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Abstract: Black spot is one of the seriously damaging plant diseases in China, especially in rose production.
Hyperspectral technology reflects both external features and internal structure information of measured
samples, which can be used to identify the disease. In this research, both the spectral and image features
of two infected roses with black spot were used to train a convolutional neural network (CNN) model.
Multiple scattering correction (MSC) and standard normal variable (SNV) methods were applied to
preprocess the spectral data. Cropping, median filtering and binarization were pretreatments used on
the hyperspectral images. Three CNN models based on Alexnet, VGG16 and neural discriminative
dimensionality reduction (NDDR) were evaluated by analyzing the classification accuracy and loss
function. The results show that the CNN model based on the fusion of features has higher accuracy.
The highest accuracies of detection of blackspot in different roses are 12–26 (100%) and 13–54 (99.95%),
applying the NDDR-CNN model. Therefore, this research indicates that the spectral analysis based
on CNN can detect black spot of roses, which provides a reference for the detection of other plant
diseases, and has favorable research significance as well as prospect for development.

Keywords: hyperspectral imaging; black spot; infected samples; non-destructive detection; preprocessing;
CNN model

1. Introduction

Roses have great commercial value as ornamental plants, food and exports as cut flowers in
China [1]. Black spot is one of the most severe and devastating disease of roses [2]. It is caused by
black spot fungus. Symptoms of infection mainly include round spots with a black and feathery edge
on the front side of the leaves [3]. At present, the method to manage the disease is to use fungicides or
pesticides. The primitive means of detection depends on the visual ratings of gardeners after spot
spreading which is inefficient and inaccurate [4,5]. If the disease can be accurately identified in the
early stage, it can be controlled in a timely manner and improve economic benefits. Therefore, it is
urgent to comprehensively improve the detection ability of black spot disease.

Some biological methods are also used to detect plant diseases. Ju et al., developed an assay consisting
of recombinase polymerase amplification combined with lateral-flow dipstick technology (RPA-LFD) for
the rapid and sensitive detection of V. dahliae [6]. Shi et al., applied loop-mediated isothermal amplification
(LAMP) to detect P. carotovorum in celery with soft rot using a primer set designed from the pmrA conserved
sequence of P. carotovorum [7]. PCR analysis was used to identify and detect powdery and downy mildew
on cucumber as well as Pectobacterium brasiliense on potato [8,9]. These research methods have the
advantages of rapid speed and sensitivity, but also have shortcomings, such as being expensive, destructive
to the leaves and requiring a cumbersome operation process and professional biochemical knowledge.
Hyperspectral technology is an advanced technology which combines the traditional spectral technology
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and two-dimensional imaging technology organically. It can reflect both external feature information and
internal structure information of the samples. Compared with manual and biological detection, it has the
characteristics of being fast, non-destructive, non-polluting and easy to operate. It has been gradually
applied in related fields and it proposes a potential solution to solve many problems faced by human
visual-level detection of plant pathology in the field. Roscher et al., combined the information of
hyperspectral features with 3D geometry features to detect leaf spot in Cercospora [10]. Ban et al.
studied the SPAD value of apple leaf infected with apple mosaic virus using hyperspectral transmission
measurement technology [11]. Mahlein et al. summarized the hyperspectral imaging technology used
to evaluate the relationship between plants and pathogens [12]. Mehrubeoglu et al. focused on the
hyperspectral images of grape leaves to identify the red blotch disease and different infected stages of
the disease [13]. Laurel wilt disease of avocado, early Ganoderma boninense disease of oil palm trees,
fusarium head blight in wheat kernels and black Sigatoka in banana leaves in the early stage were
detected automatically based on hyperspectral imaging [14–17]. Wahabzada et al. presented several
data mining techniques applied to discover the spectral characteristics of some specific diseases [18].
Hariharan et al., developed a novel method to analyze hyperspectral data using finite difference
approximation (FDA) and bivariate correlation (BC) to distinguish laurel wilt infected avocado from
healthy trees with an overall accuracy of 100% [19]. Gradually, hyperspectral imaging and machine
learning were used in many studies to detect the symptoms before disease. Zhang et al. chose the
classification and regression tree (CRT) algorithm to establish the prediction spectral model of wheat
powdery mildew, considering the effects of wheatear and leaf shadow [20]. The K-nearest neighbor
(KNN) method was used to establish the discriminant models to classify healthy and gray mold infected
tomato leaves and muskmelon Cercospora leaf spot with hyperspectral imaging techniques [21,22].
Chen et al. established and selected the most appropriate leaf-level reflectance-based vegetation indices
for bacterial wilt detection in peanuts. ANOVA, multilayer perception, and the reduced sampling
method were used to analyze the spectral data [23]. Garhwal and Park et al. developed a partial least
squares discriminant analysis (PLS-DA) model to predict Zebra Chip in potatoes, Marssonina blotch
in apple leaves, oak wilt and yellow rust on wheat leaves, respectively. The spectral signatures were
extracted by segmentation and morphological operations [24–27]. Zhang and Pan et al., obtained
hyperspectral images of rice leaves and pear fruit infection. A support vector machine (SVM) model
was constructed to identify different infection severities based on the transformed data [28,29].

Among the existing methods for detecting plant diseases, the convolutional neural network (CNN) rarely
appears. These methods achieve early detection of plant diseases, but there is still space for improvement in
accuracy. In addition, the classic machine learning algorithm usually requires complex feature engineering,
while CNN does not. It only needs to input the data directly to the network, which usually achieves
good performance.

This study used hyperspectral imaging to detect black spot in two varieties of roses. Spectral
and images were extracted and different CNN structures were adopted. The accuracy and efficiency
showed that CNN had great potential in detecting plant diseases.

2. Materials and Methods

2.1. Hyperspectral Imaging System

The hyperspectral imaging system is shown in Figure 1. It contains an SOC710VP HS line-scanning
imaging spectrograph (AZUP Scientific Ltd., Beijing, China) which is fixed to a bracket, a C type infrared
correction lens, an object stage, a notebook computer with HyperScanner_2.0.127 software (SURFACE
OPTICS CORPORATION, San Diego, CA, USA) for collecting the image, and two 150 W tungsten
halogen lamps that can provide stable and multi band light. The imager extracts 128 wavebands with a
spectral range of 370–1042 nm, a spectral resolution of 4.7 nm and a spatial resolution of 696 × 520 pixels.
The exposure time of the imaging system was set to 3 ms. The location and elevation of lights were
adjusted according to the imaging result of samples at a 45◦ angle, 65 cm away from the stage.
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paper and culture fluid. There was no obvious abnormality observed on the surface at the beginning 
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Figure 1. Hyperspectral imaging system.

2.2. Plant Samples

This study selected two kinds of roses consisting of 12–26 (susceptible) and 13–54 (resistant) which
were both hybridization samples from the rose spot breeding laboratory in the School of Landscape
Architecture. 90 plants of each kind were planted in a greenhouse with temperature (20 ◦C), humidity
(60% relative), light (12 h) and an identical environment. Gathering five real leaves from the same
position in the stem 20 cm from the ground where petiole length ranges from 2 to 4cm. Per kind, roses
containing 450 leaves and 900 healthy leaves in total were set as the control group. The mycelium was
scraped from the naturally occurring plants and prepared as a spore suspension with the potency of
0.5\1\1.5 mol/L under the microscope. Each kind of rose was divided in three groups and each group
was inoculated with a concentration of suspension. Four bacterial drops were inoculated symmetrically
on four positions on one leaf. It should be noted that the inoculation was carried out after the collection
of the spectral data of all healthy leaves. Then all the inoculated leaves were put into the incubator to
create conditions of temperature (25 ◦C), humidity (80% relative) and lucifugal for the growth of the
black spot fungus. These were taken out every 24 h to collect spectral data until they were cultivated,
at 7 days. After three weeks of continuous culture, the incidence of black spot fungus on each leaf
was recorded and we divided the leaves into two levels of health and infection according to whether
there were spots on the surface, as the label for later training. The samples after infection are shown in
Figure 2. They were then put in a petri dish lined with filter paper and culture fluid. There was no
obvious abnormality observed on the surface at the beginning of the inoculation.
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2.3. Hyperspectral Imaging Acquisition and Calibration

Ambrose et al. put forward that the acquired raw hyperspectral images may be unavailable under
the factors such as systematic noise and environmental influence [30]. Therefore, dark and white
calibration for the images were needed. The calibration was achieved according to Equation (1)

IC =
Ir − Id
Iw − Id

(1)

where Ic is the calibrated reflectance image; Ir is the raw hyperspectral image; Id is the hyperspectral
image of dark reference, which has almost 0% reflectance; and Iw is the white reference hyperspectral
image, which has a reflectance of over 99%.

2.4. CNN Models for Detection

In this study, three CNN structures are used for model training.

a. AlexNet

AlexNet was designed by ImageNet competition champion Hinton and his student Alex Krizhevsky
in 2012. Compared with traditional machine learning classification algorithms, the main new technology
points used by AlexNet are (1) successfully used ReLU as the activation function of CNN, and verified
that its effect surpassed Sigmoid in the deeper network, and successfully solved the gradient dispersion
problem of Sigmoid in the deeper network, (2) dropout is used to randomly ignore some neurons during
training to avoid overfitting the model. In AlexNet, the last few fully connected layers use dropout,
and (3) data enhancement. If there is no data enhancement, only the original data volume, CNN with
many parameters will fall into overfitting. After using data enhancement, it can greatly reduce overfitting
and improve the generalization ability.

The structure used in this study is as Figure 3. It contains 5 convolutional layers, 3 fully connected
layers and 3 pooling layers. It is of most importance that 2 dropout layers are added to prevent
overfitting. In this study, the input to this network is the spectral feature.AgriEngineering 2020, 3 FOR PEER REVIEW  5 of 13 
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b. VGG16

VGG is a CNN model proposed by Simonyan and Zisserman in the document “Very Deep
Convolutional Networks for Large Scale Image Recognition”. The model participated in the 2014
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ImageNet image classification and positioning challenge, ranking second in the classification task and
first in the positioning task. The features of VGG are:

(1) Small convolution kernel. The author replaced all convolution kernels with 3 × 3 (rarely used 1 × 1).
(2) Small pooled core. Compared with AlexNet’s 3 × 3 pooled cores, VGG are all 2 × 2 pooled cores.
(3) Fully connected to convolution. The network test phase replaces the three full connections in the

training phase with three convolutions. The test reuses the parameters during training, so that
the full convolutional network obtained by the test does not have the limit of full connection, so it
can receive any width or height input.

According to the size of the convolution kernel and the number of convolution layers in VGG,
it can be divided into 6 configurations (ConvNet configuration), A, A-LRN, B, C, D, and E; D and E are
more commonly used and they are called VGG16 and VGG19.

In this study, VGG16 was selected as the training model; Figure 4 shows the structure. It contains
13 convolutional layers, 3 fully connected layers and 5 pooling layers. The input to this network
structure is the hyperspectral image feature.
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c. Neural discriminative dimensionality reduction (NDDR)-CNN

NDDR-CNN was proposed by Yuan Gao and others in 2019. It is a general-purpose multi-task
CNN learning framework that can automatically integrate features of different layers of different tasks
using the NDDR module, that is, no artificial hard design is required, which can achieve plug-and-play.

(1) NDDR layer. Used for multi-task feature fusion and feature dimensionality reduction. When the
features of different layers of multiple tasks enter the NDDR layer, NDDR will first stitch all the
incoming features in the last dimension, and then convolve the obtained features separately for
each task. After completing the convolution, the obtained feature shapes are respectively input
into the original network for convolution operation.

(2) Shortcuts. In order to prevent the gradient of the lower layer from disappearing, the Shortcuts
module is used to directly pass the gradient from the last layer to the lower layer. Each mainline
task will receive the feature from the NDDR layer multiple times. The Shortcuts layer of each
task resplices multiple NDDR-features received by this task according to the last NDDR-feature
and then stitches them together.



AgriEngineering 2020, 2 561

Experiments prove that the multitasking framework with NDDR has a certain degree of improvement
compared to other frameworks. In addition, the task also processed many details, including the initialization
of the weight of the NDDR layer and the selection of the learning rate, etc., which are all ways from which
the network can learn.

The network structure of NDDR-CNN is shown in Figure 5. It uses the NDDR layer cascade to
achieve multitasking. The input to this network structure in this study is a fusion of features, including
spectral features and image features.
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2.5. Data Processing

This study is based on Python 3.8 and processes the data in the environment of Pycharm +

Tensorflow 2.1.0 + Keras 2.3.1. The data processing is as Figure 6.
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First of all, we obtained hyperspectral images including ordinary roses and those were inoculated
with black spot. Secondly, image calibration was achieved by subtracting images of dark reference
which were acquired at absolutely no light. The third step was to extract the region of interest (ROI)
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from the hyperspectral images and extract the spectrum of ROIs, as is shown in Figure 7a. The average
spectral of the sample points from each ROI was used to represent the spectrum of the ROI. The image
data is also affected by the background and noise of the petri dish, so the image is preprocessed by
cropping, median filtering denoising, and binarization. The processing flow and results are shown in
Figure 7b. Finally, we chose 3 × 3 filtering to denoise the image, because this filter can detect more
noise features and its denoising effect is better. For each waveband, 360 spectral samples obtained from
the ROIs of each hyperspectral image were used as training sets for CNN modeling. After obtaining
the CNN model, 90 new samples were used as the testing sets (Table 1). Modeling was then performed,
based on spectral features, image features, and fusion features, respectively. Spectral features represent
the reflectivity of the leaf to light at different wavelengths. Image features represent the grayscale
pictures of the samples, containing some shape and texture features. When training the model, we used
the spectrum, the image and a combination of the two as input. Finally various parameters of different
CNN models were adjusted according to the training process, to obtain the optimal detection model.
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Table 1. Information regarding healthy and infected samples for modeling.

Variety Treatments Training Size Testing Size

12–26(Susceptible)
Health 360 90

Infection 360 90
Total 720 180

13–54(Resistant)
Health 360 90

Infection 360 90
Total 720 180

2.6. Analysis

As can be seen from Figure 7a, the spectral reflectance of different samples differs in value, but their
changing trends are consistent, with the same absorption peaks and valleys. After extracting the ROI,
we take the average spectrum of the sample as the research object. From Figure 8a, we see that the
spectral reflectance of the infected sample is always lower than that of the healthy sample. At the same
time, with the increase in the number of infection days, that is, the degree of infection continued to
decrease, the reflectivity continued to decrease, showing such a trend in both roses. On the other hand,
the spectral curve reflects the light absorption and reflection characteristics of rose leaves. At 580 nm,
there is an obvious absorption peak, which is caused by the nitrogen response of the material in the leaf.
The overall low reflectance within 800 nm is caused by the strong absorption of pigments (chlorophyll,
anthocyanin, carotene, etc.) by the leaves. Within 800–1000 nm, the spectral reflectance increases
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sharply, and then maintains a higher reflectance, which is caused by the multiple scattering of light
by the leaf cells. The cell structure of the infected sample is destroyed, and the scattering ability is
reduced, so the reflectivity is also reduced to a certain extent within this range. Due to the influence of
the experimental instruments and the experimental environment, there is a lot of noise in the original
spectral curve extracted from the ROI, which will affect the data quality and is not conducive to
subsequent analysis and modeling. Therefore, in this paper, multiple scattering correction (MSC) and
standard normal variable (SNV) methods are combined for preprocessing to eliminate the effects of
high-frequency noise and baseline offset. Through pretreatment, the average spectral curves of healthy
samples and infected samples of different types of roses can be seen more clearly in Figure 8b.
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3. Results and Discussion

3.1. Optimizer Algorithm in the CNN Model

The optimizer algorithm is often used to find the optimal solution of the model. In this study,
when using the CNN model to train the fully connected layer, the stochastic gradient descent (SGD)
optimizer is used. It can use information more effectively when it is redundant, and the early iteration
effect is excellent. A large number of theoretical and practical work proves that SGD can converge
well in most instances. Especially when applying large data sets, training is performed at high speed.
This study trains the SGD optimizer at different learning rates. Momentum is the historical gradient
weight coefficient, set to 0.9, where the batch size is set to 32, and two iterations are performed first.
The loss function is also the most critical element in model training. It also needs to be defined and
optimized. The smaller the loss, the better the model. Taking the image feature in VGG16 as an example,
we compare 5 loss functions. Table 2 shows the comparative results.

Table 2. The loss and accuracy results of different loss functions.

Loss Function Train_Loss Train_Accuracy (%) Test_Loss Test_Accuracy (%)

categorical_crossentropy 0.2231 95.63 0.2277 92.95
mean_squared_error 0.0910 92.05 0.1107 89.50
mean_absolute_error 0.1433 90.84 0.2122 85.75

mean_squared_logarithmic_error 0.0464 87.12 0.0557 83.95
hinge 0.6555 85.83 0.7040 80.10

All 5 loss functions reach an accuracy of over 80% and the train loss and test loss were controlled
to a level lower than 0.23, which is a relatively good performance. Table 2 shows that when the loss
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function is categorical_crossentropy, the train accuracy and test accuracy are both higher than the other
loss functions. Therefore, this paper selects categorical_crossentropy as the loss function in the fully
connected layer. Simultaneously, under the premise of two iterations, the appropriate learning rates
were chosen as shown in Table 3.

Table 3. The loss and accuracy results of different learning rates.

Learning Rate Train_Loss Train_Accuracy (%) Test_Loss Test_Accuracy (%)

0.00009 0.2994 86.50 0.3269 83.75
0.0001 0.2523 90.50 0.2810 87.10
0.0002 0.2485 88.92 0.2903 87.30
0.0003 0.2766 87.87 0.2854 99.05
0.0004 0.2231 98.63 0.2277 97.75
0.0005 0.2599 92.68 0.2429 92.40
0.0006 0.2352 96.87 0.3297 90.95
0.001 0.2633 98.35 0.2528 93.30
0.01 0.6940 79.53 0.6932 80.00

It can be seen from Table 3 that with the increase of the learning rate, there is no obvious law
for the changes of the other parameters. When the learning rate is set to 0.0004, better results can be
achieved. The train accuracy and test accuracy are both highest while the train loss and test loss are
lowest. In addition, we increased the number of iterations for training, and the results are shown in
Figure 9.AgriEngineering 2020, 3 FOR PEER REVIEW  10 of 13 
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different iterations.

It can be seen from Figure 9 that when the number of iterations is increased, the loss and accuracy
of training increase or decrease regularly, the loss and accuracy of test show repeated fluctuations.
The optimal accuracy of the training set can reach 99.60%, the loss is 0.0154, and the accuracy of the
test set is 97.20%, with a loss of 0.0820. This shows that the adopted network can learn the features of
the samples in more detail and accuracy.

3.2. The Test Result of CNN

Table 4 shows the classification accuracy of the three CNN models. It can be seen that the accuracy of
detection for the two kinds of roses was above 80% for both in AlexNet. After MSC and SNV preprocessing,
the accuracy of the training set and the test set have been improved to a certain extent, and the detection
accuracy of 12–26 has reached a maximum of 100%, indicating that denoising preprocessing can effectively
improve the accuracy of the model. At the same time, it can be seen from the table that under the spectral



AgriEngineering 2020, 2 565

feature, for 12–26 after SNV treatment, and for 13–54 after MSC treatment, the result is better, so in the
subsequent modeling, different pretreatments were taken for the two roses. From VGG16 we can see the
detection results based on image feature. After image preprocessing, the accuracy of the training set and
the test set has also been improved, and the maximum value appears on the detection of 12–26, which is
99.6%. Based on the image feature, the detection accuracy of the susceptible variety is slightly higher
than that of resistant variety as a whole, probably because the bacteria infect the susceptible variety faster
and the changes reflected in the spectrum perform more obviously. Finally, according to the processing
process of the two features, the two varieties are pretreated differently, and the NDDR detection model
is established based on the fusion features. It can be seen that the detection accuracy based on the
fusion features has reached more than 95%, which is higher than the previous two methods. Compared
with AlexNet and VGG16, it can be seen that the fusion features perform better than the single feature.
The model detection results are better for two reasons. One is because the hyperspectral data based on
spectral and image features contain rich information from the samples, which reflects the characteristics
of multiple features in the input to the network. Another reason is that the NDDR hierarchical structure is
more abundant, which makes the model perform well in multi task feature fusion and feature dimension
reduction, which can effectively extract features and prevent the disappearance of the lower gradient.

Table 4. The classification accuracy of the three models to detect black spot.

AlexNet

Variety Data Set Train_Accuracy (%) Test_Accuracy (%)

12–26 (Susceptible)
Raw 92.36 89.58

Raw + MSC 96.53 95.83
Raw + SNV 100 97.92

13–54 (Resistant)
Raw 87.50 83.33

Raw + MSC 95.83 93.75
Raw + SNV 94.44 91.67

VGG16
Variety Data Set Train_Accuracy (%) Test_Accuracy (%)

12–26 (Susceptible) Raw 97.40 90.95
Raw + preprocessing 99.60 97.20

13–54 (Resistant) Raw 97.10 93.53
Raw + preprocessing 98.80 97.12

NDDR-CNN
Variety Data Set Train_Accuracy (%) Test_Accuracy (%)

12–26 (Susceptible) Raw 98.50 98.95
Raw + SNV + preprocessing 100.00 99.63

13–54 (Resistant) Raw 97.87 96.57
Raw + MSC + preprocessing 99.95 99.10

Therefore, the NDDR-CNN model based on the fusion feature has the best detection result for
rose spot disease in this paper. The CNN model can well solve the high-dimensional and nonlinear
practical problems of hyperspectral data. It effectively improves the detection results and avoids
over-learning and under-learning. This research has achieved the early non-destructive detection of
rose spot disease, and provides a basis for pathological detection of other plants. In the future, more
work is needed on the research of plant pathological detection based on hyperspectral images.

4. Conclusions

The development of the forestry and flower industries requires effective identification of plant
diseases, but the traditional machine learning recognition model based on a single feature has low
accuracy, low efficiency and strong randomness. Based on these problems, this study explored the
early non-destructive detection of rose spot disease based on the CNN model. In the establishment of
the detection model, hyperspectral data and image preprocessing methods were introduced, and the
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spectral and image features of the two rose leaves were extracted. For the small number of samples
in the detection of black spot disease, CNN was applied to the study and three kinds of network
structures were constructed. The effects of CNN’s loss function, learning rate and different initialization
methods on network performance were analyzed. Combined with the NDDR strategy, the accuracy of
the detection model was improved, and the effectiveness of the preprocessing and feature extraction
methods was verified. All the three models performed well; the results show that the NDDR-CNN
model based on the fusion feature detected different types of roses 12–26 (100%) and 13–54 (99.95%),
with the highest correlation coefficient with the real results. Further work will combine the physical
and chemical indexes and microstructure of rose leaves to establish correlations with hyperspectral
images, explain the changes in the spectrum from a biological point of view, and establish a more
effective and accurate detection model.
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