to 60 DAI.

4. Conclusions

The harmful impact of crown rot on the wheat industry is well-established, especially
in areas where drought events are increasing due to global warming. Unfortunately, there
is currently no effective chemical or biological method to control this disease. Farmers
rely on rotation to reduce the residual level of pathogens in the soil to reduce the risk of
infection. An efficient and economical screening method is essential to help wheat breeders
effectively select varieties with resistance. HSI is a high-throughout, non-invasive screening
technique that has been successfully used for detection of other diseases and to measure
water and nutrient in plants. We believe that HSI has significant promise to detect crown
rot disease at an early growth stage when plants do not have visible symptoms. According
to the results of our preliminary experiment, either VNIR or SWIR HSI can distinguish
the difference between the infected and healthy plants after 32 DAI with an F1 score up to
0.790 in VNIR and 0.750 in SWIR even though there are no visible symptoms on the leaves
or upper stems. It is not only more convenient than the current method, which requires
people to observe the plant’s crown and root section, but also it can be employed earlier in
the cropping season than using whitehead symptoms to identify the crown rot disease at
harvest time.

Despite the success of the preliminary experiment, a number of further investigations
should be considered:

1. The wavelengths range of the spectrum mentioned in this study is very wide. The
key-wavelengths that play the most important role in the classification need to be
further studied. Determining key-wavelengths can guide the design of low-cost,
light-weight multispectral sensors for field applications.

2. In the preliminary experiment, we used the reflectance data alone as input for SVM
classification. Different data types, such as SNV, hyper-hue, or principal components,
need to be further studied.

3. The preliminary experiment supports the hypothesis that HSI can distinguish the
difference between infection and healthy plant, which can provide support for early
disease detection. However, further research needs to investigate how to use HSI
in disease screening to determine symptom severity level and levels of crown rot
resistance in diverse varieties.

4. It is important to further analyze how the pathogen affects the transport and distribu-
tion of water and nutrients in plants, especially at different growth stages.
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5. The initial experimental results are limited to side-view imaging only. An experiment
of top-view imaging should be undertaken in a further study, since top-view images
would be easier to obtain via remote sensing in field trials.

6. The initial experiment was limited to the greenhouse environment and further inves-
tigation needs to be conducted in field trials.

7. We conducted a preliminary experiment to demonstrate the feasibility of using HSI
for crown rot disease detection. However, different types of sensors, data collection,
data processing, and machine learning algorithms need further intensive study.
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