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Abstract: Low-cost GPS (Global Positioning System) speed sensors have been available to quantify
vehicle speed on different platforms including agricultural tractors in precision agriculture applica-
tions such as yield monitoring, variable rate fertilizer and pesticide applications. One of the advances
in low-cost GPS receivers is the higher data update frequencies. However, we found no studies
on the accuracy of low-cost GPS speed sensors with different update frequencies, especially under
variable speed conditions. Thus, this work investigated the effect of the update frequency on the
accuracy of low-cost GPS speed sensors under both constant and varying speed conditions. Three
GPS speed sensors with update frequencies of 1 Hz, 5 Hz and 7 Hz (GPS1Hz, GPS5Hz and GPS7Hz)
were simultaneously tested under the same conditions. A total of 144 tests were conducted on three
different days and at three different times of each day with four speed levels and four repetitions.
The percent errors were found to be up to 2.3%, 1.8% and 1.4% at constant speeds; up to −47%, −16%
and −12% at the increasing speeds and 24%, 6% and 5% at the decreasing speeds, depending on the
acceleration and deceleration levels, for GPS1Hz, GPS5Hz and GPS7Hz, respectively. The differences
among the error values of the GPS speed sensors were found to be statistically significant (p < 0.05).
The GPS speed sensors with higher update frequencies (5 and 7 Hz) provided higher accuracy
compared to the one with lower frequency (1 Hz), particularly in the case of higher acceleration
conditions. In sum, low-cost GPS speed sensors with higher update frequencies should be used for
better accuracy, especially in variable speed conditions.

Keywords: low-cost; GNSS; GPS; speed; velocity; accuracy; data update frequency

1. Introduction

Speed can be defined as how fast an object is moving, while velocity combines the
speed and direction in which an entity is moving relative to true north [1]. The quantifica-
tion of velocity is necessary on various platforms, including road vehicles, off-road vehicles,
trains, bikes, humans, ships, aircrafts, etc. The goal of measuring speed may vary based on
the application, including the safer operation of vehicles; calculation of power as a product
of speed and force; evaluation of driver travel routes based on fuel efficiency and travel
time; fuel level tracking to prevent fuel theft; walking speed of diseased persons, mainly
those with cardiovascular diseases; speed of humans in social, touristic and economic ac-
tivities; performance of car racers, horse racers and cyclers; precision farming applications
and real-time traffic management [2].

In precision agriculture, ground speed data is essential to calculate, monitor and map
crop yield in yield monitoring systems [3–5]. It is also required to adjust the rate of agricul-
tural inputs including seeds, fertilizers and pesticides in variable rate applications [1,6,7].
In addition, it is utilized in tractor auto steering systems [1], wheel slip and traction (draft)
efficiency evaluation and the consumption of fuel and energy of tractors and self-propelled
farm machinery [8–10]. Additional use of the speed data is in the calculation of field work
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capacity (ha h−1), which is the amount of area (hectares) processed in a unit of time (hour)
by farm machinery.

Scientists have invented and evaluated various velocity measurement methods, includ-
ing magnetic shaft encoders, optical shaft encoders, RADAR sensors, ultrasonic sensors,
LASER/LIDAR sensors, image processing and GNSS/GPS receivers [2,4,6–8,11,12].

In recent years, GNSS (Global Navigation Satellite System) and GPS (Global Posi-
tioning System) receivers are increasingly used in velocity determination, along with
positioning, navigation and timing (PNT). GNSS-based velocity measurement has some
advantages, such as having no moving parts, being suitable for measuring human and
animal speed and not affected by tire slippage, dust, ground ruggedness and tall vegetation,
while it has some disadvantages, such as having low accuracy in increasing and decreasing
speed conditions, low signal quality or acquisition under enclosed areas such as tunnels,
overpasses, forests, deep valleys, urban areas, etc. [2]. GNSS and GPS units measure speed
based on the following three methods: travelled distance divided by time, Doppler shift
and Time-differenced carrier phase (TDCP) [2]. The first method is inaccurate (in the order
of m s−1), while the second method (Doppler shift) has better accuracy (cm s−1) and the
third one can offer the best accuracy (mm s−1) [2,13,14].

With the advances in technology, new and improved GNSS or GPS receivers, data
loggers, trackers and speed sensors are available with a smaller size, lower cost and multi-
frequency, receive signals from more than one GNSS constellation and have higher data
update frequencies. One of the crucial advances is the higher data update frequencies, up
to 20 Hz. In recent years, stand-alone, low-cost GPS speed sensors with a cost of several
hundred US dollars have been available. These sensors consist of an antenna, a GPS
module, a microprocessor, an optional display and a connector cable (Figure 1).

AgriEngineering 2021, 3 FOR PEER REVIEW  2 
 

 

self-propelled farm machinery [8–10]. Additional use of the speed data is in the calcula-
tion of field work capacity (ha h−1), which is the amount of area (hectares) processed in a 
unit of time (hour) by farm machinery. 

Scientists have invented and evaluated various velocity measurement methods, in-
cluding magnetic shaft encoders, optical shaft encoders, RADAR sensors, ultrasonic 
sensors, LASER/LIDAR sensors, image processing and GNSS/GPS receivers [2,4,6–
8,11,12]. 

In recent years, GNSS (Global Navigation Satellite System) and GPS (Global Posi-
tioning System) receivers are increasingly used in velocity determination, along with 
positioning, navigation and timing (PNT). GNSS-based velocity measurement has some 
advantages, such as having no moving parts, being suitable for measuring human and 
animal speed and not affected by tire slippage, dust, ground ruggedness and tall vegeta-
tion, while it has some disadvantages, such as having low accuracy in increasing and 
decreasing speed conditions, low signal quality or acquisition under enclosed areas such 
as tunnels, overpasses, forests, deep valleys, urban areas, etc. [2]. GNSS and GPS units 
measure speed based on the following three methods: travelled distance divided by time, 
Doppler shift and Time-differenced carrier phase (TDCP) [2]. The first method is inac-
curate (in the order of m s−1), while the second method (Doppler shift) has better accuracy 
(cm s−1) and the third one can offer the best accuracy (mm s−1) [2,13,14]. 

With the advances in technology, new and improved GNSS or GPS receivers, data 
loggers, trackers and speed sensors are available with a smaller size, lower cost and 
multi-frequency, receive signals from more than one GNSS constellation and have higher 
data update frequencies. One of the crucial advances is the higher data update frequen-
cies, up to 20 Hz. In recent years, stand-alone, low-cost GPS speed sensors with a cost of 
several hundred US dollars have been available. These sensors consist of an antenna, a 
GPS module, a microprocessor, an optional display and a connector cable (Figure 1). 

 
Figure 1. A schematic view of a commercially-available low-cost GPS speed sensor. 

GPS speed sensors usually send the speed data in pulse signals and are usually used 
for the replacement of radar speed sensors in agriculture [7]. However, manufacturers do 
not provide enough information on the speed accuracy of their products, especially un-
der different working conditions including variable speeds [2,15,16]. A limited number of 
studies have dealt with the speed measurement accuracy of hand-held, high cost and 
high-performance GPS or GNSS units. However, the cost of equipment is a crucial factor 
that affects the level of the adoption of a technological system [17,18]. We found no 
studies on the accuracy of low-cost GPS speed sensors with different update frequencies. 
Hence, the aim of this research was to study the influence of data update frequencies on 
the accuracy of three low-cost GPS speed sensors under constant and varying speed 
conditions simultaneously in same test conditions. 

2. Materials and Methods 
2.1. GPS Speed Sensors 

Three low-cost GPS speed sensors with data update frequencies of 1, 5 and 7 Hz 
(GPS1Hz, GPS5Hz, GPS7Hz) were tested in the study. Some technical specifications of 

Figure 1. A schematic view of a commercially-available low-cost GPS speed sensor.

GPS speed sensors usually send the speed data in pulse signals and are usually used
for the replacement of radar speed sensors in agriculture [7]. However, manufacturers
do not provide enough information on the speed accuracy of their products, especially
under different working conditions including variable speeds [2,15,16]. A limited number
of studies have dealt with the speed measurement accuracy of hand-held, high cost and
high-performance GPS or GNSS units. However, the cost of equipment is a crucial factor
that affects the level of the adoption of a technological system [17,18]. We found no studies
on the accuracy of low-cost GPS speed sensors with different update frequencies. Hence,
the aim of this research was to study the influence of data update frequencies on the
accuracy of three low-cost GPS speed sensors under constant and varying speed conditions
simultaneously in same test conditions.

2. Materials and Methods
2.1. GPS Speed Sensors

Three low-cost GPS speed sensors with data update frequencies of 1 Hz, 5 Hz and 7 Hz
(GPS1Hz, GPS5Hz, GPS7Hz) were tested in the study. Some technical specifications of these
sensors and their images are shown in Table 1 and Figure 2, respectively. All GPS speed
sensors were SBAS (WAAS/EGNOS)-enabled (SBAS, Satellite-based augmentation systems;
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WAAS, Wide area augmentation system; EGNOS, European geostationary navigation
overlay service) and required a supply voltage of 9—18 VDC.

Table 1. Some technical features of the three GPS speed sensors, optical shaft encoder and DAQ card
used in the study.

Device Make and Model Technical Features

GPS1Hz Sensor-1 GPSMD-1
(Princeton, KS, USA)

Data update frequency: 1 Hz
Output signal: 57 Hz mp h−1

Signal type: Square pulse (0–12 V)

GPS5Hz Sensor-1 GPSMD-5
(Princeton, KS, USA)

Data update frequency: 5 Hz
Output signal: 57 Hz mp h−1

Signal type: Square pulse (0–12 V)

GPS7Hz Sensor-1 GPSMD-7
(Princeton, KS, USA)

Data update frequency: 7 Hz
Output signal: 57 Hz mp h−1

Signal type: Square pulse (0–12 V)

Optical Shaft Encoder
Wachendorff

WDG 58B-1000
(Geisenheim, Germany)

Power input: 5 VDC
Output signal: 1000 Hz/revolution
Signal type: Square pulse (0–5 V)

DAQ card Arduino Uno R3
(Somerville, MA, USA)

Power input: 5 VDC (USB)
Digital channels: 14 (6 PWM)
Analog channels: 6
Memory: 32 KB
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Figure 2. Hardware used in the study ((1) Three GPS speed sensors, (2) DAQ card and other circuitry,
(3) Optical shaft encoder and computer) (drawing not to scale).

2.2. Data Acquisition (DAQ) System

The reference speed measurement system consisted of an optical rotary shaft encoder
that is mounted on an auxiliary wheel of an agricultural tractor (Figure 3). Some technical
features of the shaft encoder are also given in Table 1. A medium-power four-wheel
agricultural tractor (MF 250G, Massey Ferguson, Duluth, GA, USA) was used in the study,
which had four gears and two speed levels (slow and fast) (Figure 3). The antennas of the
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GPS speed sensors were positioned about 0.60 m apart from each other on the top of the
tractor’s shade cover. The signals obtained from the optical shaft encoder and the GPS
speed sensors were acquired using a laptop computer with a data acquisition card (DAQ)
(Table 1). Some technical specifications of the DAQ card are also presented in Table 1. A
picture of the data collection system is given in Figure 2. A laptop computer was used to
collect and save the data during the experiments.
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2.3. Computer Program

A computer program was written in the Arduino IDE (Version: 1.6.9; Somerville, MA,
USA) to read, process and display four speed data (from the three GPS speed sensors
and the optical shaft encoder) through the DAQ card [19]. The GPS speed sensors and
the optical shaft rotary encoder produced square pulse signals (frequency) depending on
the speed. The frequency values were converted into speed values. The time-stamped
four speed values were displayed on the computer screen. After each speed test was
completed, the data were copied from the data screen and saved in a text file for further
data processing.

2.4. Calibration of the Reference Speed Measurement System

The reference speed measurement system was calibrated for various speed levels for
the four different speed gears. In the calibration, data were taken four times in each speed
range (n = 4 × 4 = 16). For this purpose, the stopwatch method (speed = distance/time)
was used to determine the actual speed. The tractor was driven at a constant speed over a
distance of 30 m and the time elapsed was measured with a stopwatch. The average speed
value was calculated by dividing the distance by the time. Regression and calibration
equations were calculated using MS Excel 2013 software (Microsoft, Redmond, WA, USA).
The calibrated reference speed from the optical rotary shaft encoder was used as a reference
for the comparison of the three GPS speed sensors. The calibration procedure was repeated
four times at each of the four speed (gear) levels to increase the calibration’s accuracy.

2.5. Speed Measurement Tests

Data from the reference speed sensor and the three GPS speed sensors (GPS1Hz,
GPS5Hz and GPS7Hz) were recorded on the computer in increasing speed, constant speed
and then in decreasing speed conditions. In each trial, after the whole system was made
ready, the tractor was first driven at an increasing speed, the movement was continued
at a constant speed and then, the measurement was continued at a decreasing speed and
the tractor was stopped after a maximum distance of about 100 m. The experiments were
performed on three different days and at three different times of each day (morning, noon
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and evening), with four different speed levels and four repetitions at each speed level,
yielding a total of 144 (3 × 3 × 4 × 4) speed trials (Table 2). The tests were carried out at a
high-speed level in four gears of the tractor. All speed tests were performed on concrete
road conditions in the south–north direction on the main campus of Hatay Mustafa Kemal
University located in Hatay, Turkey (36.3229◦ N, 36.1957◦ E). In this arrangement, the three
GPS speed sensors were simultaneously tested under same conditions.

Table 2. Some details of the speed measurement tests.

Criteria Details of Test Criteria

Test days (three days)
24 April 2018
25 April 2018
26 April 2018

Test times (three times)
Morning (between 9:00 and 11:00)
Noon (between 13:00 and 15:00)

Evening (between 17:00 and 19:00)

Speed levels (four levels)

Gear 1 (~1.40–1.80 m s−1)
Gear 2 (~2.00–2.50 m s−1)
Gear 3 (~2.70–3.20 m s−1)
Gear 4 (~4.30–5.20 m s−1)

Number of replications Four replications at each speed level

Total number of tests 144 (3 days × 3 times × 4 speeds × 4 replications)

2.6. GPS Signal Quality

The quality of the GPS signal was also examined during the speed tests to check
its acceptance. For this purpose, a hand-held 12-channel GPS receiver (GPS MAP 60,
Garmin, Schaffhausen, Sweden) was connected to the laptop computer (3 days × 3 times =
9 measurements) and the GPS data were stored for about 10 min using a program written in
the QBASIC language (Microsoft, Redmond, WA, USA) [5]. The data were then processed
with another QBASIC program [5] and then some important parameters were computed in
the MS Excel program, as follows: number of satellites used; EHPE, Estimated Horizontal
Position Error (m); EVPE, Estimated Vertical Position Error (m); HDOP, Horizontal Dilution
of Precision; VDOP, Vertical Dilution of Precision. The data related to the GPS signal quality
are presented in Table 3. Based on the analysis of these data, it was found that the number
of satellites varied between 5 and 10 in all of the tests. This revealed that there were
adequate numbers of satellites at the test location since GPS receivers need to use data from
at least four satellites to determine the three-dimensional location coordinates (latitude,
longitude, altitude) [20]. The EHPE and EVPE values were observed to vary between 2.3
and 6.8 m during all of the trials and these values were typical for low-cost GPS receivers.
In addition, the HDOP and VDOP values were between 0.8 and 3.1, which were sufficient
for accurate positioning (<6) [16,20].

2.7. Data Analysis

The acceleration values were calculated at increasing and decreasing speeds for each
test to examine the relation between acceleration and speed measurement error. As shown
in Figure 4, acceleration (a) was calculated by dividing the speed difference (∆V) by the
time difference (∆t) in both acceleration (increasing speeds) and deceleration (decreasing
speeds) (data from only one GPS speed sensor (GPS1Hz) were shown in this figure for
simplicity). The speed error value was calculated by taking the difference between the
speed indicated by each of the three GPS speed sensors (GPS1Hz, GPS5Hz, GPS7Hz) and
the reference speed indicated by the optical shaft encoder (Figure 4).

Statistical analysis was performed to determine whether the differences between
the mean speed error values of the GPS speed sensors were statistically significant and
whether the different test days, different test times (morning, noon evening), different
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acceleration levels and different speed levels had any significance, using the analysis of
variance. Data were also evaluated based on correlation, regression and multiple mean
comparison analysis (Duncan’s test) using MS Excel 2010 and SPSS (v.17; IBM, New York,
NY, USA) programs.

Table 3. Data related to the GPS signal quality at the test time.

Day and
Time Weather Number of

Satellites
EHPE *

(m)
EVPE *

(m) HDOP * VDOP *

Day 1
Morning Partly cloudy

Min:
Max:
Mean ± SD:

5
8

6.7 ± 0.54

3.2
5.5

3.7 ± 0.46

3.5
5.9

4.0 ± 0.42

1.1
2.9

1.5 ± 0.38

1.0
2.7

1.5 ± 0.47

Day 1
Noon Partly cloudy

Min:
Max:
Mean ± SD:

7
8

7.3 ± 0.22

2.8
3.4

3.0 ± 0.18

5.1
6.8

5.7 ± 0.50

1.4
1.7

1.6 ± 0.10

2.0
2.8

2.3 ± 0.17

Day 1
Evening Clear, sunny

Min:
Max:
Mean ± SD:

7
7

7.0 ± 0.01

2.6
3.7

2.8 ± 0.29

3.8
4.8

4.0 ± 0.22

1.0
1.7

1.1 ± 0.09

1.3
1.9

1.4 ± 0.10

Day 1
Morning Partly cloudy

Min:
Max:
Mean ± SD:

5
6

5.1 ± 0.24

2.6
3.0

2.9 ± 0.07

5.4
6.4

5.9 ± 0.26

1.3
2.0

1.8 ± 0.12

1.0
3.1

1.7 ± 0.62

Day 1
Noon Partly cloudy

Min:
Max:
Mean ± SD:

7
8

7.5 ± 0.50

2.7
3.3

3.0 ± 0.18

4.3
6.8

5.1 ± 0.79

1.1
1.8

1.4 ± 0.19

1.4
3.1

2.0 ± 0.43

Day 1
Evening Partly cloudy

Min:
Max:
Mean ± SD:

7
8

7.5 ± 0.50

2.3
3.0

2.6 ± 0.26

3.4
4.2

3.7 ± 0.31

1.1
1.3

1.2 ± 0.05

1.7
2.0

1.8 ± 0.08

Day 1
Morning Clear, sunny

Min:
Max:
Mean ± SD:

6
10

8.5 ± 0.90

3.0
6.8

3.9 ± 1.08

3.0
5.8

3.7 ± 0.77

0.8
1.9

1.1 ± 0.36

1.1
1.9

1.2 ± 0.23

Day 1
Noon Clear, sunny

Min:
Max:
Mean ± SD:

7
8

7.9 ± 0.32

2.5
3.3

2.6 ± 0.17

3.7
6.0

4.0 ± 0.29

0.9
1.3

1.0 ± 0.08

1.1
2.0

1.2 ± 0.14

Day 1
Evening Clear, sunny

Min:
Max:
Mean ± SD:

7
10

7.3 ± 0.49

2.4
3.4

2.6 ± 0.27

3.4
5.4

3.7 ± 0.44

0.9
1.3

1.1 ± 0.11

1.2
2.0

1.7 ± 0.28

* EHPE, Estimated horizontal position error (m); EVPE, Estimated vertical position error (m); HDOP, Horizontal dilution of precision;
VDOP, Vertical dilution of precision; SD, Standard Deviation.
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3. Results

The speed values from the three low-cost GPS speed sensors (GPS1Hz, GPS5Hz,
GPS7Hz) with different data update frequencies (1 Hz, 5 Hz, 7 Hz) are shown in Figure 5 in
increasing speed (positive acceleration), constant speed (zero acceleration) and decreasing
speed (negative acceleration) conditions at low-speed (1st gear) and high-speed (4th gear)
levels. As can be seen, in the case of both the low-speed and high-speed levels, the ground
speed data from the GPS speed sensors with 5 and 7 Hz frequencies were found to be
closer to the reference speed compared to the sensor with 1 Hz. At increasing speeds, the
GPS speed sensors gave lower values than the reference speed, while the speed values at
the constant speed were close to each other and in the case of decreasing speeds, the GPS
speed sensors showed higher values than the reference speed (Figure 5).
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3.1. Speed Measurement Errors at Increasing Speeds

In the case of increasing speed conditions (positive acceleration), the mean speed error
values of the three GPS speed sensors (GPS1Hz, GPS5Hz, GPS7Hz) are shown in Figure 6a.
At increasing speeds, a high correlation was found between the mean absolute speed errors
and the mean reference speed values of all three GPS speed sensors (R2 = 0.66 for GPS1Hz,
R2 = 0.69 for GPS5Hz, R2 = 0.71 for GPS7Hz). The mean absolute speed errors were higher
(up to −1.20 m s−1) at the higher reference speed levels. In addition, the GPS speed sensors
showed lower speed values than the reference speed, probably due to the delay (latency)
in the data transmission (Figure 6a). In addition, it was observed that the average error
values of GPS5Hz and GPS7Hz were significantly lower than GPS1Hz. Each data point in
the figure represents the average of four repeated speed measurements.
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3.2. Speed Measurement Errors at Constant Speeds

In the case of constant speeds (zero accelerations), the average speed measurement
error values of the three GPS speed sensors (GPS1Hz, GPS5Hz, GPS7Hz) with different
update frequencies (1 Hz, 5 Hz, 7 Hz) are shown in Figure 6b, according to varying speed
levels. The speed errors were found to be negative for all three GPS speed sensors at
constant speed conditions (as well as at increasing speed conditions). In other words, the
GPS speed sensors showed slightly lower speed values than the reference speed at constant
speed conditions. The speed differences were higher (up to 0.12 m s−1) at higher velocities
(Figure 6b). In addition, the speed error values of GPS5Hz and GPS7Hz were found to be
lower than the speed error of GPS1Hz. In addition, a high correlation was found between
the mean speed errors and the mean reference speeds for all three GPS speed sensors
(R2 = 0.76 for GPS1Hz, R2 = 0.78 for GPS5Hz, R2 = 0.76 for GPS7Hz) (Figure 6b).
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3.3. Speed Measurement Errors at Decreasing Speeds

In the case of decreasing speeds (negative acceleration), the average speed error values
of GPS1Hz, GPS5Hz and GPS7Hz are shown in Figure 6c. In this case, a high correlation
was also found between the mean absolute speed errors and the mean reference speeds
for all three GPS speed sensors (R2 = 0.85 for GPS1Hz, R2 = 0.72 for GPS5Hz, R2 = 0.71 for
GPS7Hz) (Figure 6c). It was determined that the mean error values increased as the mean
reference speeds were increased. The average speed error values were found to be higher
(up to 0.70 m s−1) at the higher speed levels. In addition, the mean error values of GPS5Hz
and GPS7Hz were observed to be lower than the mean error value of GPS1Hz.

3.4. Percent Speed Measurement Errors

In the current study, error values of the three GPS speed sensors (GPS1Hz, GPS5Hz,
GPS7Hz) were calculated in terms of mean absolute error (m s−1) and mean percent error
(%) and presented in Table 4.

Table 4. Mean speed error values of the three GPS speed sensors.

Acceleration Speed
Level

GPS Speed
Sensor

Mean Acceleration
(m s−2)

Mean Speed
(m s−1)

Mean Absolute
Error (m s−1) *

Mean Percent
Error (%) *

a = +
(Increasing speed

conditions)

Gear 1
GPS1Hz
GPS5Hz
GPS7Hz

0.38 1.17
−0.51 ± 0.06 a

−0.15 ± 0.02 b

−0.09 ± 0.01 c

−42.3 ± 3.61 a

−12.8 ± 2.39 b

−7.5 ± 1.39c

Gear 2
GPS1Hz
GPS5Hz
GPS7Hz

0.63 1.50
−0.66 ± 0.12 a

−0.23 ± 0.03 b

−0.17 ± 0.03 b

−46.5 ± 9.79 a

−15.8 ± 2.44 b

−11.5 ± 1.91 b

Gear 3
GPS1Hz
GPS5Hz
GPS7Hz

0.68 1.86
−0.73 ± 0.10 a

−0.25 ± 0.02 b

−0.21 ± 0.03 b

−40.3 ± 8.16 a

−14.4 ± 1.80 b

−11.4 ± 1.57 b

Gear 4
GPS1Hz
GPS5Hz
GPS7Hz

0.66 2.55
−0.86 ± 0.16 a

−0.29 ± 0.06 b

−0.24 ± 0.05 b

−34.3 ± 6.61 a

−11.2 ± 1.49 b

−9.4 ± 1.60 b

a = 0
(Constant speed

conditions)

Gear 1
GPS1Hz
GPS5Hz
GPS7Hz

0 1.55
−0.03 ± 0.01 a

−0.03 ± 0.01 a

−0.02 ± 0.01 a

−2.0 ± 0.84 a

−1.6 ± 0.69 a

−1.4 ± 0.26 a

Gear 2
GPS1Hz
GPS5Hz
GPS7Hz

0 2.18
−0.05 ± 0.01 a

−0.04 ± 0.01 a

−0.03 ± 0.01 b

−2.2 ± 0.48 a

−1.7 ± 0.32 b

−1.2 ± 0.52 c

Gear 3
GPS1Hz
GPS5Hz
GPS7Hz

0 2.91
−0.06 ± 0.02 a

−0.05 ± 0.01 a

−0.04 ± 0.01 b

−2.3 ± 0.72 a

−1.8 ± 0.25 b

−1.3 ± 0.28 c

Gear 4
GPS1Hz
GPS5Hz
GPS7Hz

0 4.36
−0.09 ± 0.02 a

−0.07 ± 0.01 b

−0.07 ± 0.01 b

−2.2 ± 0.42 a

−1.5 ± 0.42 b

−1.4 ± 0.36 b

a = −
(Decreasing

speed conditions)

Gear 1
GPS1Hz
GPS5Hz
GPS7Hz

−0.24 1.03
0.24 ± 0.03 a

0.06 ± 0.01 b

0.05 ± 0.01 b

23.3 ± 3.46 a

6.3 ± 1.02 b

5.3 ± 0.77 b

Gear 2
GPS1Hz
GPS5Hz
GPS7Hz

−0.26 1.38
0.31 ± 0.06 a

0.07 ± 0.01 b

0.05 ± 0.01 b

22.5 ± 4.25 a

5.1 ± 0.83 b

3.9 ± 0.61 b

Gear 3
GPS1Hz
GPS5Hz
GPS7Hz

−0.32 1.80
0.39 ± 0.06 a

0.09 ± 0.02 b

0.07 ± 0.01 b

22.0 ± 3.07 a

5.0 ± 0.96 b

3.8 ± 0.60 b

Gear 4
GPS1Hz
GPS5Hz
GPS7Hz

−0.44 2.47
0.57 ± 0.07 a

0.13 ± 0.02 b

0.11 ± 0.02 b

23.6 ± 3.15 a

5.2 ± 1.30 b

4.4 ± 0.73 b

* Different letters (a, b, c) in each column indicate significant differences for each speed gear level (p < 0.05).
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In general, it was observed that, as the mean acceleration value increased, the mean
error value also increased (Table 4). In the case of increasing speeds (a = +), the mean
percent error values were up to −46.5%, −15.8% and −11.5% for the GPS1Hz, GPS5Hz and
GPS7Hz speed sensors, respectively, depending on the level of the acceleration. In the case
of constant speed, the mean percent error values were found to be up to −2.3%, −1.8% and
−1.4% for the three GPS speed sensors (GPS1Hz, GPS5Hz, GPS7Hz), respectively. In the
case of decreasing speeds (a = −), the mean percent error values were up to 23.6%, 6.3% and
5.3% for the three GPS speed sensors (GPS1Hz, GPS5Hz, GPS7Hz), respectively, depending
on the acceleration level. As a result, the average speed error values of the GPS speed
sensors with higher update frequencies (5 and 7 Hz) were significantly lower in increasing,
constant and decreasing speed conditions. In addition, the higher update frequencies had a
more important role in reducing the speed measurement error in increasing and decreasing
speed conditions compared to the constant speed condition.

3.5. Relationship between the Speed Measurement Errors and the Acceleration Levels

A strong relationship between the mean absolute speed measurement errors and the
mean acceleration levels were determined for all three GPS speed sensors (R2 = 0.97 for
GPS1Hz, R2 = 0.98 for GPS5Hz, R2 = 0.96 for GPS7Hz) (Figure 7). These results indicate
that the speed error values were dependent on the acceleration level. When the acceleration
was higher, the errors in the speed values were also higher.

3.6. Statistical Data Analysis Results

It was found that the effect of different test days and test times did not have any
statistical significance on the speed measurement error (p > 0.05). On the other hand, the
differences between the error values of the three GPS speed sensors (GPS1Hz, GPS5Hz,
GPS7Hz) were statistically significant (p < 0.05). Based on the results from Duncan’s
multiple mean comparison test (Table 4), it was also found that the error values of the GPS
speed sensors with higher update frequencies (5 and 7 Hz) were significantly lower in the
increasing, constant and decreasing speed conditions compared to those with a low update
frequency (1 Hz). In addition, it was observed that this difference was more prominent in
cases of higher acceleration conditions (Table 4).
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4. Discussion

Speed data is needed for many applications, including in agriculture. In precision
agriculture, ground speed is needed to calculate and monitor crop yield in yield monitoring
systems; to change the rate of the agricultural inputs in a variable rate application; to adjust
the route in tractor auto steering systems; to evaluate wheel slip, traction efficiency and
the fuel and energy consumption of tractors and to determine field work capacity (ha h−1).
Therefore, accurate speed measurement is essential in these applications.

In recent years, GNSS or GPS receivers have had an increasing usage in velocity
measurement, including in agriculture. Low-cost stand-alone GPS speed sensors with a
cost in the range of several hundred US dollars are available to be utilized on farm tractors
and self-propelled farm machinery. Nonetheless, information on the speed accuracy of
these products, especially under different working conditions and varying speed conditions,
are very limited [2,16]. One of the important advances in GNSS or GPS receivers is the
higher data update frequencies, which lowers the disadvantage of the latency problem;
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however, research on the impact of data update frequency on the accuracy of low-cost
GPS speed sensors is very limited. Some researchers have studied the speed measurement
accuracy of hand-held, high-cost and high-performance GPS or GNSS units. However, we
found no studies on the accuracy of the low-cost GPS units, especially on stand-alone GPS
speed sensors with different data update frequencies. It is a well-known fact that the cost
of equipment is a vital factor affecting its adoption rate [17,18]. Hence, this research aimed
to study the influence of different data update frequencies on the accuracy of low-cost GPS
speed sensors under constant and varying speed conditions.

In the present study, the mean absolute speed measurement error was found to be
up to −0.09 m s−1 for GPS1Hz, −0.07 m s−1 for GPS5Hz and −0.07 m s−1 for GPS7Hz at
constant speeds, depending on the speed and acceleration levels (Table 4). In the increasing
speed conditions, the error values were up to −0.86 m s−1 for GPS1Hz, −0.29 m s−1 for
GPS5Hz and −0.24 m s−1 for GPS7Hz, while in the decreasing speed conditions they were
up to 0.57 m s−1, 0.13 and 0.11 m s−1 for GPS1Hz, GPS5Hz and GPS7Hz, respectively,
depending on the speed and acceleration levels (Table 4). Thus, the GPS speed sensors
showed smaller error values at constant speeds, while showing higher errors at varying
speed conditions. A similar finding was reported by Witte and Wilson [21], who found that
the GPS speed velocity was within ±0.2 m s−1 in 45% and ±0.4 m s−1 in 19% of the actual
speed. Similarly, Vishwanathan et al. [6] determined higher error rates up to 1.79 m s−1 in
increasing speed conditions. In addition, Koc et al. [22] found higher error values (up to
0.39 m s−1) in constant speed conditions. However, they did not report any information on
the impact of data update frequencies on the speed measurement accuracy.

It was also determined in the present study that the GPS speed sensors slightly
underestimated the speed at constant speed levels (up to −0.09 m s−1 for GPS1Hz, up
to −0.07 m s−1 for GPS5Hz and up to −0.07 m s−1 for GPS7Hz) (Table 4). Similarly,
Zhao et al. [23] found that the velocities from a GPS tracking device (BT-338X) were
quite accurate with a tendency for underestimation, but the error between the recorded
and actual velocity increased with the speed. However, the accuracy under acceleration
and deceleration and the effects of the data update frequency were not studied. Beato
et al. [24] reported similar findings in which the speed of male soccer players obtained
from a 10 Hz GPS unit (StatSports) was lower than the reference speed obtained from video
image analysis. Keskin and Say [11] reported that low-cost hand-held GPS units (1 Hz)
determined speed value with high accuracy at constant speeds, but they did not study
the accuracy under varying speed conditions. Fulton [25] also compared GPS-based and
Radar-based speed measurements and reported that a quick acceleration produced time
lags in GPS-based speeds compared to a Radar-based system, which is a similar finding
to that also observed in the current study. Keskin et al. [26] also mentioned that low-cost
GPS units (1 Hz) had a significant amount of delay (2–5 s), which lowers the accuracy, and
reported that post processing the data improved the accuracy in varying speed conditions.

In the current study, the percent speed measurement error was found to be up to −2.3%
for GPS1Hz, −1.8% for GPS5Hz and −1.4% for GPS7Hz at constant speeds, depending on
the speed and acceleration levels (Table 4). In the increasing speed conditions, the error
values were up to −46.5% for GPS1Hz, −15.8% for GPS5Hz and −11.5% for GPS7Hz, while
in decreasing speed conditions they were up to 23.6%, 6.3% and 5.3% for GPS1Hz, GPS5Hz
and GPS7Hz, respectively, depending on the speed and acceleration levels (Table 4). Al-
Gaadi [27] reported higher error rates of up to 9.9% at constant speeds and up to 80.2% in
varying speed conditions, but the effect of data update frequencies was not studied.

The results of the current study confirmed that the data update frequency had an
important influence on reducing the speed measurement error of low-cost GPS speed
sensors. Supej and Cuk [28] reported similar findings, stating that high-frequency (20 Hz)
and high-cost professional GNSS receivers measured the speed more accurately, while
low-cost receivers with a frequency of 1 Hz were not suitable for real-speed measurements
due to their high delay time (<2.16 s). Gloersen et al. [29] tested three GNSS receivers
(Garmin Forerunner 920XT 1 Hz; Catapult Optimeye S5 10 Hz; ZXY-Go differential receiver
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10 Hz) for position, speed and timing, and reported that the 10 Hz receivers gave better
results (0.04–0.07 m s−1) than the 1 Hz receiver (0.66 m s−1). Fu et al. [30] combined an
IMU (Inertial measurement unit) with a GNSS receiver to increase its accuracy for the
measurement of speed along with distance and the direction of travel.

The use of data from more than one GNSS system and the inclusion of various filtering
methods could also enhance the accuracy of a GNSS-based velocity measurement. In a
study, Zheng and Tang [31] reported that the accuracy of velocity prediction could be
significantly improved by an integrated GPS/BDS system (BeiDou navigation satellite
system), compared to a single navigation constellation system, especially under poor
observation conditions. In addition, Dong et al. [32] proposed a tightly-coupled GNSS/INS
(Inertial navigation system) integration with a robust sequential Kalman filter and reported
a 64.7–69.4 and 30.9–47.2% improvement in the velocity and attitude data in vehicle
navigation, respectively.

In the present work, a high correlation was also found between the speed measurement
error and the level of acceleration (R2 > 0.95) (Figure 7). This is to say that the errors in the
speed values were smaller when the acceleration was lower. The GPS speed sensors with
higher update frequencies (5 Hz and 7 Hz) provided more accurate speed values compared
to the lower frequency receiver (1 Hz). Hence, this study revealed that the GPS speed
sensors with higher data update frequencies offer more accurate speed data, especially
under increasing and decreasing speed conditions; thus, a higher update frequency is
recommended for accurate speed measurements.

5. Conclusions

This research aimed to comparatively assess the effect of three different data update
frequencies (1 Hz, 5 Hz and 7 Hz) on the speed measurement accuracy of three low-
cost GPS speed sensors (GPS1Hz, GPS5Hz, GPS7Hz) under constant and varying speed
conditions.

It was found that the speed error increased as the speed level and the acceleration
level increased for all three GPS speed sensors. The GPS speed sensors provided lower
speed values than the reference speed in the constant and increasing speed conditions
(acceleration), while they gave higher values than the reference in the decreasing speed
conditions (deceleration). The percent error was found to be up to 2.3%, 1.8% and 1.4%
for GPS1Hz, GPS5Hz and GPS7Hz, respectively, at constant speeds, while at increasing
speeds, the error values were up to −46.5%, −15.8% and −11.5% and at decreasing speeds,
they were up to 23.6%, 6.3% and 5.3% for GPS1Hz, GPS5Hz and GPS7Hz, respectively,
depending on the speed and acceleration levels. The difference between the error values of
the three GPS speed sensors was statistically significant, especially for the 1 Hz frequency
against the 5 and 7 Hz frequencies (p < 0.05). The error values of the GPS speed sensors
with the higher update frequencies (5 and 7 Hz) were significantly lower compared to
the one with a low update frequency (1 Hz), especially in cases of higher acceleration
conditions; hence, the update frequency was found to be an essential factor affecting the
accuracy of the low-cost GPS speed sensors. In sum, low-cost GPS speed sensors with
higher update frequencies should be used for better accuracy, especially in variable speed
conditions. Future studies should be carried out to investigate the effects of multiple GNSS
constellations, the inclusion of accelerometers and various filters, such as the Kalman filter,
on the velocity measurement accuracy of GNSS receivers.
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