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Abstract: The US cotton industry provided over 190,000 jobs and more than $28 billion total economic
contributions to the United States in 2012. The US is the third-largest cotton-producing country in
the world, following India and China. US cotton producers have been able to stay competitive with
countries like India and China by adopting the latest technologies. Despite the success of technology
adoption, there are still many challenges, e.g., increased pest resistance, mainly glyphosate resistant
weeds, and early indications of bollworm resistance to Bt cotton (genetically modified cotton that
contains genes for an insecticide). Commercial small unmanned ground vehicle (UGV) or mobile
ground robots with navigation-sensing modality provide a platform to increase farm management
efficiency. The platform can be retrofitted with different implements that perform a specific task, e.g.,
spraying, scouting (having multiple sensors), phenotyping, harvesting, etc. This paper presents a
proof-of-concept cotton harvesting robot. The robot was retrofitted with a vacuum-type system with
a small storage bin. A single harvesting nozzle was used and positioned based on where most cotton
bolls were expected. The idea is to create a simplified system where cotton bolls′ localization was
undertaken as a posteriori information, rather than a real-time cotton boll detection. Performance
evaluation for the cotton harvesting was performed in terms of how effective the harvester suctions
the cotton bolls and the effective distance of the suction to the cotton bolls. Preliminary results
on field test showed an average of 57.4% success rate in harvesting locks about 12 mm from the
harvester nozzle. The results showed that 40.7% was harvested on Row A while 74.1% in Row B for
the two-row test. Although both results were promising, further improvements are needed in the
design of the harvesting module to make it suitable for farm applications.
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1. Introduction

The US is the third-largest cotton producing country in the world. Cotton producers
must stay competitive by adopting the latest technologies. The US cotton industry has a
significant impact on the economy, with 190,000 jobs and turnover of more than $25 billion
per year. This year’s yield forecast at 386 kg. per harvested acre was slightly above the
previous year [1]. The US cotton industry has a long history of adopting distributive tech-
nologies, starting with the invention of the cotton gin in 1790s, the adoption of mechanical
harvesters in the 1950s, and the development of the module builder in the 1970s [2]. These
technologies significantly decreased labor requirements and allowed the labor to produce
a 218 kg bale of cotton fiber to drop from 140 h in 1940 to less than 3 h today [3]. Despite
the success of technology adoption, there are still many challenges faced by the US cotton
producer. One major challenge is competition from polyester, where overproduction in
China has resulted in polyester prices that are approximately 50% less than cotton and has
resulted in suppressed cotton prices [4]. Thus, producers must continue to increase their
production efficiency as increased cotton prices are on the near horizon. Other challenges
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facing cotton producers are increased pest resistance, particularly glyphosate-resistant
weeds [5], and early indications of bollworm resistance to Bt cotton (genetically modified
cotton that contains genes for an insecticide).

Robots are becoming more integrated into the manufacturing industry. Some examples
of these integrations include material handling gantry robots [6], autonomous transport
vehicles [7], automotive kitting applications [8], TIREBOT [9], and iRobot-Factory [10].
Robots are also applied in other industries (services, construction, mining, transporta-
tion/communication, agriculture/forestry/fishery), smart factories, smart buildings, smart
homes, smart cities, and even on smart farms where it employs new paradigms and tech-
nologies like Industry 4.0, internet of things (IoT), cyber-physical systems (CPS), artificial
intelligence (AI) and machine learning (ML). Zielinska (2019) [11] classified these industrial
robots as those that operate under fully structured environments. However, field robots
like those in the agriculture industry work in fully unstructured natural environments.
Although it was more than three decades ago, Sistler (1987) [12] provided a review of the
different robotic applications and their future possibilities in agriculture. More robot-based
technologies have been used in agriculture. They have been implemented through the use
of automation and with ranges of form factors, e.g., ground-based (e.g., smart tractors,
unmanned ground vehicle [UGV]), crane-based systems, aerial-based (e.g., unmanned
aerial vehicles [UAV]). A rapidly adopted automation in agriculture, for example, is an
automated system for milking cows. Salfer et al. (2019) [13] estimated over 35,000 milking
systems are currently used all over the world. For row crops, weed control with the rise
of herbicide-resistant weeds and lack of new herbicide modes of action is a significant
concern, and robotic systems are one of the proposed solutions [14]. For example, in the
textile industry, growers of cotton (Gossypium spp.) aim for optimized fiber yield and
quality [15]. The need for the textile industry and advances in robotics has led to the
proliferation, and use of mobile robot platforms applied to the cotton industry. Several
applications of robot platforms have been studied in cotton phenotyping [16–18]; lint yield
prediction [19], path tracking [20,21], monitoring germination [22]; wireless tracking of
cotton modules [23], yield prediction [24]; yield monitoring [25,26], and cotton residue
collection [27]. Cotton growers who applied various technologies reported increased field
performance and efficient use of resources [28].

UGVs have been used for different purposes in agriculture. BoniRob is a four-wheeled-
steering robot with adjustable track width and used as a crop scout [29]. Its sensor suite
includes different cameras (3D time of flight, spectral), and laser distance sensors. It was at
first design as a phenotyping robot, but additional functionality was added as a weeder
as its development progressed. It used a hammer type of mechanism to destroy weeds.
Unfortunately, BoniRob development was discontinued for an unknown reason. Vinobot
is a phenotyping UGV implemented on a popular mobile platform from clearpathrobotics.
Vinobot can measure phenotypic traits of plants and used different sensors [30]. TERRA-
MEPP (Transportation Energy Resource from Renewable Agriculture Mobile Energy-crop
Phenotyping Platform) is another UGV that was used for high-throughput phenotyping
of energy sorghum. It used imaging sensors to measures the plant from both sides as it
traverses within rows, thereby overcoming the limitations of bigger UGV [31]. A center-
articulated hydrostatic rover [32] was used for cotton harvesting. It used a red, green and
blue (RGB) stereo camera to localized/detect the cotton bolls and a 2D manipulator to
harvest the cotton. The system achieved a picking performance of 17.3 s per boll and 38 s
per boll for simulated and field conditions, respectively, but the authors indicated that
the speed of harvest and successful removal must be improved to be used commercially.
ByeLab (Bionic eYe Laboratory) is another UGV used to monitor and sense the orchards
and vineyards′ health status using multiple sensors [33]. It used two light-detection and
ranging (lidar) sensors to determine the plants′ shape and volume and six AgLeader OptRx
crop sensors to obtain the plant′s health. It used the Normalized Difference Vegetation
Index (NDVI) of the crop sensors to determine if the vegetation is healthy or unhealthy.
The results for measuring the plants′ thickness using the lidar sensors provide a relatively
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high R2 (0.83 and 0.89 to two different experimental layouts). However, no field result
was presented. Phenotron is a system modeled UGV which includes a lidar, inertial
measurement unit (IMU), and Global Positioning System (GPS) [34]. The field where
the robot was tested was also modeled and designed with Sketchup. It used multiple
lidar configurations (nodding, tilted, side and overhead) for phenotyping (canopy volume
measurement) and tested on a simulated field. The results showed that three configurations
(nodding, tilt, and side) produced comparable volume results with an average percent
error of 6%. In comparison, the overhead configuration had the highest average percent
error at 15.2%. The paper noted that the position of the lidar sensor could heavily influence
the results due to occlusion. The cotton plant model canopy and shape may also have
affected the results as the model may not have been dense enough to block the lidar. The
shape in this model used an oval cross-section but real cotton exhibits different shapes
and may result in different volume calculations. This work is very beneficial for the cotton
breeder. It makes it quicker to collect important traits of plants to determine which breed
performs best in terms of different inputs (fertilizer, water, different management, etc.).

Robots are becoming more integrated into manufacturing industry. Although most
of the manufacturing environment is not as complicated as the outdoors, recent advances
in sensors and algorithms provide an interesting outlook on how robots will be work-
ing outdoors with humans. Commercial small UGVs or mobile ground robots with
navigation-sensing modality provides a platform to increase farm management efficiency.
The platform, Husky, (clearpathrobotics) [35] can be retrofitted with different manifolds
that perform a specific task, e.g., spraying, scouting (having multiple sensors), phenotyping,
weeding, harvesting, etc.

Autonomous robot navigation was developed, and a selective harvesting proof of
concept was also designed and field-tested. The robot was retrofitted with a vacuum-type
system with a small storage bin. Performance evaluation for the cotton harvesting was
performed in terms of how effective the harvester suctions the cotton bolls and the effective
distance of the suction cap to the cotton bolls. This work’s overall objective is to investigate
the potential of UGV to be used for multiple farm operations, e.g., weeding, harvesting,
phenotyping, etc. The specific objectives are to design a selective harvesting autonomous
mobile platform for cotton and investigate the module′s efficacy in terms of both laboratory
and field performance.

2. Materials and Methods
2.1. Mobile Robot Platform and Harvesting Concept Design

The mobile platform used in this work is the Husky A200 (Figure 1) from Clearpath
Robotics. The platform is suitable for field operations as its width of 68 cm fits common
cotton row spacings. It is lightweight for field traffic and thus soil compaction is not an
issue as compared to huge farm machines.

The platform is powerful enough to handle payloads of up to 75 kg and can operate
at speeds of 1 m per second. It has a 24 V direct current (DC) lead-acid battery which
can provide 2 h of operation. Two new lithium polymer batteries with 6 cells each and
a 10Ah rating provide up to 3 h of operation. Husky is equipped with IMU (UM7, CH
Robotics, Victoria, Australia), GPS (Swiftnav, Swift Navigation, CA, USA), individual
steering motors and encoders for each wheel for basic navigation, and a laser scanner (UST-
10LX, Hokuyo, Osaka, Japan) for obstacle detection. The IMU has an Extended Kalmat
Filter (EKF) estimate rate of 500 Hz, with ±2 degrees for static and ±4 degrees accuracy in
dynamic pitch and roll. The RTK GPS supports multiple bands (GPS L1/L2, GLONASS
G1/G2, BeiDou B1/B2, and Galileo E1/E2), enabling faster convergence times to high
precision mode. It has a maximum of 10 Hz solution rates and has flexible interfaces,
including Universal Asynchronous Receiver/Transmitter (UART), Ethernet, Controller
Area Network (CAN), and Universal Serial Bus (USB). The lidar has a scanning range
from 0.02~10 m with ±40 mm accuracy. It has an angular resolution of 0.25 degree and a
scanning frequency of 40 Hz. It used an Ethernet as its primary communication. The lidar
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and IMU were configured for an update rate of 10 Hz, while the GPS was set to 5 Hz. The
robot can be programmed to perform specific tasks like mapping, navigation, and obstacle
avoidance through its onboard PC (mini-ITX) running on the Ubuntu 16.04 operating
system and the Robot Operating System (ROS, Kinetic version) framework. A mini-liquid
crystal display (LCD) screen, keyboard, and pointing device are connected to the onboard
PC allowing the user to easily write and test code, view and perform operations.
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Figure 1. Mobile robot platform used in this project.

The cotton harvester module underwent several design revisions. The design require-
ments were based on the following constraints: dimensions and payload of the mobile
platform, power supply of the platform, cotton plant height and boll positions, and tem-
porary storage of the harvested cotton bolls. The first few prototypes used a fabric for
temporary storage. It was determined that the porous nature of the fabric had a huge im-
pact on the suction of the system. The container was replaced with a sealed container using
a modified 19 L bucket with a sealed lid. A fluid simulation was performed for the storage
and is presented under Section 4 (Discussion). The overall design of the cotton-harvesting
autonomous platform (CHAP) was modified to accommodate the new collection device, as
shown in Figure 2.
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Several different parts were modeled and created via 3D printing because of their
unique shapes and requirements, as shown in Figure 3. An outlet from the collection bucket
was created to house a filter to prevent the blower from becoming clogged with cotton, as
shown in Figure 3a,b. The inlets to the collection bucket were designed to divert the cotton
to the bottom as shown in Figure 3c,d. Figure 3e shows the collection bucket with all the
3D printed parts.
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Figure 3. 3D printed parts for the bucket; (a) lid with outlet fitting, (b) bottom of lid with filter material, (c) inlet to bucket
design to divert cotton downwards, (d) inlet port viewed from the inside bucket, and (e) the complete collection bucket.

The blower was mounted above the collection bucket and a mount was created using
a higher-density setting. This was to prevent the mount from failing due to the blower′s
weight and possible vibration, as shown in Figure 4a. Several designs for the suction
ports on the cotton intake fitting were printed and tested. The multiple suction port
design (Figure 4b) was first envisioned to collect multiple cotton bolls but during testing, a
significant drawback was discovered. It lowers the pressure from the blower, which results
in no bolls being collected most of the time. The final design was modified and only used
one suction port as shown in Figure 4c.

AgriEngineering 2021, 3 FOR PEER REVIEW  5 
 

 

bucket was created to house a filter to prevent the blower from becoming clogged with 

cotton, as shown in Figure 3a,b. The inlets to the collection bucket were designed to divert 

the cotton to the bottom as shown in Figure 3c,d. Figure 3e shows the collection bucket 

with all the 3D printed parts. 

 

Figure 3. 3D printed parts for the bucket; (a) lid with outlet fitting, (b) bottom of lid with filter 

material, (c) inlet to bucket design to divert cotton downwards, (d) inlet port viewed from the in-

side bucket, and (e) the complete collection bucket. 

The blower was mounted above the collection bucket and a mount was created using 

a higher-density setting. This was to prevent the mount from failing due to the blower′s 

weight and possible vibration, as shown in Figure 4a. Several designs for the suction ports 

on the cotton intake fitting were printed and tested. The multiple suction port design (Fig-

ure 4b) was first envisioned to collect multiple cotton bolls but during testing, a significant 

drawback was discovered. It lowers the pressure from the blower, which results in no 

bolls being collected most of the time. The final design was modified and only used one 

suction port as shown in Figure 4c. 

 

Figure 4. (a) Blower mount to an aluminum extrusion, (b) three suction ports, and (c) single suc-

tion port. 

The complete harvesting module used a low-voltage blower motor (McMaster 12 V 

DC 12 A, 1000 rpm, and 7 Cubic Meters per Minute (CMM) attached on top of a 19 L-bin. 

The blower’s 10.16 cm diameter inlet port was connected to the bin′s top cover through a 

(a) (b) 

(c) (d) 

(e) 

(b) 

(c) 

(a) 

Figure 4. (a) Blower mount to an aluminum extrusion, (b) three suction ports, and (c) single
suction port.
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The complete harvesting module used a low-voltage blower motor (McMaster 12 V
DC 12 A, 1000 rpm, and 7 Cubic Meters per Minute (CMM) attached on top of a 19 L-bin.
The blower’s 10.16 cm diameter inlet port was connected to the bin′s top cover through
a rubber hose. A hole was made to fit a 6-feet corrugated hose on one side of the bin
with a 3.17 cm diameter opening. At the tip of the hose was a 3D-printed nozzle tied
to an extrusion frame that extends on one side of the robot. The nozzle’s position was
fixed prior to harvesting operations where most cotton bolls were situated along the plant
row. A custom-built controller board (AtMega 644P, Microchip, AZ, USA) interfaced to
the robot’s onboard PC controls the blower motor, and the light blinker that serves as a
warning device during operation is shown in Figure 5. The controller board, blower, and
blinker are powered by an external 12 V DC lithium polymer battery (Figure 5b). All the
harvester components were attached to an aluminum extrusion assembly frame that can
be easily retrofitted to the robot’s frame. The combined setup of the mounted harvester
integrated on the mobile robot platform is shown in Figure 6.
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2.2. Navigation

Autonomous field navigation is achieved by having a digital map of the field and
localizing the robot on that map. Localization involves integrating the coordinate frame
of the robot with the coordinate frame of the digital map. The robot’s coordinate frame,
commonly referred to as its odometry, estimates the robot’s position and orientation over
time. The accuracy of the robot’s odometry may be enhanced by integrating it with other
positional readings from an IMU or a GPS device. The robot’s position is first determined
using the kinematic model in Figure 7. The kinematic model of the four-wheeled robot
used in this study was treated as a two-wheeled differential robot with virtual wheels WL
and WR to simplify calculations. The robot’s current position is determined by a tuple (xc,
yc, α) and its new position (xc, yc, α)’ after time δt, given its right and left virtual wheel
linear speeds, vR and vL, respectively. The linear speed of each virtual wheel is shown in
Equations (1) and (2).

vR = ωWR × r (1)

vL = ωWL × r (2)

where ω is the angular speed and r is the wheel radius. The angular speeds ω and
angular position ϕ of each virtual wheel is the average of its real counterparts as shown in
Equations (3)–(6),

ϕWL = (ϕWFL + ϕWRL )/2 (3)

ϕWR = (ϕWFR + ϕWRR )/2 (4)

ωWL = (ωWFL + ωWRL )/2 (5)

ωWR = (ωWFR + ωWRR )/2 (6)
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and the actual position is found using Equations (11) and (12),
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The values of each variables above were stored in a data-serialization language, YAML
Ain’t Markup Language (YAML). YAML is commonly used for configuration files specially
in ROS. The YAML file is one of the many files that were setup to correctly configure the
ROS navigation stack on the robot’s PC.

2.3. Robot Operating System (ROS) Navigation Stack and Cotton-Harvesting Autonomous
Platform (CHAP) Navigation

The ROS Navigation Stack is an integrated framework of individual software or
algorithmic packages bundled together as nodes for steering the robot from one point to
the next, as shown in Figure 8. Users configure the navigation stack by either plugging in
built-in or custom-built packages in any of the navigation stack nodes. Estimation of the
robot’s odometry is therefore handled internally by the nodes in the navigation stack that
automatically loads, reference, and updates the configuration file during runtime execution
of the robot.
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Figure 8. The Robot Operating System (ROS) navigation stack.

In this study, the field′s digital map was generated using a GMapping algorithm, a
variant of simultaneous localization and mapping (SLAM) algorithm [36,37]. GMapping
involved fusing the robot’s odometry, GPS, IMU, and laser scanner readings using Kalman
filters and Rao-Blackwell particle filters (RBPF) to determine the robot’s current position
and orientation on the map. A custom-built global/local planner package was then
developed suitable for steering the robot within plant rows and avoiding obstacles using
the laser scanner. To navigate, a graphical user interface (GUI) showing the map of the
field allows users to either click points/segments on the map or hardcode the coordinates
where the robot will navigate autonomously. These points/segments could be the locations
of the cotton bolls to be harvested.

A computer program for the navigation and control of CHAP was developed. The
program was tested via computer simulation using a pre-built model of the platform. For
proper navigation, support devices like the GPS, IMU, and laser scanner were calibrated for
the simulation to work. The results are shown in Figure 9. The lower right image shows the
simulated playpen where the platform navigates, and the lower-left image shows its path
and movement. The upper two terminals show the status readings of the different devices.
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Figure 9. Screenshot of simulated navigation showing unmanned ground vehicle’s (UGV) path and movement.

An overview of the hardware and software components needed for CHAP to navigate
is shown in Figure 10. CHAP needs to know its location in a given map for it to navigate
around it. To do this, it needs data readings from several sensors (GPS, IMU, and laser)
for it to steer its wheel motors in the correct direction. Two essential tests (GPS accuracy
and lidar precision) were conducted to configure and calibrate the hardware and software
components and presented in Section 2.6.
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2.4. Cotton Boll Harvest

To harvest the cotton bolls on the plant, a common reference coordinate was first
established between the robot base with respect to the plant location, as shown in Figure 11.
Both the relative positions of the cotton bolls and the nozzle was then defined from this
reference coordinate. Prior to harvesting, the average boll heights and boll offsets for each
row or plot to be sampled were measured to calibrate the nozzle position. The nozzle
position was located based on where most of the cotton bolls were expected. The robot was
then programmed to keep track of its relative position away from the plant as it navigates
along the rows. The robot also monitored the user′s points/segments, which signals the
activation or deactivation of the blower motor and blinker to start or end the harvesting.
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2.5. Study Site

An 82 × 142 sq m 29-row loamy sand field of cotton (Deltapine 1358 B2XF) was
established with 96.5 cm row spacing and 10 cm in-row plant spacing at the Edisto Research
and Education Center in Blackville, SC (33.3570◦ N, 81.3271◦ W). Seeding was done in early
May and harvesting in the last week of November. Regular crop management practices
were applied during the growing season. Laboratory and field tests were conducted to
configure and evaluate the navigation and harvesting system′s performance before they
were integrated.

2.6. Global Positioning System (GPS) and Laser Scanner Testing and Mapping

Key components of the navigation and harvester systems were first tested to determine
if it satisfies the study′s objective and requirements. Onboard GPS, laser scanner, and other
important components (e.g., blower motors, hose size, nozzle type, and size) were all
subjected to test trials. But only the GPS and laser scanner will be presented, as these were
the critical factors in autonomous navigation. For GPS, outdoor waypoint measurements
were conducted to determine the longitude and latitude readings′ accuracy per waypoint.
Seven sampling sites were chosen to test the accuracy of the GPS. While the laser scanner’s
resolution was tested to determine if it detects the cotton stem′s diameter in a simulated
experiment. In this test, smaller 6.25 mm diameter bolts were used as a simulated cotton
stem. The bolts were lined up along the left and right edges. Due to the length of the
bolts, the laser scanner sensor was moved to the lower front. For mapping, testing took
place in both indoor and outdoor environments. For the indoor environment test, CHAP
navigation was tested at the Sensor and Automation Laboratory and the whole building
where the laboratory is located. The outdoor mapping test was conducted on the field with
five rows.

2.7. Performance Evaluation

The performance of the robot in cotton harvesting was first evaluated in the laboratory
in terms of how effective the harvester suctioned the cotton bolls and how close they should
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be to the nozzle. These tests will help calibrate the positioning of the robot relative to the
plant and the positioning of the nozzle during the actual field harvesting. Two rows in the
field were initially identified as the sampling rows. Ten cotton plant samples per row were
taken to the lab. Each plant’s stem was cut above ground with all other parts of the plant
intact. Plant samples were taken approximately two weeks after defoliation.

2.7.1. Lab Tests for Effective Suctioning Distance

Ten random cotton bolls per row were selected from the plant samples. Each cotton
boll had about 4 to 5 locks. The nozzle was clamped to a vise grip, and a ruler was placed
alongside its front opening to determine the suction distance. The blower motor was
activated manually before individual cotton bolls were hand-drawn closer to the nozzle
until they were suctioned. The distance between the nozzle’s tip and the edge of the cotton
boll facing the nozzle was then measured and recorded.

2.7.2. Lab Tests for Effective Suctioning Distance

Ten random cotton bolls per row were selected from the plant samples. Each cotton
boll had about 4 to 5 locks. The nozzle was clamped to a vise grip and a ruler placed
alongside its front opening to determine the suction distance. The blower motor was
activated manually before individual cotton bolls were hand-drawn closer to the nozzle
until it was suctioned. The distance between the nozzle’s tip and edge of the cotton boll
facing the nozzle was then measured and recorded.

2.7.3. Lab Tests for Suctioning Locks per Boll

A lab setup that simulated actual field harvesting was conducted. Plants were lined
up and mounted in a makeshift rack inside the lab. Ten random cotton bolls per row were
selected from the plant samples. Bolls of each plant targeted for harvesting were all aligned
along the traversal path of the nozzle. The robot was then programmed to traverse along
the simulated plant row with the harvester activated at a traversal speed of 0.5 m/s. The
number of locks successfully suctioned per boll per plant was recorded at the end of each
robot’s pass. There were about five robot passes for each boll. On each pass, either the
plant or the nozzle’s position was adjusted so that all the locks on a boll were tested for
harvesting. Each boll was scored based on the ratio between the number of locks suctioned
over the total number of locks for that boll.

2.7.4. Field Tests for Harvester Performance

Cotton boll yield sampling based on Goodman et al. (2003) [38] was applied during
the field tests. The yield estimate is based on the standard sample length of 3 m row. The
bolls were then picked in the 3 m row and weighed to obtain better result. However, an
assumption can be made about the weight of the bolls (~4 g) and so picking the number
of bolls with the assumption that each boll weighs 4 g is sufficient to predict the yield. In
our case, we were interested on how many bolls our suction system could harvest in a 3 m
row. Note that since we only had one suction cap, the number of cotton bolls that could be
harvested would be limited to that particular location. Two 3 m row (RA and RB) sampling
locations were selected and then subdivided into three subplots. The subplots were labeled
RA1 to RA3 and RB1 to RB3, as shown in Figure 12a. Each subplot had 10 consecutive
cotton plants. The 3 m row was subdivided into subplots to account for the variabilities
observed at the time of the measurements. Differences in plant height and cotton boll
opening along the row were visually observed. To determine the position of the cotton
bolls on each plant, measurements were made on the plant height, boll distance from stem
(boll offset), and boll height above ground. These measurements were used to calibrate the
position of the harvester nozzle targeting where most of the bolls are located as shown in
Figure 12b. Measurements were all done two to three weeks after defoliation. The robot′s
harvesting performance was evaluated by counting the number of cotton bolls that were
harvested on the sampled rows.
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Figure 12. Random sampling plot design for cotton boll harvesting in (a) and sampling measurements for boll position to
determine the position of the fixed nozzle in (b).

3. Results
3.1. GPS and Laser Scanner Testing and Mapping

The onboard GPS accuracy was tested in seven sampling sites with varying field
conditions and with the results are shown in Figure 13. The red markings inside the
yellow circles are the GPS position readings for that sampling site. On average, a 0.6 m
positional error for both easting and northing measurements was observed except for the
first sampling site (blue markings). The GPS accuracy results showed more than half a
meter average error on the longitude and latitude readings of the waypoints measured.
This error is significant when the robot navigates in narrow rows. However, the issue was
addressed by fusing the GPS, IMU, and odometry readings using filters.
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The laser scanner’s resolution test showed that it was possible to detect the cotton
plant′s stem as the bolts of 6.25 mm diameter were all detected. The cotton stem’s diameter
is known to be much more significant after defoliation. The results of this test are shown
in Figure 14.

The mapping test used a mapping program, GMapping, where the indoor test was
done in the Sensor and Automation Laboratory and the Edisto Research and Education
Center hallway, while the outdoor mapping test was done in one of the fields of the center
(33.358668◦ N, 81.313234◦ W). Results for the indoor map test are shown in Figure 15a,b
and the cotton field map in Figure 15c. An implementation of the navigation is available at
the Supplementary Materials Section.
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Figure 15. Map of (a) Sensor and Automation Laboratory, (b) Edisto-REC hallways, and (c) cotton field showing five
crop rows.

3.2. Laboratory Tests for Effective Suctioning Distance

Most of the locks were suctioned-off the boll 1.27 cm away from the nozzle for the
developed suction system. Figure 16 shows the average offset distance of 12 mm and
11.6 mm for rows A and B, respectively. Results indicate that the developed harvester does
not have enough vacuum power to suction the entire boll; however, it is strong enough to
suction the locks on each boll. Typically, only one lock is suctioned from each boll. In some
instances, two locks were suctioned when both locks were close to the nozzle.
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3.3. Lab Test for Suctioning Locks per Boll

Figure 17 shows that Row B performed better with 52.5% of the locks suctioned than
45.5% of Row A. Averaging both performances resulted in 49% harvesting performance
in the lab test conducted. Locks on Row A were observed to have more partially opened
(immature bolls) compared to those of Row B, where most bolls were fully opened (ma-
tured). The partially opened bolls grip the locks more inside the bur, making it difficult for
the harvester to suction.
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3.4. Field Tests for Harvester Performance

Results show that the average plant height in all subplots was 103.9 ± 11.9 cm, as
shown in Figure 18a. The average boll offset was 26.4 ± 11.5 cm, and boll height was
59.5 ± 10.4 cm as shown in Figure 18b. The boll offset and boll height results indicated the
region where most of the bolls are located and where the nozzle should be positioned. How-
ever, due to design constraints, the nozzle could only be adjusted vertically 45.7~68.6 cm in
the vertical direction. We observed that there were approximately 4.5 bolls per subplot on
an average per plant in this adjustment range. With 30 plants per row, a total of 135 bolls
were possibly harvestable.
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Out of 135 bolls, approximately 20% of them are in the nozzle’s linear movement′s
direct path as it passes the plants. Hence, 27 bolls were expected to be harvested per
row. However, based on the lab test conducted, the harvester′s current configuration only
allowed one lock per boll to be suctioned. Therefore, 27 locks were expected instead of
27 bolls. Results showed that Row A had 11 locks (40.7%), and Row B 20 locks (74.1%)
harvested in total as shown in Figure 19. The average weight of each lock was 765 and
850 mg for Rows A and B, respectively. More locks per boll were harvested in Row B
since in this row the plants have more fully opened/mature bolls compared to Row A.
The field tests results agreed with the results conducted in the lab tests where Row B
performed better.
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4. Discussion
4.1. Airflow and Suction Performance

The original inspiration for a collection device for the cotton bolls was that of a cyclone
separator. This device uses centripetal force to convert a linear stream of air to a rotational
one. Thus, suspended particles move to the outside of the cyclone, where the boundary
flow layer helps the particles drop down out of the cyclone into a collection device. As a
proof-of-concept, a preliminary fluid simulation was performed on a separator sized to
fit the robot, the results of which are shown in Figure 20. The simulation was performed
using the computational fluid dynamics (CFD) package SolidWorks 2017 Flow Simulation
add-in. Two boundary conditions and the geometry of the separator defined the simulation.
The inlet port pressure boundary condition was at atmospheric pressure. The outlet port
boundary condition was set to a flow volume of 250 CFM, which is the blower’s rated
flow volume. This flow volume is an ideal case since the separator will add static pressure
resistance, decreasing the flow volume. The blower′s pump curve was unknown, so
the flow was taken to be an ideal 250 CFM. Using these conditions, the CFD add-in can
solve the Navier–Stokes equations to estimate fluid velocity and pressure inside of the
3D model [39]. The average velocity was found to be 16.5 m/s with an assumed wall
roughness of 100 µM.

AgriEngineering 2021, 3 FOR PEER REVIEW  17 
 

 

tion cap as a harvesting mechanism. Moreover, our focus was to provide a faster harvest-

ing process. Thus, we focus on finding the cotton bolls′ locations and fixed our suction cap 

to that distance above the ground. The main idea was for our mobile platform to prioritize 

the navigation and simply turn on the suction motor. This provides a faster harvesting 

rate as compared to spending more time locating the cotton bolls. We know of other works 

[33] where the focus was to localize the cotton bolls and harvest. Our work’s main disad-

vantage is that it does not take into account all the cotton bolls on the plant but instead 

focuses entirely on how the rows of cotton bolls were distributed. Our work’s advantage 

is that our mobile platform can move around the field and pick cotton quicker. 

 

Figure 20. Fluid simulation of cyclone separator. 

5. Conclusions 

This paper presents an autonomous map-based robot, CHAP, for a cotton-selective 

harvesting proof of concept. The robot was retrofitted with a vacuum-type system with a 

small storage bin. Performance evaluation for the cotton harvesting was performed in 

terms of how effective the harvester suctions the cotton bolls and the effective distance. 

Several tests were conducted on its important sensors to achieve safe navigation. The GPS 

accuracy results showed more than half a meter average error on the longitude and lati-

tude readings of the waypoints measured. This error is significant when the robot navi-

gates in narrow rows. However, the issue was addressed by fusing the GPS, IMU and 

odometry readings using filters. The laser scanner’s resolution test showed that it was 

possible to detect the stem of the cotton plant as the bolts of 6.25 mm diameter were all 

detected. The cotton stem’s diameter is known to be much larger after defoliation. 

Preliminary results on the developed mobile robot platform′s performance for cotton 

harvesting show an average of 57.4% success rate in harvesting locks about 1.27 cm close 

to the harvester nozzle. Field test results show that the average plant height is 103.9 ± 11.9 

cm while the average boll offset is 26.4 ± 11.5 cm and the average boll height is 57.2 cm. 

For lab tests, results revealed that the average suction distance of the boll/locks to the har-

vester nozzle was 59.5 ± 10.2 cm and a 49% harvesting performance in laboratory tests. 

Further improvements in the design and implementation of navigation and harvester sys-

tems are needed to make it suitable for farm applications. More efficient navigation algo-

rithms, more advanced sensors, and actuators are to be integrated to improve the robot 

platform′s harvesting performance. 

  

Figure 20. Fluid simulation of cyclone separator.

Because of manufacturing constraints, as well as the size of cotton bolls, they would
not be collected by the separator. Thus a simpler form of the storage bin was developed
instead, using a 19 L bucket and 3D printed attachments described in Section 2.1. The
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general principle is similar to the cyclone separator where the particulates are meant to
be diverted out of the airstream being suctioned to the blower. The less certain method
of particulate separation was the motivation for an open-cell foam filter to be used on the
suction port to the blower; to prevent cotton from going into the blower and being expelled.
This filter undoubtedly caused a pressure drop (head loss) that impeded the collection of
cotton bolls at the suction ports. A potential solution could be to test the blower’s durability
when it directly suctions cotton bolls, thus eliminating the filter. Further evaluation of a
prototype cyclone separator for this application could also be investigated to determine its
feasibility with regard to cost and effectiveness.

4.2. The Harvesting Design

Although there were different implementations of harvesting cotton in the real world
(hand/machine picking, stripping, and pickers machine), our proof of concept used a
suction cap as a harvesting mechanism. Moreover, our focus was to provide a faster
harvesting process. Thus, we focus on finding the cotton bolls′ locations and fixed our
suction cap to that distance above the ground. The main idea was for our mobile platform
to prioritize the navigation and simply turn on the suction motor. This provides a faster
harvesting rate as compared to spending more time locating the cotton bolls. We know of
other works [33] where the focus was to localize the cotton bolls and harvest. Our work’s
main disadvantage is that it does not take into account all the cotton bolls on the plant
but instead focuses entirely on how the rows of cotton bolls were distributed. Our work’s
advantage is that our mobile platform can move around the field and pick cotton quicker.

5. Conclusions

This paper presents an autonomous map-based robot, CHAP, for a cotton-selective
harvesting proof of concept. The robot was retrofitted with a vacuum-type system with
a small storage bin. Performance evaluation for the cotton harvesting was performed in
terms of how effective the harvester suctions the cotton bolls and the effective distance.
Several tests were conducted on its important sensors to achieve safe navigation. The GPS
accuracy results showed more than half a meter average error on the longitude and latitude
readings of the waypoints measured. This error is significant when the robot navigates in
narrow rows. However, the issue was addressed by fusing the GPS, IMU and odometry
readings using filters. The laser scanner’s resolution test showed that it was possible to
detect the stem of the cotton plant as the bolts of 6.25 mm diameter were all detected. The
cotton stem’s diameter is known to be much larger after defoliation.

Preliminary results on the developed mobile robot platform′s performance for cotton
harvesting show an average of 57.4% success rate in harvesting locks about 1.27 cm close to
the harvester nozzle. Field test results show that the average plant height is 103.9 ± 11.9 cm
while the average boll offset is 26.4± 11.5 cm and the average boll height is 57.2 cm. For lab
tests, results revealed that the average suction distance of the boll/locks to the harvester
nozzle was 59.5 ± 10.2 cm and a 49% harvesting performance in laboratory tests. Further
improvements in the design and implementation of navigation and harvester systems are
needed to make it suitable for farm applications. More efficient navigation algorithms,
more advanced sensors, and actuators are to be integrated to improve the robot platform′s
harvesting performance.

Supplementary Materials: Video 1: CHAP harvesting run on the cotton field (https://youtu.be/
bxYmVBFGJzw accessed on 4 April 2021), and Video 2: CHAP navigation used for weeding purposes
(https://youtu.be/_PDpEA4uHqQ accessed on 4 April 2021).

https://youtu.be/bxYmVBFGJzw
https://youtu.be/bxYmVBFGJzw
https://youtu.be/_PDpEA4uHqQ
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