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Abstract: The prediction of rice yields plays a major role in reducing food security problems in India
and also suggests that government agencies manage the over or under situations of production.
Advanced machine learning techniques are playing a vital role in the accurate prediction of rice
yields in dealing with nonlinear complex situations instead of traditional statistical methods. In the
present study, the researchers made an attempt to predict the rice yield through support vector
regression (SVR) models with various kernels (linear, polynomial, and radial basis function) for
India overall and the top five rice producing states by considering influence parameters, such as
the area under cultivation and production, as independent variables for the years 1962–2018. The
best-fitted models were chosen based on the cross-validation and hyperparameter optimization of
various kernel parameters. The root-mean-square error (RMSE) and mean absolute error (MAE) were
calculated for the training and testing datasets. The results revealed that SVR with various kernels
fitted to India overall, as well as the major rice producing states, would explore the nonlinear patterns
to understand the precise situations of yield prediction. This study will be helpful for farmers as well
as the central and state governments for estimating rice yield in advance with optimal resources.

Keywords: rice cultivation; food security; prediction; support vector regression with kernels; RMSE
and MAE

1. Introduction

Never having any disparity in how it is cooked, boiled, or fried, rice is practically
an everyday meal in Indian society, with India being the second-largest rice-producing
nation in the world after China. Approximately 90% of the world population in Asia has
the consumption of rice in its meal planning [1]. Rice is devoured by a major percentage of
the population in India. With a high carbohydrate content, it is an instant energy provider,
and as the nation’s populace is growing, being in excess of 400 million throughout the
subsequent years, interest in the farming of rice is set to soar.

In India, rice is cultivated in a large portion of the states, with West Bengal leading
the way in production, followed by Uttar Pradesh, Andhra Pradesh, Punjab, Tamil Nadu,
and Bihar. Rice is a major food grain in India, where the yield is emulous with China,
with more than 11% of the global production rate. Rice production has increased 3.5 times

AgriEngineering 2021, 3, 182–198. https://doi.org/10.3390/agriengineering3020012 https://www.mdpi.com/journal/agriengineering

https://www.mdpi.com/journal/agriengineering
https://www.mdpi.com
https://orcid.org/0000-0001-7648-1523
https://orcid.org/0000-0003-1312-2990
https://orcid.org/0000-0003-3659-8086
https://orcid.org/0000-0002-9841-0547
https://doi.org/10.3390/agriengineering3020012
https://doi.org/10.3390/agriengineering3020012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/agriengineering3020012
https://www.mdpi.com/journal/agriengineering
https://www.mdpi.com/2624-7402/3/2/12?type=check_update&version=2


AgriEngineering 2021, 3 183

during the last 55 years, after the Green Revolution was imposed in India. Nowadays,
due to industrialization and improper irrigation facilities, the area under cultivation is
declining in many regions of India, decreasing the quantity of rice production as well as the
yield. Inordinate rain prompting flooding and dry seasons from unusual warmth waves,
notwithstanding the ongoing droop in the economy, has prompted testing conditions for
farmers. Hence, accurate rice yield prediction is significant for the food security of India
and is as concerning as the mushrooming task in agrarian research. Additionally, early
forecasting of the rice yield for adequate information will be considerate to the policy
planners and farmers, as well for optimal land utilization and designing economic policies.

Various traditional statistical methods were employed to predict the rice yield based
on highly influential parameters, such as the area under cultivation and production, that
still resulted in a gap in measuring the accurate information. Advanced machine learning
techniques make it possible to implement means of predicting the rice yield by overcoming
the limitations of traditional techniques and forecasting methods for current needs. The
advantage of machine learning algorithms is their ability to analyze the data through
different dimensions, and diverse patterns or relationships can be summarized from the
data. Rather than the traditional regression methods, machine learning techniques have the
ability to train the models and perform better for the nonlinear data patterns. Since machine
learning algorithms are entirely data-driven, they can lessen, if not dispose of, forecaster
assumptions and bias. This is exceptionally useful for depicting the nonlinear complex
patterns in the prediction of rice yield, making these forecasts more robust. Machine
learning techniques are playing a prominent role in dealing with such complex situations
and making wise decisions in support of farmers as well as decision-makers.

2. Review of the Literature

Most researchers have focused on developing traditional and advanced regression
models in linear and nonlinear situations. Starting with the traditional multiple linear
regression to predict the crop yield in Andhra Pradesh [2], kernel ridge, lasso, and elastic
net regression models considering parameters such as the state, district, season, area, and
year have been used to estimate the particular crop yield in India [3].

Applications of machine learning techniques are playing a vital role in handling rice
production. Based on accurate predictions by these techniques, farmers can plan how
much area to take for particular crop production, as well as the yields of crops. A study
intended to forecast the rice yield through support vector regression by including the
influencing parameters such as soil nitrogen, rice stem weight, and rice grain weight was
performed in [4]. Applications of data mining techniques such as k-means clustering, k-
nearest neighbors (KNN), artificial neural networks (ANNs), and support vector machines
(SVMs) for predicting the yields of horticultural fields provide incredible innovations in
computer science and artificial intelligence [5]. Some researchers employed the polynomial
and radial basis function kernels of support vector regression (SVR) to predict the output
energy of rice production in Iran [6]. The study investigated the relative importance of
climate factors in the yield alteration of paddies in southwestern China. A comparison
between an SVM with multiple linear regression (MLR) and an artificial neural network
(ANN) have been carried out and validated by various cross-validation techniques such
as (those abbreviated as) MAE, mean relative absolute error (MRAE), RMSE, relative root
mean square error (RRMSE), and a coefficient of determination. It was further suggested
to consider various parameters of soil management practices to increase the precision
in the developed models [7]. The researchers proposed the Support vector machine-
Based Open Crop Model (SBOCM) to apply support vector machine kernels to optimize
different separate examinations of three sorts of rice plantings and a few formative stages
after dimensionality reduction by principal component analysis (PCA) and evaluation by
fivefold cross validation [8]. SVM, J48, and neural networks are methods in the domain of
data mining techniques that infer the most ideal outcomes in augmented harvest output [9].
Using MLR, PCA, and SVM, the researchers measured the relationship between climate
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variables and rice yield in southwest Nigeria. It provides details on environment rice
yield interactions, which can emphatically recognize future variabilities and aid future
planting periods [10]. By integrating various classifiers, the authors investigated data
mining strategies used for the information collected to predict rice crop yield for the Kharif
season of the tropical wet and dry climatic zones of India [11]. Machine learning techniques
were used in other studies to predict rice yield. Modeling based on the relationship between
previous environmental trends, and crop production rate, which was then compared to a
measure of accuracy for obscure climatic conditions. Clustering, Regression Trees, ANN,
and Ensemble Learning are the methodologies used, and they are cross-validated using
Root Mean Square Error (RMSE) [12]. The researchers proposed a method for determining
crop selection based on yield prediction, taking into account factors such as soil type,
temperature, water density, and crop category. Since the accuracy of the estimate is
dependent on the influenced parameters, a better methodology to improve net crop yield
is needed [13]. Another study proposed the use of data mining techniques to accurately
estimate the yields of six major crops, including Aus rice, Aman rice, Boro rice, Potato, Jute,
and Wheat, which can be economically beneficial for development in a specific area [14].

Another research looked at using different machine learning techniques to predict
crop yield data and validating the findings using RMSE values [15]. A study used Mod-
ular Artificial Neural Networks (MANN) and SVR to estimate Kharif crop production
in Visakhapatnam, with the amount of monsoon rainfall factored in to improve accu-
racy [16]. Other researchers used SVR with RBF kernel to construct a model of wetland rice
production based on climate changes in the Kalimantan province to predict with greater
precision [17]. Additionally, some researchers used four machine learning algorithms
(SVM, KNN, Linear Regression, and Elastic Net Regression) to predict potato tuber yield
with soil and crop properties through proximal sensing on a dataset of six fields across
Atlantic Canada with different zones for the year 2017–2018 [18].

3. Materials and Methods
3.1. Data Collection

Rice yield data for the years 1962–2018 were gathered from the Directorate of Economics
and Statistics, Ministry of Agriculture, India. The study looked at data from across India
as well as the top five rice-producing states, using parameters like Area Under Cultivation
(Thousand Hectares), Production (Thousand Tonnes), and Yield (KG/Hectare). Due to the
bifurcation in 2014, Andhra Pradesh, one of the top states in rice production, is not included.
This study compares rice yields in India and major rice-producing states such as West Bengal,
Uttar Pradesh, Punjab, Tamil Nadu, and Bihar to determine the influence of each state.

3.2. Methodology
3.2.1. Support Vector Regression

This study employs the SVR algorithm proposed by Vapnik and Chervonenkis (1963),
which incorporates the ε-insensitive loss function. For solving classification and regression
analysis, the SVR provides promising features and empirical results. The main idea behind
this algorithm is to fit as much data as possible without violating the margin. It tries to find
the hyperplane from the given data points and determines the closest relation between
the support vectors and the hyperplane’s location, as well as the function that is used to
describe them. In certain cases, the SVR tries to suit the best line possible by limiting the
number of violation constraints using hypertuning parameters such as ε, γ, and C, the
regularization parameter with kernel transformation.

The basics on SVR are recalled below. Let F = {(x1, y1), (x2, y2), . . . , (xN , yN) } be the
set of N samples, where (xi, yi) are the input vectors corresponding to the output target variables.
The regression function where x is augmented by one, b and w are the vectors is given as:
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y(x) = ∑N
i=1 wixi + b; y, b ∈ R; x, w ∈ RN (1)

= wTx + b; x, w ∈ RN , (2)

where x = (x1, . . . , xN)
T , y = (y1, . . . , yN)

Tand w = (w1, . . . , wN)
T .

The optimization problem is given by

Min
1
2
‖w‖2 + C ∑N

i=1 (δi + δ∗i ) (3)

subject to constraints{
yi − wTxi − b ≤ ε + δi
wTxi + b− yi ≤ ε + δ∗i

}
; δi ≥ 0, δ∗i ≥ 0, (4)

where C is the regularization parameter; a positive constant penalty coefficient that min-
imize the flatness or the error of the objection function and δi, δ∗i are the slack variables
added to shield the error.

The dual formula of non-linear SVR is obtained by using Lagrange Multipliers from
the primal function, introducing non-negative multipliers µi and µ∗i , for each observation
xi given as:

L(γ) = min
1
2

N

∑
i=1

N

∑
j=1

K(µi + µ∗i )(µi − µ∗i ) + ε
N

∑
i=1

(µi + µ∗i )−
N

∑
i=1

yi(µi − µ∗i ) (5)

where K is the kernel function defined as K = K(i, j) = ϕ(xi)
T ϕ(xj); ϕ(x) is the transfor-

mation that maps x into a high dimensional space subject to constraints.{
∑N

i=1 (µi − µ∗i ) = 0; 0 ≤ µi, µ∗i ≤ C; i = 1, 2, . . . , N
}

(6)

The different of kernel functions involved in this study are given below:

1 Linear K(i, j) = K(xi, xj)

2 Polynomial K(i, j) = (γ(xi, xj) + r)d

3 Radial Basis Function K(i, j) = e(−γ|xi−xj |2)

where γ and r are the structural parameters of the kernel function and d is the degree of
the polynomial function.

Hence, the regression estimate of the non-linear kernel is expressed as

h(xi) = ∑N
i=1 (µi − µ∗i )K(xi, xj) + b (7)

3.2.2. Hyperparameter Optimization

Hyperparameter tuning and cross validation are two activities that are usually per-
formed in data pipelines. Obtaining a suitable configuration for the hyperparameters
necessitates precise knowledge and intuition, which is often achieved via the trial-and-
error process. As a result, parameter tuning selects values for a model’s parameter that
improve the model’s accuracy. For different kernels, the following parameters are used in
the analysis.

1. Regularization parameter, C: If the hyper-dimensionality plane’s is random, it can
be perfectly fitted to the training dataset, resulting in overfitting. As the value of
C increases, the hyperplane’s margin shrinks, increasing the number of correctly
classified samples.



AgriEngineering 2021, 3 186

2. Kernel parameter, γ: This implies the radius of influence, the higher values closer the
sample points. This is very sensitive to the model, as when γ becomes large, the radii
of influence of the support vectors tend to be too small, leading to overfitting.

3. Error Parameter, ε: Generally used in regression, it is an additional value of tolerance,
when there is no penalty in the errors. The errors are penalized as ε approaches zero,
and the higher the values, the greater the model error.

4. The non-linear SVR is used in the study to forecast rice yield data. The kernel function
is applied to each data set in order to map the nonlinear observations into a higher-
dimensional space where they can be separated. The SVR’s efficiency is determined
by the hypertuning parameters, which are interdependent [19–22]

3.2.3. Schematic Diagram of Performing SVR

Figure 1 presents the process of our SVR methodology.
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3.3. Cross-Validation Method

The training set is divided into k distinct subsets using k-fold cross validation. Then,
during the entire training process, each subset is used for training and the others k-1
are used for validation. This is done to improve the classification and regression tasks’
preparation. The parameter calibration was performed using the training dataset during
the training stage, and the trained model was then evaluated by evaluating the testing
results using the RMSE and Mean Absolute Error (MAE) metrics. In this analysis, the
average values of RMSE and MAE of 10-folds were used for training results.

The RMSE is the measure of the differences between values predicted by a model or
an estimator and the values observed. It can be expressed as

RMSE =

√
1
N ∑N

i=1 (yi − ŷ)2 (8)

The MAE is the average of absolute difference between the target and predicted values.
It is given as

MAE =
1
N ∑N

i=1|yi − ŷ| (9)

4. Results and Discussion
4.1. Summary Statistics of Rice Parameters

Descriptive statistics such as mean, Standard Deviation (SD), skewness, and kurto-
sis are evaluated for the Yield (Kg/hectare), Area (Thousand hectares), and Production
(Thousand tonnes) for Overall India and major states.

Table 1 summarizes the yield for India as a whole and the top five states. The mean
values of West Bengal (1876.755 ± 629.6552), Tamil Nadu (2477.355 ± 734.8786), and
Punjab (2991.355 ± 923.6729) are more than average of overall India with their standard
deviations. The distribution of rice yield for overall India, Tamil Nadu, and West Bengal
exhibiting a positively skewed (0.115, 0.033, and 0.107) and platykurtic curve (−1.235,
−1.022, and −1.521) as there is a slight drop of yield seen in recent years. For Bihar, there
is a positive skewness (1.215) and leptokurtic (1.243) distribution recorded, as a consistent
growth of yield is observed in subsequent years. Similarly, for Punjab and Uttar Pradesh, a
negative skewed (−0.84 and −0.217) and platykurtic (−0.345 and −1.443) distribution is
found, which implies that yield is declining due the influence of many parameters under
consideration.

Table 1. Summary statistics of yield (Kg/Hectare) for the years 1962–2018.

States Mean Standard Deviation Skewness Kurtosis

All India 1653.105 498.9388 0.115 −1.235

Bihar 1187.512 458.9505 1.215 1.243

Punjab 2991.355 923.6729 −0.84 −0.345

Tamil Nadu 2477.671 734.8786 0.033 −1.022

Uttar Pradesh 1519.801 610.1552 −0.217 −1.443

West Bengal 1876.755 629.6552 0.107 −1.521

Table 2 shows the summary statistics of rice crop area under cultivation from 1962
to 2018 for India as a whole and the big five rice-producing states. From the table, the
mean and SD values of WB (5375.904 ± 432.7927), UP (5278.316 ± 572.2343), and Bihar
(4576.484 ± 897.5415) are allocating major land for rice cultivation and least is observed
in Punjab (1739.461 ± 945.8439) and Tamil Nadu (2198.316 ± 386.5147). The skewness
and kurtosis values are negatively distributed and follow a platykurtic distribution, which
implies that there is a drastic decline in areas under cultivation of the major states and
overall India.
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Table 2. Summary statistics of area under cultivation (thousand hectares) for the years 1962–2018.

States Mean Standard Deviation Skewness Kurtosis

All India 41037.68 2911.21 −0.48 −0.945

Bihar 4576.484 897.5415 −0.644 −1.33

Punjab 1739.461 945.8439 −0.29 −1.464

Tamil Nadu 2198.466 386.5147 −0.033 −0.828

Uttar Pradesh 5278.316 572.2343 −0.404 −1.18

West Bengal 5375.904 432.7927 −0.336 −0.829

Table 3 describes the summary statistics of production of rice for the overall India and
major producing states. The mean and SD values of Bihar (5179.959 ± 1378.052), Punjab
(5999.959± 4040.386), Tamil Nadu (5301.673± 1346.065), Uttar Pradesh (8332.887 ± 3942.218),
and West Bengal (10268.23 ± 3896.285). Table 3 shows that India and Bihar have positively
skewed production and a slight increase, while Punjab, Tamil Nadu, Uttar Pradesh, and
West Bengal have negatively skewed production. The kurtosis values for India as a whole
are negative, and the major states have a platykurtic distribution. It implies a decline in
rice production in the states for the observed years because, as the population grows, the
region and production of the states contribute less to the yield earned.

Table 3. Summary statistics of production (thousand tonnes) for the years 1962–2018.

States Mean Standard Deviation Skewness Kurtosis

All India 69143.93 24644.12 0.067 −1.316

Bihar 5179.959 1378.052 0.000107 −0.005

Punjab 5999.512 4040.386 −0.033 −1.384

Tamil Nadu 5301.673 1346.065 −0.128 −0.133

Uttar Pradesh 8332.887 3942.218 −0.117 −1.453

West Bengal 10268.23 3896.285 −0.038 −1.659

4.2. Rice Yield Prediction of Overall India and Major Producing States Using Various Kernels of
SVR with Hypertuning Parameters

Rice yield is primarily affected by the region under cultivation and development,
so it was treated as a dependent variable in this analysis, with the other two variables
serving as predictors. The best fitted kernels for yield of the overall India and other
five states are investigated for both the training and testing data with more accuracy for
implementing different user-defined hypertuning parameters such as C, ε, γ, and d. A grid
search optimization and k-fold cross validation methods are employed to optimize the
hyperparameters. In this study, we consider cross validation (k = 10) to evaluate the model
performance of training data of rice yield prediction and to reduce error estimates with
less bias and variance in the dataset. The set of hyperparameters (C, γ, and d) is initialized
in the given range C ∈ (0.05, 1.1), γ ∈ (0.05, 0.5) for the polynomial kernel, γ ∈ (0.25, 3) for
the RBF kernel, d ∈ (1, 5) and ε values are set to 0.1 by default. The research focuses on
regression models that use SVR and various kernels such as linear, polynomial, and radial
basis functions. The findings are summarized in Tables 4–6.
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Table 4. Error analysis and cost values of training and testing datasets by using SVR linear kernel for
rice yield prediction.

Dataset States RMSE MAE Cost

Train

All India 27.52055 23.05118 1.1
Bihar 80.40918 68.36108 1.1

Punjab 297.4711 224.2278 0.25
Tamil Nadu 68.64182 57.58319 0.35

Uttar Pradesh 43.47316 39.07503 1.1
West Bengal 41.00673 35.04825 1.05

Test

All India 31.05632 22.72886 1.1
Bihar 62.60574 50.93586 1.1

Punjab 493.5309 401.1693 0.25
Tamil Nadu 84.2756 72.35583 0.35

Uttar Pradesh 61.46972 52.59493 1.1
West Bengal 35.11301 30.23646 1.05

Table 5. Error analysis and degree, cost, and γ values of training and testing datasets by using SVR
polynomial kernel for rice yield prediction.

Dataset States RMSE MAE Degree Cost γ

Train

All India 28.97924 25.07671 2 1 0.35

Bihar 31.2602 26.9666 3 0.5 0.25

Punjab 90.38687 74.10524 4 1.1 0.4

Tamil Nadu 49.27959 42.12796 2 0.85 0.25

Uttar Pradesh 35.82643 29.72098 4 1 0.25

West Bengal 37.9135 29.82876 1 1.1 0.4

Test

All India 18.23377 14.55882 2 1 0.35

Bihar 37.3793 31.71476 3 0.5 0.25

Punjab 109.3165 89.24507 4 1.1 0.4

Tamil Nadu 60.88977 58.1863 2 0.85 0.25

Uttar Pradesh 36.31511 31.64557 4 1 0.25

West Bengal 35.79188 27.48669 1 1.1 0.4

Table 6. Error analysis and Sigma (γ) and cost values of training and testing datasets by using SVR
radial basis function kernel for rice yield prediction.

Dataset States RMSE MAE Sigma (γ) Cost

Train All India 47.90525 37.5891 0.5 1.1
Bihar 65.09703 45.87701 0.25 1.1

Punjab 196.5431 150.9922 2.75 1.1
Tamil Nadu 131.1512 94.32958 0.25 1.1

Uttar
Pradesh 71.06016 53.27636 0.25 1.1

West Bengal 69.99749 58.21759 0.25 1

Test All India 94.60944 55.98602 0.5 1.1
Bihar 161.7523 85.16538 0.25 1.1

Punjab 174.8837 140.0258 2.75 1.1
Tamil Nadu 102.7245 67.17755 0.25 1.1

Uttar
Pradesh 98.70091 69.96868 0.25 1.1

West Bengal 69.12172 59.52803 0.25 1
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Table 4 represents the SVRLinear kernel for overall India and other five states with
RMSE, MAE, and predefined cost function.

It is clearly observed that SVRLinear has the best predicted output for the overall India
(training and testing datasets) with errors validation such as RMSE (27.52 and 31.056) and
MAE (23.0518 and 22.7289) with cost function C = 1.1. For the testing set West Bengal, the
SVRLinear kernel has the best predicted output with RMSE and MAE as 31.05 and 27.72,
respectively, and with C = 1.05.

Table 5 depicts the optimal values of the parameters of error analysis (RMSE and
MAE), degree of polynomial, cost, and γ values using SVR polynomial kernel. SVRPolynomial
is the best predicted output for the five major states, i.e., Bihar, Punjab, Tamil Nadu, Uttar
Pradesh, and West Bengal in the training dataset by allocating predefined parameters
such as degree of polynomial (d ∈ (1, 5)), Cost (C ∈ (0.05, 1.1)), and scale parameter
(γ ∈ (0.05,0.5)). Similarly, for the testing set, Bihar, Punjab, Tamil Nadu, and Uttar Pradesh
have SVRPolynomial as the best kernel.

Table 6 depicts the error validation, Sigma (γ ∈ (0.25, 3) and cost (C ∈ (0.05, 1.1)
values of the SVR Radial Basis Function on rice yield of overall India and major states. The
results revealed that there is no significant performance for the overall India and the major
five states by implementing the SVRRBF kernel.

4.3. SVR with Different Kernels for Randomly Allocated Testing Data of Rice Yield

Tables 7–12 show the randomly assigned testing data modeled with best fitted SVR
kernels such as linear, polynomial, and radial basis function of rice yield training data for In-
dia as a whole and the major five rice producing states, as well as graphical representations
of the same.

Table 7. SVR kernels for testing data of overall India.

Year Testing Data Linear Polynomial Radial Basis Function

1965–66 862 927.3773 848.0545 1067.776

1966–67 863 928.2253 841.4404 1082.654

1969–70 1073 1099.57 1074.2819 1095.163

1972–73 1070 1092.218 1040.5272 1071.356

1977–78 1308 1316.539 1331.4916 1354.699

1981–82 1308 1321.101 1342.5861 1374.131

1982–83 1231 1233.836 1214.1736 1211.379

1985–86 1552 1542.52 1555.7508 1556.554

1992–93 1744 1726.412 1737.1086 1725.277

1993–94 1888 1873.587 1883.6489 1883.61

2011–12 2393 2388.328 2389.0101 2399.779
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Table 8. SVR kernels for testing data of Bihar.

Year Testing Data Linear Polynomial Radial Basis Function

1965–66 812.06 749.3555 854.4835 820.106

1966–67 365.93 342.1535 342.8664 880.7237

1969–70 729.85 612.1557 761.4629 816.3171

1972–73 946.77 963.1515 995.7426 889.5958

1977–78 983.18 945.5241 997.2016 1029.8179

1981–82 793.07 711.3524 831.4973 826.7751

1982–83 681.44 688.4047 738.9844 739.2374

1985–86 1127.61 1151.086 1128.1617 1142.9612

1992–93 806.16 823.3341 867.6472 778.268

1993–94 1294.78 1364.048 1293.5672 1325.887

2011–12 2154.85 2051.369 2125.3052 2212.6976

Table 9. SVR kernels for testing data of Punjab.

Year Testing Data Linear Polynomial Radial Basis Function

1965–66 1000 1984.915 1231.086 1400.547

1966–67 1185.96 1987.467 1344.406 1421.784

1969–70 1490.37 2040.976 1510.019 1531.768

1972–73 2008.41 2110.805 1910.526 1869.862

1977–78 3001.2 2389.271 2913.105 2953.451

1981–82 2956.69 2653.454 2994.668 2844.673

1982–83 3144.05 2714.251 3115.535 2918.069

1985–86 3179.05 2972.802 3140.217 3107.372

1992–93 3390.8 3251.927 3282.86 3357.642

1993–94 3507.11 3359.478 3371.527 3397.523

2011–12 3740.95 3876.672 3778.639 3864.746

Table 10. SVR kernels for testing data of Tamil Nadu.

Year Testing Data Linear Polynomial Radial Basis Function

1965–66 1454.21 1409.09 1493.528 1503.597

1966–67 1551.08 1495.778 1593.943 1586.809

1969–70 1681.58 1632.861 1728.835 1700.689

1972–73 1953.66 1941.907 1996.371 2000.905

1977–78 2050.46 2072.662 2100.432 2052.946

1981–82 2272.8 2349.43 2347.931 2216.156

1982–83 1854.75 1989.945 1925.694 1923.1

1985–86 2371.81 2449.183 2450.186 2355.629

1992–93 3115.59 3177.199 3156.456 3190.227

1993–94 2926.68 3027.936 2984.151 2993.174

2011–12 3917.8 3757.044 3822.656 3615.108
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Table 11. SVR kernels for testing data of Uttar Pradesh.

Year Testing Data Linear Polynomial Radial Basis Function

1965–66 556.72 673.1853 540.2164 763.3959

1966–67 452.81 566.0447 423.2931 669.2615

1969–70 779.22 819.2724 799.4894 777.9589

1972–73 748.22 805.2615 759.5732 778.4787

1977–78 1068.93 1049.531 1115.0186 1017.2877

1981–82 1094.45 1067.715 1157.0251 1155.563

1982–83 1114.85 1088.614 1167.6177 1103.6731

1985–86 1488.21 1458.631 1533.773 1548.5288

1992–93 1772.77 1729.739 1777.3107 1820.2415

1993–94 1902.14 1841.217 1881.8026 1923.9034

2011–12 2357.83 2403.677 2319.2443 2296.3077

Table 12. SVR kernels for testing data of West Bengal.

Year Testing Data Linear Polynomial Radial Basis Function

1965–66 1051.91 1108.185 1119.508 1156.513

1966–67 1037.77 1095.963 1107.669 1152.406

1969–70 1266.08 1254.931 1271.739 1246.331

1972–73 1127.41 1114.321 1137.813 1172.415

1977–78 1381.57 1325.851 1352.202 1377.464

1981–82 1119.5 1086.001 1114.68 1184.133

1982–83 1018.02 1043.034 1062.954 1123.664

1985–86 1573.43 1545.416 1553.579 1499.179

1992–93 2009.9 1982.777 1993.333 2039.329

1993–94 2061.25 2044.542 2058.219 2110.904

2011–12 2688 2680.183 2657.777 2731.098

The tables (Tables 7–12) and graphical representations (Figures 2–7) depict the predic-
tion of testing data (randomly chosen years) of rice yield of the overall India and the major
states through various SVR kernels. From the overall summary of Table 13, it is observed
that SVRLinear and SVRPolynomial kernels are the best models to predict the rice yield of
overall India, and major states show a lower RMSE and MAE as compared to SVRRBF.
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Table 13. Best fitted regression models with SVR kernels.

States Dataset RMSE MAE Best Fitted SVR Kernels

All India
Training 27.52055 23.05118

Linear
Testing 31.05632 22.72886

Bihar
Training 31.2602 26.9666

Polynomial
Testing 37.3793 31.71476

Punjab
Training 90.3869 74.1052

Polynomial
Testing 109.3165 89.2451

Tamil Nadu
Training 49.2756 42.1280

Polynomial
Testing 60.8898 58.1863

Uttar Pradesh
Training 35.8264 29.7210

Polynomial
Testing 36.3151 31.6456

West Bengal
Training 37.9135 29.8288 Polynomial

Testing 35.11301 30.23646 Linear

When compared to advanced machine learning techniques, traditional methods for
forecasting time series data, such as Autoregressive Integrated Moving Average (ARIMA)
models, regression models, and other statistical models [23–25], which applied to agricul-
tural production, did not yield good approximation values [4,6–8,11,12,17,26–28]. One of
the drawbacks of conventional approaches is that the time series data must be in chrono-
logical order when fitting the models, which can be solved by advanced machine learning
techniques that select data points at random and suit well–trained models. In comparison
to traditional statistical models, the assumptions of non-parametric techniques like SVR
were much more versatile in dealing with such non-linear uncertainty situations in order
to train the history of rice productivity more accurately. The exploration of various kernels
of SVR for major rice-producing states and India as a whole was described in a much better
way in this study, allowing for a much better understanding of the exact patterns of rice
yield. Even though the major rice-producing states have non-linear (polynomial) patterns,
India’s yield has linear patterns.

Graphical representations of SVR kernels with testing data:
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The demand for rice in India will continue to rise in the coming decades as the
country’s population grows. Predicting agricultural production with advanced machine
learning techniques is the need of the hour to deliver high reliability and stability prediction
performance, which will help India address food security issues and public health concerns.
In place of conventional approaches, the models derived from the SVR with different
kernels in this study are very useful in handling both linear and non-linear situations of
rice production. As a result, the SVR appears to be a viable alternative to other predictive
models. Rice yield is limited in this study since it only considers two influencing factors:
Area under cultivation and production; however, it can be expanded by adding other
influencing factors such as environmental, climatic, and irrigation, fertilizers, and soil
fertility parameters to obtain more accurate results. Farmers and crop planners may
use these outbreaking results to predict total yields ahead of time and benefit from land
allocation and development of various rice crops. This study will provide researchers and
policymakers with information to help them concentrate on developing more accurate
prediction models to assist the government in implementing new agricultural policies that
favor farmers and agribusiness industries.
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