. . Ld /
AN AgriEngineering m\b\"y

Article

Investigation of Pig Activity Based on Video Data and
Semi-Supervised Neural Networks

Martin Wutke 10, Armin Otto Schmitt 1200, Imke Traulsen 30 and Mehmet Giiltas ->*

1 Breeding Informatics Group, Department of Animal Sciences, Georg-August University,

Margarethe von Wrangell-Weg 7, 37075 Gottingen, Germany; martin.wutke@uni-goettingen.de (M.W.);
armin.schmitt@uni-goettingen.de (A.O.S.)

Center for Integrated Breeding Research (CiBreed), Georg-August University, Albrecht-Thaer-Weg 3,
37075 Gottingen, Germany

3 Livestock Systems, Department of Animal Sciences, Georg-August University, Albrecht-Thaer-Weg 3,
37075 Gottingen, Germany; imke.traulsen@uni-goettingen.de
*  Correspondence: gueltas@informatik.uni-goettingen.de
check for
Received: 2 November 2020; Accepted: 1 December 2020; Published: 4 December 2020 updates

Abstract: The activity level of pigs is an important stress indicator which can be associated to
tail-biting, a major issue for animal welfare of domestic pigs in conventional housing systems.
Although the consideration of the animal activity could be essential to detect tail-biting before
an outbreak occurs, it is often manually assessed and therefore labor intense, cost intensive and
impracticable on a commercial scale. Recent advances of semi- and unsupervised convolutional
neural networks (CNNs) have made them to the state of art technology for detecting anomalous
behavior patterns in a variety of complex scene environments. In this study we apply such a CNN for
anomaly detection to identify varying levels of activity in a multi-pen problem setup. By applying
a two-stage approach we first trained the CNN to detect anomalies in the form of extreme activity
behavior. Second, we trained a classifier to categorize the detected anomaly scores by learning
the potential activity range of each pen. We evaluated our framework by analyzing 82 manually
rated videos and achieved a success rate of 91%. Furthermore, we compared our model with a
motion history image (MHI) approach and a binary image approach using two benchmark data sets,
i.e., the well established pedestrian data sets published by the University of California, San Diego
(UCSD) and our pig data set. The results show the effectiveness of our framework, which can be
applied without the need of a labor intense manual annotation process and can be utilized for the
assessment of the pig activity in a variety of applications like early warning systems to detect changes
in the state of health.

Keywords: semi-supervised learning; animal behavior; animal welfare; machine learning

1. Introduction

The investigation of pig behavior is still challenging since specific activities like aggressive
behavior of animals are highly complex and hard to predict [1]. A deviation from regular patterns
may indicate stressful events like changes in the state of health, which could manifest themselves in
form of behavior disorders [2—4]. One of those major disorders is tail-biting, which reduces animal
welfare [4,5] and simultaneously leads to an economic loss [5,6]. Due to the multifactorial origin of
this abnormal behavior [7-9], tail-biting has so far been considered as unpredictable automatically [10]
and therefore difficult to detect by a single indicator. To deal with this issue, several environmental
and animal individual variables are used in early warning systems to detect tail-biting before an
outbreak occurs [11]. Among these variables the activity level of the pigs has been identified as one
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of the most promising ones [12,13]. Here, previous studies indicate that the activity level of pigs
prior to a tail-biting outbreak is increased [14,15]. Therefore, the early detection of shifting points in
the animal activity could provide crucial hints to further differentiate between e.g., aggressive and
non-aggressive events.

Until now, several methods for the investigation of animal behavior have been established mainly
focusing on the identification of pig specific activity patterns. In most studies camera recordings
are preferred to monitor the animals due to their non-intrusive nature [16,17]. The evaluation of the
corresponding video data to analyze the behavior is mainly done manually [14,18-21]. However, for the
reduction of the subjective bias caused by a single human observation, several experts are needed for
the video evaluation and to increase the interobserver reliability these observers are trained in advance.
Hence, the manual evaluation approach is time consuming, labor-intense and therefore impracticable
on a commercial scale [11]. In addition, more sophisticated methods are applied to automate the
evaluation process. In the majority of these studies machine learning methods are used for supervised
object detection with the aim of detecting individual animals within a video [22-26]. While some of
these algorithms achieve remarkable detection results, their performance strongly depends on the
availability and quality of a manually annotated training data set [27]. These data sets are commonly
created by manually labeling (annotating) a large number of images prior to the model training.
Therefore, the elaborate annotation process represents a main weakness of supervised approaches [28].
To deal with the time consuming annotation process unsupervised methods like motion history image
(MHI) and binary image approaches [29], have been applied to describe motion behavior in a sequence
of images by encoding the temporal differences between consecutive frames [30,31]. Although MHI-
and binary image-based methods have been successfully applied in various applications [32-36],
recent advantages in deep learning led to an increased popularity of alternative approaches like
unsupervised convolutional neural networks (CNN). These CNNs achieved state of the art results
for numerous computer vision tasks like action recognition [37] or image denoising [38,39] and
outperformed existing methods. Their success led to new network structures like temporal autoencoder
or variational autoencoder, which are able to learn the spatial movement patterns of objects in a
sequence of frames [40]. Inspired by the success of established CNN models, our aim in this study is
to implement a predictive CNN for anomaly detection to assess the animal activity by computing a
comparable activity score for different pig pens.

2. Materials and Methods

In this section we describe the video data used for the model development as well as the
implemented model structure. After this, the downstream threshold-based classification algorithm
and the model validation is explained in detail. Our analysis follows the structure of Figure 1.

2.1. Video Data

Video recordings from six cameras monitoring ten pig pens were taken in a research trial between
March 2017 and March 2018 at a research facility of the Christian-Albrechts-University in Kiel, Germany.
For the recordings, each camera of the type AXIS M30-VE was assembled 2 m above the pig pens.
An overview of the pen arrangement, the camera placement and an example image of each camera are
presented in Figure 2.

The number of monitored pens differs between cameras: while cameras 1 and 6 recorded a single
pig pen each, the remaining four cameras recorded two pens. Despite the heterogeneous environments
(arrangement of water troughs, structural design) and camera angles, the varying number of recorded
pigs complicates the comparability between different cameras. We explicitly included video footage
with varying environments to demonstrate the flexibility and robustness of our approach to work
with different scenarios. Due to structural reasons of the pig compartments some areas within the
pens could not be entirely captured by the cameras. Because our framework is based on observable
pixel changes without identifying specific objects, this limitation does not affect the results and the
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applicability of this study. All videos used for this analysis have a length of 30 min, a frame rate
of 15 frames per second (FPS) and a pixel dimension of 1280 x 800. To increase the computational
efficiency, only one frame per second was used and the videos have been gray-scaled in order to avoid

a potential bias between videos with different color modes (day and night recordings).

Analysis framework

Training data

Test data

Anomaly score distribution

Classified activity
scores

Figure 1. Flowchart of the analysis applied in this study.
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Figure 2. The data set consists of video recordings from six cameras and ten pens of pigs, with camera 1
(C1) and camera 6 (C6) recording a single box with six and seven piglets, respectively, and the
remaining cameras (C2-C5) recorded two pens with seven piglets each. The left side shows the
camera arrangement within the pig compartment.
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2.2. Convolutional Autoencoder Network

Our proposed model follows a convolutional autoencoder structure, which is intensively used for
unsupervised and semi-supervised anomaly detection tasks [40-42]. Anomaly detection itself is a well
known area in machine learning and video motion analysis is becoming more and more important
due to the increased use of video surveillance systems [40,43]. In general, anomaly detection aims to
find atypical patterns that do not match the expected normal patterns, which constitute the majority of
the data [44]. By defining an expected behavior pattern as the normal behavior, the detection of an
anomaly corresponds to the detection of atypical patterns and can be used, for example, for activity
recognition and classification [43]. For images and videos, the task of finding an anomaly is challenging
due to the high dimensional structure and the non-local temporal variations [40]. In line with earlier
studies [45-48], we implemented a predictive CNN network, by approximating the next video frame
X; given a series of the past g frames [X; 1, X; 2, ..., Xt—4] , in which it learns the visual activity
patterns included in video sequences [49]. For our analysis, the CNN is trained entirely on normal
behavior patterns in the form of low activity sequences that correspond to resting behavior at night.
For each camera, five videos with a length of 30 min each were used for training. This step enables the
model to accurately forecast the next video frame. However, the prediction accuracy of future frames
with high activity patterns is decreased, as the model lacks the necessary information to predict these
patterns [50]. As a result, those frames are categorized as anomalous events based on the corresponding
Mean Squared Error (MSE) score (Equation (1)) between the predicted video frame and the true frame
as the model loss function [48].

MSE = Y6, 0,7, (1)
i=1
where 6 is the predicted output pixel value, § the true pixel value and p the number of pixels per frame.
Consequently, the CNN output is used as an activity score which indicates the intensity of anomalous
behavior patterns.

In our study we deal with highly complex activity patterns of pigs in a crowded environment.
The spatio-temporal architecture is the model of our choice, since such architectures have already been
successfully applied for anomaly detection for human data sets in crowded scenes [51]. As depicted in
Figure 3, our proposed CNN network consists of two parts: a spatial encoder-decoder for learning
the spatial patterns and a temporal encoder-decoder that receives the encoded spatial representations
and takes the temporal correlation of consecutive video frames into account. The spatial autoencoder
consists of two 2D-convolutional layers for the encoder and decoder each. Max-pooling-layers for the
encoder and upsampling-layers for the decoder are used after each convolution to adjust the image
dimension while being processed by the network [52]. At the bottleneck of the spatial autoencoder
two convolutional long short term memory (LSTM) layers are used for the temporal encoder-decoder
part. At the end of the temporal autoencoder a prediction of the future frame based on the given
input sequence is computed and reconstructed to the original input dimension by the spatial decoder
part. Prior to the model training, we downsampled all video frames so that the target dimension was
400 x 640 pixels. The convolutional neural network was implemented in R (version 3.6.3) using the
deep learning framework Keras (version 2.2.4) [53] with TensorFlow (version 2.0) [54] as a backend.
The model was trained using the Adadelta optimizer [55] and a workstation equipped with two Intel
Xeon Gold 6138 CPUs, 512 GB RAM and a NVIDIA Quadro P5000 GPU.
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Figure 3. The proposed method uses an hourglass-shaped network to first encode the sequence of input
frames to a latent representation of reduced dimension and to predict the next frame. The prediction is
then decoded to the input dimension by the spatial decoder and compared to the ground truth images.
For each layer, the current dimension of the input frame is indicated by the number in front of the

layer name.

2.3. Threshold-Based Activity Score Classification

In order to increase the comparability and interpretation of the activity scores computed by the
CNN, the scaling of these scores is necessary. For this purpose, we have used a threshold-based
activity score classification approach by analyzing a total of 288 videos with our CNN model. For this
classifier 48 videos containing 24 consecutive hours of observation time were selected for each camera.
To ensure the comparability between pens all samples were taken over an equal period of time.
Since theses videos contain both day and night recordings, a broad variety of activity patterns is
included. By analyzing each video with a frame rate of one frame per second, we determined a total
number of 515,196 activity scores (85,866 scores per camera) from which the classifier can deduce the
intensity range of each camera.

For the implementation of the classification algorithm the activity scores are discretized into
100 evenly distributed intervals. The interval thresholds 7; are calculated for each camera individually,
based on the distribution of the activity scores. Equation (2) shows the general classification process,
where the activity score x is classified conditioned on the specific T level.

1, ifx<mh
ActivityClass(x) = < i, ift; <x<Tt,; with i=23,..,99 )
100, if x > 1o

Here, the lower and upper bounds 77 and 7, correspond to the 0.1 and the 0.9-quantiles of
the camera specific activity scores. By systematically analyzing different values for 73 and 1,
we established that using the 0.1-quantile and the 0.9-quantile are the most convenient bounds to
account for potential outlier effects caused by distorted and overexposed video frames.

2.4. Model Validation

2.4.1. Comparison with Manual Observations

To evaluate the prediction quality of our framework we tested it on manually rated videos. Thus,
a set of 82 videos of ten seconds containing a broad variety of activity patterns were selected and
manually annotated by human visual observation. Consequently, the manual ratings are used as
a baseline against which the CNN results are compared. Here, we followed the idea of previous
studies [35,56] and rated the animal activity based on their locomotion behavior type like running,
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walking or lying as well as the number of animals moving and defined three activity regions namely
low activity, medium activity and high activity. To ensure the objectivity of the manual classification
process each video was evaluated without taking the CNN classification results into account. A trained
observer categorized each video independently into one of the three activity regions. In cases where no
movement occurred or in which all animals took in a lying position, the corresponding video was rated
as low activity. If up to four animals (~50% of pen occupancy) showed a standing posture without
movement or were showing a walking behavior with less activity intensities, the video was manually
marked as medium activity. Consequently, the video was marked as high activity if more than four
animals were walking or at least one animal was running with a strong locomotion intensity. In total,
we annotated 18 videos as low activity, 33 videos as medium activity and 31 videos as high activity.

This consolidation of the observable activity into three classes was necessary to allow the
comparison of our framework with human visual observations. Our model was designed to classify
the animal activity into a larger category space ranging from class 1 to class 100. Therefore, for the
comparison with the manual ratings and the sake of simplicity, we differentiated the activity class
obtained from our model into low, medium and high activity categories. Similar to the manual
rating, we classified a video as low activity if the highest activity class obtained from the model was
below an activity class score of 25 for that video. If the highest activity class was between 25 and 75,
we categorized the video as medium activity. Finally, if the activity class of at least one video frame
was above 75, the video was marked as high activity. In order to measure the association strength
between the manual ratings and the consolidated CNN predictions we applied Kendall’s rank-order
correlation coefficient (Kendall’s 7) [57], as a non-parametric association metric especially designed for
measuring the association of ordinally scaled variables.

2.4.2. Performance Assessment on Benchmark Data Sets

To additionally assess the performance of our approach, we performed a comparison study
between our framework, a MHI-based approach and a binary image-based approach. Here, we used
three benchmark data sets, i.e., two Pedestrian data sets published by the University of California,
San Diego (UCSD) [58,59] and our pig data set. The UCSD Pedestrian data sets are well known in
the machine learning community and are frequently used to evaluate the model performance for the
detection of abnormal events in the form of unusual motion patterns [50,60]. The data sets contain
two scenarios of pedestrians walking on a sidewalk, which is defined as the normal motion pattern.
Anomalies occur in the form of cyclists, skateboarders, carts and small vehicles. While UCSD 1 consists
of 34 train sequences (6800 frames) and 36 test sequences (7200 frames), UCSD 2 contains 16 training
sequences (2551 frames) and 12 test sequences (2019 frames). Figure 4 shows an example of two frames
from the UCSD 1 and the UCSD 2 data set.

Figure 4. Sample from the UCSD 1 (left) and the UCSD 2 (right) data set. The red rectangle highlights
an anomaly in the form of a small vehicle and a cyclist, respectively.
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To compute the MHI, we applied a sliding window on each test sequence and compared
two consecutive frames extracted in time t and t — 1 based on their MSE values (Equation (1)).
Similarly, for the binary image approach we followed the study of Ott et al. [35] and Tsai et al. [36].
First, we performed background subtraction and created a binary image for each video frame in the
test set. After that the squared differences between consecutive binary images in time t and t — 1
were calculated. Subsequently, we applied our CNN on the same sequences after learning the regular
movement behavior from the training set and compared the results.

3. Results

The following section is comprised of two parts. First, to demonstrate the performance and
functionality of our approach, we analyzed several videos which contain various types of activity of
the pigs. Second, the results for the model validation using the manual video classifications as well as
the comparison study between our model, the MHI and the binary image approach are presented.

3.1. Anomaly Detection and Classification

By analyzing multiple videos and predicting an activity class for each frame we found that
our framework is able to detect varying types of behavior like lying, standing, walking or running.
Figure 5 shows an example video analyzed by our model. Our analysis showed that the range of the
predicted activity score class for the corresponding frames was low during a resting phase in which no
activities occurred. In contrast, the more the animal activity increased and the more pigs became active,
the higher was the predicted class. In particular, a maximum score of 100 was reached for situations,
in which all pigs showed strong interactions with intense activity levels.
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Figure 5. Progression of the predicted activity score classes for a randomly selected nine-minute video.
The images on the right side correspond to the highlighted score classes marked with their frame color.
Green frame: very low activity score classes correspond to situations like resting behavior in which no
movement activities occur. Orange frame: an increase in the score classes correspond to an activity
increase of individual animals, e.g., a single animal walking (*) or two animals changing their body
posture (**). Red frame: the occurrence of high score classes are in line with strong behavior activities
caused e.g., by the simultaneous interaction of several pigs.

By manually comparing the results of our framework and the corresponding time points in
the videos, we observed that lower activity periods (activity class score < 25) are related to resting
behavior of the animals while mid-range class scores between approximately 25 and 75 correspond to
less intense movement activities mainly caused by a single animal walking or by two animals changing
their body posture, respectively. Class scores > 75 are only reached if several animals are interacting
with each other strongly or unexpected events occur near the pens (see Figure 5).

To gain more insight in the working processes of our approach, we compared the classified
sequences computed by the activity classifier with the observed activity scores without classification
directly taken from the CNN. Although the observed activity scores already indicated phases of
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different motion activities, prior knowledge is required for a meaningful interpretation. Furthermore,
the usage of the observed scores is only advisable for videos from the same camera due to camera
specific score ranges that result in a different activity score intensity for the same motion behavior
(for example, a single animal is moving within the pig pen). Figure 6 presents the results for the video
comparison and illustrates the necessity of the activity score classification.
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Figure 6. Comparison of unclassified activity scores (A,B) and their assignment into activity score
classes (A’,B’) for videos of lower (A) and higher (B) activity intensities. The 90-second sequences are
centered around the minimum activity score value for the sequences in (A) and maximum activity
score value for the sequences in (B) indicated by the vertical red line.

In Figure 6, low activity videos (Figure 6A) as well as high activity videos (Figure 6B) were used
to demonstrate the necessity of the anomaly score classification. While the videos in Figure 6A,B
show the activity score computed by the CNN, a direct comparison of multiple videos is critical
due to a non-constant activity score range computed for each pen. Therefore, to increase the
comparability between sequences of different cameras, a correction of the pen specific bias is required.
The varying score range can be explained by the learning behavior of the CNN to extract camera
specific characteristics during training as well as the negative effect of natural noise inherent in the
video files which lead to lower boundaries > 0 even for situations in which no activity occurred [16].
The videos in Figure 6A’,B” show the corresponding classification results of the activity scores. Since the
classifier has learned the potential range of the observed activity scores for each camera, it classifies
periods without activity as class one. However, very high activity intensities, which lie above the
0.9-quantile of all observed activity values, were classified into the maximum class of 100. Therefore,
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situations in which the animals are interacting intensively with each other can be identified due to the
characteristic progression of the predicted activity score class (Figure 6B”).

3.2. Model Validation

To further investigate the prediction quality of our two-stage framework proposed in this work,
we were interested in testing it on manually rated videos that have been randomly sampled from the
pool of videos which have not been used for training

As can be seen in Table 1, our approach is in line with a large majority of the manual findings and
is able to identify phases of different activity patterns. Of the 18 videos that were manually classified
as low, 17 were classified correctly by our framework while one video was falsely classified as medium
activity. In 33 cases, the human observer rated the behavior intensity as medium activity of which our
classifier was able to identify 27 sequences correctly. For the misclassifications, one video was marked
as low while the remaining five videos were marked as containing high activity patterns. For the
high activity cases, 31 videos were manually categorized of which all were assigned correctly. In total,
out of 82 cases 75 videos were classified correctly by our approach which corresponds to a success
rate of 91%. The majority of the misclassifications belonged to the medium category, while our CNN
classified them as high category. Here, applying Kendalls rank correlation coefficient on the results
presented in Table 1 we achieved a T-value of 0.91.

Table 1. Confusion matrix for the comparison between our method and manually evaluated videos.
The entries on the main diagonal indicate the number of correctly classified sequences, whereas the
entries above and below the main diagonal indicate predictions that deviate from the manual rating.

Manual Rating Low Medium High
Activity  Activity  Activity

CNN Prediction n=18) (n=33) (n=31)
Low activity 17 1 0
Medium activity 1 27 0
High activity 0 5 31

After assessing the performance of our framework by matching it with human visual
classifications, we have further compared our model with a MHI-based approach and a binary
image-based approach. Samples from the output of this comparison study for the UCSD data sets and
our pig data set are depicted in Figures 7 and 8, respectively.

Although all three approaches were able to detect varying types of anomalies based on regular
movement patterns, a closer look at Figure 7 shows that the MHI approach as well as the binary image
approach are likely to underestimate the MSE score in the presence of an anomaly due to slower object
movements and therefore less intense pixel changes. In contrast, the CNN learns the characteristic
movement patterns during training by simultaneously considering the objects velocity and the pure
existence of an anomaly which leads to higher MSE values of the predicted frame. Moreover, the MHI
approach and the binary image method tend to overestimate scenarios in which only regular pedestrian
activities without the existence of an anomaly occur while the CNN computes a lower MSE score
because it has learned the tendency of those patterns during training. In cases in which the observable
behavior differs from the learned behavior of the CNN during training but no higher motion activity
occurs (e.g., Figure 8 standing posture of pigs), the CNN outputs a higher MSE in contrast to the
MHI or the binary image approach. Similarly, as can be seen in Figure 8, the effect of neglectable
noise, e.g., insects, dirt or a chain inside the pen, leads to higher MSE values for the MHI and the
binary image. The difference to the CNN can be explained by the training behavior of the CNN which
included noisy training videos and enables the model to learn the effect of noise to some extend.
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4. Discussion

In this study, by employing our two-stage approach we show the applicability of semi-supervised
machine learning techniques for the automatic determination of the activity level of piglets.
The findings of this study are of use to increase the applicability of video recordings of pigs without
annotating the data and to improve the usage of the animal activity level in early warning system.

Previous studies successfully demonstrated the applicability of predictive CNNs for the
unsupervised and semi-supervised detection of anomalous behavior patterns for human data sets.
Chon et al. (2017) analyzed two scenarios focusing on surveillance videos of crowded scenes to identify
anomalous objects and changes in motion behavior [51]. Further, Zhao et al. (2017) additionally
evaluated a CNN on real-life traffic videos to automatically detect irregular traffic flow in form of
traffic jams, irregular trajectories or different motion states of vehicles [60]. These two articles have
motivated us to apply the methodology of anomaly detection in the field of livestock farming systems
to address the potential of automated video evaluation algorithms. To date, the investigation of
animal activity using video recordings is dominated by manual evaluation methods (see e.g., [61]) or
supervised approaches by annotating the data in advance (see e.g., [16]).

By training the CNN on low activity videos and the usage of the prediction quality of future frames
as an indicator for anomalous frames we were able to identify varying activity levels. The comparison
study with a MHI-based approach showed that although MHI approaches are computationally less
expensive, CNNs are more suitable to analyze the complex nature of crowded scene environments
and captures anomalous events more reliably. Furthermore, the analysis of 82 manually rated videos
supports the findings of the comparison study. While the majority of the manually rated sequences
have been categorized correctly, seven sequences where mapped to a different behavioral category.
Because our framework was not designed to map videos to a low category space, the differences
between the manual ratings and the CNN results can be explained by the difficulty to find a suitable
discriminant line that separates higher activity patterns in the low category space. Nevertheless, from a
practical perspective modern camera technologies are used frequently nowadays to monitor pigs in
modern housing systems. The large amount of data as well as influential factors like varying occupancy
densities, different pen surroundings and the complex behavioral nature lead to a need for an efficient
filtering method. Consequently, the validation results (Table 1) demonstrate the suitability of our
framework to approximate the behavior intensity for heterogenous pen environments. Therefore,
our framework would be able to assist the farmer to perform a pre-selection of unseen video files and
detect suspicious scenes that contain intense interactions and anomalies.

Another fundamental step of our approach is the classification of the activity scores obtained
from the CNN into an activity class. A closer look at similar scenarios from different pens revealed
the limited comparability of analyzed sequences due to the varying lower bound of the activity
scores and the open upper bound (see Figure 6A,B). Due to the effect of the inherent video
noise, the minimum activity scores changed even when no motion activity took place. In the
literature, multiple approaches have been suggested to address the issue of noisy images [62-66].
Inspired by Fernandez-Carrién et al. [16], who applied a moving average filter on optical flow
values to correct for the noisy video frames and then classified motion sequences into one of three
classes, we trained a classification algorithm to classify new activity scores obtained from the CNN.
Unlike Fernandez-Carrién et al. [16], we implemented our classifier based on the activity scores of
288 30-min videos to learn the potential range of activity scores for each camera and to overcome the
limitation of the varying boundaries (see Figure 6A’,B’).

While CNNs are successfully applied for the detection of anomalous events in video data of
crowded scenes [67], a simple MHI or binary image approach is highly sensitive to even minor motion
changes in videos, which leads to high numbers of false negatives due to the complex dynamics of
the scene. Therefore, we implemented a predictive network to learn the distinctive activity patterns
of pigs with the goal of computing a comparable activity score. For this purpose, we first trained a
CNN on low activity videos to identify sequences of high activities. In a second step, we applied
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smoothing by using a threshold-based classification algorithm to correct for the bias introduced by the
heterogenous environments of the pens. In order to demonstrate the functionality of our framework
we analyzed multiple videos with and without activity classification. Our results show that we are
able to detect varying types of anomalies in videos and to assign them to distinct activity classes.
Further, we compared the performance of our model with a MHI-based approach and a binary image
approach using two distinct data sets. This comparison shows that CNNs are more suitable for
anomaly detection of complex activities in videos of pigs (see Figure 5). Therefore, our findings can be
of use for the implementation of activity-based warning systems in a multi-pen environment. Here,
by increasing the comparability between different camera recordings, heterogeneous surroundings
and varying levels of pen utilization can be taken into account. Furthermore, our study contributes to
the problem of insufficiently labeled training data. Earlier studies already demonstrated the possibility
of a semi-supervised annotation method, in which CNN results have been used to create pseudo-labels
and from which a supervised model can be trained (see e.g., [68]). By applying our semi-supervised
approach to unlabeled video sequences, artificial annotations in the form of activity score classes can
be computed, which allow a more efficient filtering and selection of video sequences of interest.

5. Conclusions

In this study, we applied a two stage approach to evaluate specific motion patterns in surveillance
videos of pigs. Therefore, we combined the methodical framework of anomaly detection with a
threshold-based classifier that learned the potential range of activity patterns. Our findings show that
the activity intensity from an automatic analysis at the pen level is a sufficient indicator for low and
high activity behaviors and that specific behaviors can be mapped to an activity score class range.
To the best of our knowledge, this is the first study in the field of livestock farming, which applies
a semi-supervised model without the need for annotated data sets to gain deeper insight into the
underlying behavior patterns of pigs. Our results could be of use for future research analyzing
behavior activities like agonistic interactions that occur with high activity intensities. Furthermore,
our framework can be utilized to detect activity shifts in daily routines of the animals and deviations
from the normal behavior which can serve as an indicator for changes in the state of health and could
provide implicit hints for a more in-depth study of agonistic behaviors.
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