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Abstract: Plant stress is one of major issues that cause significant economic loss for growers.
The labor-intensive conventional methods for identifying the stressed plants constrain their
applications. To address this issue, rapid methods are in urgent needs. Developments of advanced
sensing and machine learning techniques trigger revolutions for precision agriculture based on deep
learning and big data. In this paper, we reviewed the latest deep learning approaches pertinent
to the image analysis of crop stress diagnosis. We compiled the current sensor tools and deep
learning principles involved in plant stress phenotyping. In addition, we reviewed a variety of deep
learning applications/functions with plant stress imaging, including classification, object detection,
and segmentation, of which are closely intertwined. Furthermore, we summarized and discussed the
current challenges and future development avenues in plant phenotyping.
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1. Plant Stress and Sensors

Plant stress is one of the major threats to crops causing significant reduction of crop yield
and quality [1]. The detection and diagnosis of the plant stress is urgently needed for rapid and
robust application of precision agriculture in crop measurement. Presently, intensive studies focus
on developing optical imaging methods for plant disease detection. Different from the conventional
methods using the visual scoring, optical imaging is advanced to measure changes caused by abiotic
or biotic stressors in the plant physiology rapidly and without contact. In general, the common
imaging technologies have been employed for detecting the crop stress, including digital, fluorescence,
thermography, LIDAR, multispectral, and hyperspectral imaging techniques [2]. The common optical
sensors used for plant stress detection are shown in Figure 1.
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Figure 1. Typical optical sensors used for plant stress detection. (a) Digital sensor for maize heat
stress [3]; (b) multispectral imaging sensor for maize water stress [4]; (c) fluorescence imaging sensor
for chilling injury of tomato seedlings [5]; (d) thermal imaging sensor for potato water stress [6], and (e)
hyperspectral imaging sensor for apple water stress [7].

Digital imaging sensors acquire the visible range of wavelengths, i.e., RGB colored images with red,
blue, and green channels to detect plant diseases. Such images provide physical attributes of the plants,
such as canopy vigor, leaf color, leaf texture, size, and shape information [8]. Color and texture features
are important for identifying the characteristic difference between healthy and symptomatic plants.
Frequently used color features are RGB, LAB, YCBCR, and HSV spaces [9]. Additionally, contrast,
homogeneity, dissimilarity, energy, and entropy features of images are descriptive facets of texture [10].
In other words, quantitative diagnosis features for identifying the symptomatic and healthy plants
have been collected in these images.

Thermal imaging sensors obtain infrared radiating images ranging from 8 to 12 µm, which are
often applied for predicting plant temperatures. Under the infection, the temperature of infected plant
tissues varies and related to the impacts caused by pathogens. The temperature variance, other the
hand, appears with a counter-effect on transpiration rate [11]. In other words, stress from the infection
trigger both transpiration rate decrease and leaf temperature increase, resulting in stomatal closure
in plants. In turn, based on these alterations, thermal imaging sensors could identify the infection
diseases. Each pixel of the thermal image represents the temperature value of the object, which is
expressed in manners of false color. In plant disease detection, the thermal sensor could be mounted to
ground automated vehicles (GAV) and unmanned aerial vehicles (UAV).

Fluorescence imaging sensors are often utilized to identify variations of plant photosynthetic
activity [12]. The differences of stressed and healthy leaves will be expressed in the differences of
photosynthetic activities, which will be assessed by the photosynthetic electron transform using the
fluorescence imaging sensor with an LED or laser illumination. For normal cases, 685 nm is the
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wavelength at which chlorophyll fluorescence is emitted from photo-system II (PSII). The stressed
plants could change the patterns of chlorophyll fluorescence emission, which could be reflected and
observed in the fluorescence imaging [13].

Based on the number of spectral bands in the optical sensing technologies, sensors contain 3–10 spectral
bands are named multispectral imaging sensors. The multispectral imaging sensors normally extract a few
or a stack of images from the visible to near-infrared spectrum [14]. Plant stress often causes an increase in
visible reflectance, with a decrease in chlorophyll and absorption of visible light. Additionally, reduced
near infrared (NIR) reflectance will happen due to changes of the leaf tissue. Thus, the most used band
channels are green, red, red-edge and NIR. Multispectral imaging sensor combined with drones have been
applied broadly in remote sensing for plant disease detection [15], while this type of sensors is limited to a
few spectral bands and sometimes cannot quantify the diseased plants severity.

Despite many successful studies having been applied to crop stress detection using cheap
passive imagery sensors, i.e., digital and near infrared (NIR), most of the applications require fast
image processing and computational algorithms for image analysis. Among the image analysis
techniques, supervised methods have been popular with training data being used to develop a system.
Such methods include shape segmentation, feature extraction, and classifiers for stress diagnosis.
In addition, machine learning algorithms search for the optimal decision boundary in the feature space
with high dimensionality, which provides the basis for many available image analysis systems [16].

For improving the image analysis systems, deep learning has played a key role. Deep neural networks
have many layers which transform input images to outputs (i.e., healthy or stressed) with learning deep
features. The most applied networks are convolutional neural networks (CNNs) in crop image analysis.
CNNs consist of dozens or hundreds of layers that process the images with convolution filters with a
respective small size of batches [17]. Despite such initial successes, CNNs cannot collect momentum
without the advances in core computing systems and deep convolutional networks become the current
focus. In agriculture, deep learning shows accepted performance considering accuracy and efficiency based
on large datasets. To build precise classifiers for improving plant disease diagnosis, the PlantVillage project
(https://plantvillage.psu.edu/posts/6948-plantvillage-dataset-download) has obtained a large number of
images of healthy and diseased crops for free [18]. Combined with the big data, deep learning has been put
forwarded as the future promising method in plant phenotyping [19]. For example, CNNs can effectively
detect and diagnose plant diseases [20] and classify plant fruits in the field [21]. The promising results
promote studies carrying out other phenotyping tasks using deep learning, such as leaf morphological
classification [22]. Thus, we read many references about the utilization of deep learning in image-based
crop stress detection. Summarizing, with this paper we aim to:

1. State the principle of deep learning in the application for crop stress diagnosis based on images.
2. Search for the challenges of deep learning in crop stress imaging.
3. Highlight the future directions that could be helpful for circumventing the challenges in plant

phenotyping tasks.

2. Deep Learning Principle

2.1. Machine Learning

Machine learning is a subset of artificial intelligence which is used to operate specific tasks by
computer systems [23]. In general, it is split into supervised and unsupervised learning methods.
Supervised learning methods are expressed with an input matrix of independent x and dependent
y variables. This dependent variable of y has few formats, varying based on solving problems.
For classification issues, y is usually a scalar for representing the category labels, and it is a vector
containing continuous values under regression [24]. Under segmented learning conditions, y is
sometimes the ground truth label image [25]. Supervised learning methods often aim to find optimal
model parameters, which could predict the data to the greatest extent based on the loss function.

https://plantvillage.psu.edu/posts/6948-plantvillage-dataset-download
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Unsupervised learning methods operate data processing without dependent labels and aim to
search for patterns (e.g., latent variables). Common unsupervised learning methods include principal
component analysis (PCA), k-nearest neighbors clustering, and T-distributed stochastic neighbor
embedding clustering [26]. Unsupervised training usually uses many different loss functions to process,
such as reconstructing the loss function. The model must learn to reconstruct the loss function in a
smaller dimension to reconstruct the input data [27].

2.2. Neural Network

A neural network is built to recognize patterns and provides the basis for most deep learning
algorithms [28]. A neural network contains nodes that integrate input data with a set of coefficients
and weights with amplify or dampen the input for learning the assigned tasks, e.g., the common
activation function α and parameters Θ =

{
w, β

}
, here, w represents the weights and β represents the

biases. An activation function is normally followed by an elemental nonlinear factor/coefficient σ, as a
transfer function, as shown in Equation (1) [28]:

α = σ
(
WTx + b

)
(1)

Sigmoidal and hyperbolic tangent functions are the common transfer functions for neural networks.
The multilayer perceptron (MLP) is the most popular one in traditional neural networks, with few
conversion layers [28]:

f(x; Θ) = σ
(
WLσ

(
WL−1 . . . σ

(
W0x + b0

)
+ bL−1

)
+ bL

)
(2)

where WL is a matrix containing rows wk that is related with activation k in the output, and L is the final
layer. The so-called hidden layers are the layers between input and output layers. A neural network
with many layers is often called deep neural network (DNN), thence deep learning. The activation of
the last layer is mapped to distribution on the class P (y|x; Θ) through a softmax function [28]:

P
(
y
∣∣∣x ; Θ

)
= softmax (x; Θ) =

e(W
L
i )

Tx+bL
i∑K

k=1 e(W
L
k )

Tx+bL
k

(3)

where WL
i is the weight vector associated with class i to the output node. The typical diagram of deep

neural network MLP is shown in Figure 2.

Figure 2. Typical architectures of deep neural network used in imaging analysis. (a) autoencoder and
(b) convolutional neural network.
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Currently, stochastic gradient descent (SGD) is the famous method for fitting the parameter Θ
to process a small population dataset. With SGD, a small batch is employed in each gradient and
maximum likelihood optimization is used to minimize the negative impact of the log-likelihood.
It tracks the log loss for a binary classification task and the softmax loss for multiclass classification.
A disadvantage of this method is that it usually does not directly optimize the quantity of interest [28].

DNN became popular in 2016, when it performed layer-by-layer training (pre-training) in an
unsupervised manner, and then supervised and fine-tuned the stacked network to obtain good
performance. Such a DNN architecture includes a stacked autoencoder (SAE) and a deep summary
network (DBN). However, such methods are often complex, which need a great deal of engineering
to obtain acceptable results [28,29]. Recently, end-to-end training has been conducted on popular
architectures in a supervised manner by streamlining the training procedure. The common architectures
are CNN and recurrent neural network (RNN) [30,31]. CNN has been widely used for image analysis,
and RNN is becoming more and more popular.

2.3. Convolutional Neural Network

The main difference between MLP and CNN is reflected in two aspects. First, weights of the
CNN architecture are shared with a network when the architecture operates convolutions on the input
image [32]. In this way, separate detector learning is not required for the same object appearing at
different locations in the image. As a result, the network is equally variable in the translation of input
images. In addition, the number of parameters to be learned is reduced.

During CNN training, the input images are convolved with a set of K kernels W ={
W1, W2, W3, . . . WK

}
and biases β =

{
b1, . . . , bK

}
in the convolution layer, yielding a new feature

map Xk. Such features are exposed to a nonlinear transformation parameter σ and such process would
repeat for each respective convolutional layer l [32]:

Xl
k = σ

(
Wl−1

k ×Xl−1 + bl−1
k

)
(4)

Second, the main difference between MLP and CNN is the pooling layer. In such layers, the pixels
of the neighborhood are added based on the permutation invariant function in CNN. This may prompt
a certain amount of rendering invariance [33]. Then, the fully connected layers are usually added
with constant weights after convolutional processing. Then, the softmax function is used to provide
activation information in the last layer, resulting in a category assignment. A typical CNN architecture
is shown in Figure 3 for identifying the ripeness of strawberry based on hyperspectral imagery [34].

Figure 3. One typical CNN architecture for estimating the ripeness of strawberry based on hyperspectral
imagery [34]. Note: Conv represents convolutional layer; FC: fully connected layer.
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2.4. CNN Architecture

CNN normally uses a 2D image as input, with a format of m × n × 3 (m × n × 1 for greyscale
images), where m and n are the respective image height and width, and 3 is the number of image
channels. The CNN architecture often contains a few different layers, including convolutional layers,
pooling layers, and fully connected layers. The convolutional and pooling layers are initial layers. A set
of convolutional kernels (also called filters) is used for each layer performing multiple transformations.
The convolution operations extract the associated features from small slices divided from the full image.
Each kernel is applied to the input slice and the output of each kernel is applied to non-linear processing
units, making it capable of learning abstraction and embedding non-linearity in the feature space [35].
The non-linear processing provides different patterns of activations corresponding to different responses,
which helps learn the semantic differences over the full image. Then, the subsampling is applied to the
output of non-linear processing, with summarizing the results and making the input insensitive to
the geometric deformation [36]. The CNN architecture has been applied to many aspects, including
classification, segmentation, and object detection, etc.

2.4.1. Classification Architectures

Among the pre-trained networks, AlexNet is commonly used for images classification, which is
relatively simple with five convolutional layers. The activation function of AlexNet is the hyperbolic
tangent, which is the most common choice in CNNs [37]. Then, the deep pre-trained networks appeared,
such as the VGG19 with 19 deep layers, winning the ImageNet challenge of 2014 [38]. These deeper
networks use smaller stacked kernels and have lower memory during inference, which improves
the performance of mobile computing devices, such as smartphones [39]. Later, in 2015, the ResNet
architecture won the ImageNet challenge and was made up of the ResNet blocks. The residual blocks
learn the residuals and pre-processes the learning mapping for each layer, thereby providing effective
training performance for deeper architectures. Szegedy et al. (2016) developed a 22-layer neural
network referred as GoogLeNet, which employed the inception blocks [40]. The advantage of using the
inception blocks is that it could increase the training process efficiency while decreasing the number
of parameters. The performance on ImageNet reached saturation after 2014 and crediting the better
performance to the more complex architectures is biased. On the other hand, it is not necessary
to perform plant stress detection with the deeper networks, providing a lower memory footprint.
Therefore, AlexNet or other relatively simple methods, such as VGG16, are still practical for crop
stress images.

2.4.2. Segmentation Architectures

Segmentation is important in crop stress image analysis. The pixel in the image could be classified
by the CNN and the classified pixel could be presented with patches that extracted from neighboring
pixels [41]. The disadvantage of this method is that the input patches overlap, and the same convolution
is repeatedly calculated. Fortunately, the linear operators (convolution and dot product) can be written
as convolutions [42]. With a fully connected layer, a CNN can have a larger input image than the
trained image and can generate a likelihood map instead of the output of a pixel. Then, such a full
convolutional network can be effectively applied to the full input image.

2.5. Hardware and Software

The dramatic increase of deep learning applications could be due to the widespread development
of GPUs [43]. GPU computing started when NVIDIA launched CUDA (Computing Unified Device
Architecture) and AMD launched Stream. The GPU is a highly parallel computing engine which
offers a great advantage compared with a central processing unit (CPU). The Open Computing
Language (OpenCL) unifies different GPU general computing application programming interface
(API) implementations and provides a framework that can be used to write programs that execute on
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heterogeneous platforms composed of a CPU and GPU. With the hardware, deep learning on the GPU
is much faster than on the CPU [44].

Open source software packages also promote the development and application of deep learning.
These software packages allow users to operate the computing at a high level without having to worry
about efficient implementation. By far the most popular packages include:

Caffé, which offers C++ and python interfaces, developed by graduate students at UC Berkeley
AI Research.

TensorFlow, which provides C++ and python interfaces, developed by Google Brain team.
Theano, which provides a python interface, developed by MILA lab in Montreal.
PyTorch, which provides C++ and python interface, developed by Facebook’s AI Research lab.

3. Applications of Deep Learning in Plant Stress Imaging

3.1. Classification

Deep learning has been applied successfully in plant phenotyping combined with various sensors
and specific tasks, including harvesting crop counting, weed control, and crop stress detection [17,45–47].
Regarding crop stress detection, with various specific tasks, the image analysis methods are often
varying among classification, segmentation, and object detection in crop stress detection combined
with various sensors (Figure 4). Image classification is one of the earliest areas where deep learning
contributed significantly to the analysis of plant stress images. In crop stress image classification, one or
more images are usually used as input data, and a diagnostic decision is used as output (e.g., healthy
or diseased). In this case, each diagnosis is a sample, and the size of the dataset is usually smaller
compared to computer vision (thousands or millions of samples). Therefore, for such applications,
the transfer learning should be popular for researchers. Transfer learning essentially uses pre-trained
networks to try to meet the needs of deep network training on large datasets. At present, two transfer
learning methods are commonly applied: (1) the specific pre-trained network is directly applied in
images processing, and (2) fine-tuning the specified pre-trained network for the aiming objective
images. Another benefit of the former strategy is that training a deep network is not necessary, making
it easy to insert the extracted features into existing image analysis pipelines. However, it is still a
challenge to find the best strategy. Barbedo (2019) used a CNN to classify individual lesions and spots
on plant leaves instead of considering the entire leaf [45]. This identified multiple diseases that affect
the same leaf. The accuracy obtained using this method was, on average, 12% higher than that obtained
using the original image. While proper symptom segmentation is still required manually, preventing
full automation. Also, in this paper, the authors applied deep learning to detect the individual lesions
and spots for 14 plant species. Specifically, this study used a pre-trained GoogLeNet CNN for training
the models. The images were split into two groups for addressing different objectives. The first group
was aimed to image classification, to identify the origin of the observed symptom, while the second one
was for object detection, which was to identify disease areas amidst healthy tissue and to determine if
subsequent classification was conducted or not. The results showed that accuracies obtained using this
approach were, in average, 12% higher than those achieved using the original images. The accuracies
were higher than 75% for all the considered conditions or number of detected diseases, while the author
also claimed that the resized input images for pre-trained neural network were not as advantageous as
the original images under certain conditions. Other studies that applied the deep learning into the
crop stress image classification are shown in Table 1.
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Figure 4. Applications of deep learning for crop stress detection based on different image analysis.
(a) Classification (images from [47]), (b) segmentation (images from [48]), and (c) object detection
(images from [49]).

Table 1. Applications of deep learning for crop stress classification.

Reference Sensor Stress Type Method Application

[50] RGB sensor Biotic CNN pre-trained with
AlexNet Apple leaf Diseases

[51] RGB sensor Biotic CNN pre-trained with
GoogLeNet Cassava leaf Diseases

[52] RGB sensor Biotic FCN pre-trained with VGG,
CNN pre-trained with VGG Wheat leaf diseases

[53] RGB sensor Biotic CNN Maize leaf disease

[54] RGB sensor Abiotic DNN Tomato water stress

[55] RGB sensor Abiotic and
biotic

Faster R-CNN, R-FCN, SSD
pre-trained with VGG,

ResNet

Nine tomato diseases
and pests

[56] RGB sensor Biotic CNN pretrained with
VGG16 and MSVM

Five major diseases of
eggplant

[57] RGB sensor Abiotic and
biotic CNN Eight different soybean

stresses

[58] Hyperspectral
imaging Biotic CNN and RNN Wheat Fusarium head

blight disease
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Table 1. Cont.

Reference Sensor Stress Type Method Application

[59]
RGB sensor

(datasets from
plantVillage)

Biotic VGG 16, Inception V4,
ResNet, DenseNets

38 different classes
including diseased and

healthy images of leaves
of 14 plants

[60] RGB sensor Biotic SIFT encoding and CNN
pretrained with MobileNet Grapevine esca disease

[61] RGB sensor Abiotic DCNN pretrained with
ResNet Maize drought stress

[62]
RGB sensor

(datasets from
plantVillage)

Biotic

CNN pretrained with
AlexNet, GoogLeNet,

Inception v3, ResNet-50,
ResNet-101 and SqueezeNet.

Grapevine yellows
disease

[63] RGB sensor Biotic CNN Rice blast disease

[64]

RGB sensor
(datasets from AI
Challenger Global

AI Contest)

Biotic PD2SE-Net based on CNN
and ResNet

Apple, cherry, corn,
grape, peach, pepper,

potato, strawberry,
tomato diseases

[65] Smartphones Biotic
CNN AlexNet, GoogLeNet,

ResNet, VGG16,
MobileNetV2

Coffee leaves with rust,
brown leaf spot and
cercospora leaf spot

[66] Hyperspectral
imaging Biotic CNN Yellow rust in winter

wheat

[67] RGB sensor Biotic CNN 14 crop species with
38 classes of diseases.

[68] Hyperspectral
imaging Biotic GAN Tomato spotted wilt

virus

[69] RGB sensor Biotic GAN, VGG16 Tea red scab, tea red leaf
spot and tea leaf blight

Note: SIFT: Scale-invariant feature transform.

3.2. Segmentation

Segmentation is used to identify the set of pixels or contours that make up the target object [70].
Segmentation is a common topic in papers applying deep learning to plant disease imaging.
Various methods have been applied to segmentation, such as developing unique segmentation
architectures based on CNNs and application of RNNs. The popular segmentation CNN architectures
include U-Net and Mask R-CNN [71]. U-Net was investigated in biomedical image segmentation
firstly [72], which was built upon a fully convolutional network (FCN). FCN is to provide one
contracting network by continuous layers in which pooling layers are substituted by up-sampling
operators. The continuous layer would learn to gather a more precise output, with an increase of
the resolution of the output. U-Net is symmetric, that is, it has the same number of up-sampling
and down-sampling layers. The skip connections in U-Net use a concatenation operator between the
up-sampling and down-sampling layers [73]. This method connects the features in the contact path
and the extension path. This means that the entire image is enabled to be processed forward through
U-Net to directly generate a segmentation mapping. In this way, U-Net could consider the entire image,
which make it more advanced than the patch-based CNN. Furthermore, Çiçek et al. (2016) built one
3D U-Net segmentation by replacing all 2D operations with their 3D counterparts [74]. Lin et al. (2019)
applied a U-Net CNN to segment and detect cucumber powdery mildew-infected cucumber leaves
obtained by an RGB sensor [46]. In this study, since the powdery mildew-infected pixels were less than
that of non-infected pixels, the authors proposed binary cross entropy loss function to magnify the
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loss value of the powdery mildew-infected pixels by 10 times. The results showed that the semantic
segmentation CNN model achieved an average pixel accuracy of 96.08% for segmenting the diseased
powdery mildew on cucumber leaf images. It was still challenging to apply such deep neural network
in field conditions. Different applications of deep learning into the crop stress image segmentation are
summarized in Table 2.

Table 2. Applications of deep learning for crop stress segmentation.

Reference Sensor Stress Type Method Application

[75] Smart phone Biotic CNN Cucumber diseases

[76] RGB (from Plant
Village, datasets) Biotic

Fractal Texture Analysis
(SFTA) and local binary

patterns (LBP) combined with
VGG16 and Caffe-AlexNet

Fruit crops diseases

[77] RGB sensor Biotic Mask R-CNN Rice leaf diseases

[78] RGB sensor (from AI
Challenger 2019) Biotic CNN pre-trained with U-Net Nineteen plant

diseases

[79] RGB sensor Biotic
Global pooling dilated

convolutional neural network
(GPDCNN)

Cucumber leaf
disease

R-CNN combines rectangular region proposals with CNN features. Generally, R-CNN includes
two-stage detection procedures. Firstly, the algorithm detects subset regions of an image which may
contain an object and extracts CNN features from the region proposals. Then the object in each region
is classified. R-CNN takes a large amount of training of the deep neural network when there are
2000 or more region proposals per image that need to be classified. Meanwhile, there is no learning
procedure at the first searching stage as the selective search algorithm is fixed. As a result, it may lead
to tricky candidate region proposals being generated [80,81]. During R-CNN processing, the region
proposals need to be cropped and resized, while the Faster R-CNN detector processes the entire
image. Thus, Faster R-CNN can be applied for real-time object detection. Additionally, Faster R-CNN
is the backbone of Mask R-CNN. Faster R-CNN includes two outputs, that is, a class label and a
bounding-box offset. A third branch is added to mask R-CNN upon faster R-CNN architecture, which
outputs the object mask [71]. In addition, Mask R-CNN is one of the instance segmentation algorithms
which produce a mask that uses color or grayscale values to identify pixels belonging to the same
object. Except to feed the feature map to the region proposal network and the classifier, Mask R-CNN
uses a feature map to predict a binary mask for the object inside the bounding box.

3.3. Object Detection

Object detection is a key part in imaging diagnosis and one of the most laborious tasks.
Typically, the task involves locating and identifying objects throughout the image [82]. For a long
time, the research goal of computer vision was to automatically detect objects, for improving detection
accuracy, and reducing labor. The object detection based on deep learning uses CNN for pixel
classification and then applies some post-processing to obtain object candidates [81–83]. Since the
image classification is to classify each pixel in the image, which is basically equal to object classification,
thereby the CNN architectures of segmentation are alike to those for the classification task, while the
image labels imbalance, hard negative detecting, and efficient processing image pixels etc., still remain
as the challenging issues to be addressed for object detection. Fuentes et al., (2017) applied Faster
R-CNN and a VGG-16 detector to recognize tomato plant diseases and pests [55]. Diseases and pests
could be identified using the bounding-box and score for each class being shown on each infected leaf.
That is, the detection method provides a solution for detecting the class and location of diseases in
tomato plants practically. R-CNN and Faster R-CNN have been applied to object detection as well,
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using the regions in the image to locate the object. Recently, the YOLO algorithm has often been
applied for object detection, which uses a single convolutional network to predict the bounding boxes
and classify such boxes [84]. The YOLO algorithm divides the image into an M × M grid, then m
(m<M) bounding boxes are taken within each of the grids. The network yields a class probability
for each bounding box. When the bounding boxes have higher class probability than a threshold
value, they would be selected and applied for locating the objects in the image. The limitation of the
YOLO network is that it sometimes cannot identify small objects in the images [84]. Singh et al. (2020)
applied Faster R-CNN with an InceptionResnetV2 model and a MobileNet model on PlantVillage
datasets to detect plant disease, which included 2598 images from 13 plants and over 17 diseases [85].
Other applications for object detection are summarized in Table 3.

Table 3. Application of deep learning for crop stress object detection.

Reference Sensor Stress Type Method Application

[55] RGB sensor Abiotic and
biotic Faster R-CNN, R-FCN Nine tomato diseases

and pests

[60] RGB sensor Biotic CNN pretrained with
RetinaNet Grapevine esca disease

[82] RGB sensor Biotic YOLOv2 and YOLOv3 Mosquito bugs and red
spider mites

[83] RGB sensor Biotic Mask R-CNN Northern leaf blight of
maize

[86] Smartphone Biotic Faster R-CNN Rice false smut

[87] RGB image from
the Internet Biotic Faster R-CNN and Mask

R-CNN Ten tomato disease

[88] Smartphones Biotic Faster R-CNN Strawberry
verticillium wilt

[89] RGB image Biotic Faster R-CNN Sweet Pepper Disease
and Pest

4. Unique Challenges in Plant Stress Based on Imagery

Noncontact plant stress detection has been conducted on different application scales, i.e., laboratory,
ground-based, and UAV. Additionally, the modality has been operated based on a variety of sensors,
such as digital, thermal, multispectral, and hyperspectral imagery, with different numbers of spectral
channels, from three to hundreds. Such sensors could monitor the size, shape, and structural features
or crops based on the external views obtained from digital cameras. The digital sensors could be
easily operated under the natural light environment. Hyperspectral imaging sensors could obtain the
inside spectral signatures beyond the visible wavelength range which could reflect the healthy crop
conditions in a wide range of spectra, while most of the commercial hyperspectral imaging sensors
could only work in laboratory with controlled light conditions at present. On the other hand, the wind
will make the crops move around. In general, for image acquisition, it is still challenging for field work.

Further, the crops are not static: the physiological properties change with their growth.
Especially for biotic stress infected crops, the fungi or viruses in the crops have great impacts
on the physiological changes. It will be difficult to detect the stress at an early stage without symptoms
showing based on image analysis. Further, for the application of deep learning-assisted image analysis,
a lack of datasets is a major obstacle as well. At present, the available open source images are mainly
from the PlantVillage dataset. On the other hand, one significant challenge is that of ground-truth
labelling, which is hugely laborious. The Amazon SageMaker Ground Truth provides a service for
managing the labelling, including two features. One is annotation consolidation, which combines
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different people’s annotation task results into one high-fidelity label. The second one is automated
data labeling, which utilizes machine learning to label portions of the provided data automatically.

Moreover, to detect crop stress, the classification and segmentation are often used as binary
tasks, i.e., healthy versus infected, target infected area versus background. However, since these
two categories can be highly heterogeneous, this is usually a general simplification. For instance,
the samples of the healthy class mainly consist of completely healthy objects but also rarely few objects
showing early stresses. This could lead to classifiers that are able to exclude the healthy samples but
cannot identify the few rare ones. The strategy for this case is to make a deep learning system with
multiclass by giving it detailed annotations of all possible classes. Meanwhile, the within-class variance
from images may reduce the sensitivity of the deep learning system. However, the between-classes
variance from a dataset that may not be generalized to every image, such as the different severity of
disease images, can obtain a pseudo-deep learning training architecture in one certain experiment,
but obstruct the usefulness of its broad application to practical decision-making unless the nature of
this dataset is precisely understood. Parameter optimization of the deep learning training models, i.e.,
batch size, learning rate, dropout rate, etc., is a remaining challenge as well. There is currently no exact
method to achieve the best combinations of hyperparameters, which is often operated empirically,
even though Bayesian optimization has been put forwarded.

5. Outlook

Deep learning has been applied successfully in plant stress (i.e., abiotic, and biotic stress) detection
even though it still has many challenges. Most of the papers we have reviewed are based on the 2D
images for symptomatic stages, for example the digital and greyscale images. Such images could be
enabled to operate in the deep transfer learning architecture, such as Alexnet, VGG, GoogleNet, while
such pre-trained transfer networks could not be applied to the 3D datasets, such as hyperspectral
images, which are more sensitive to detecting the early-infected plants. In the future, deep neural
networks that can be used for 3D images should be the focus and early detections of plant disease is
pivotal to the precision disease management, especially for diseases without therapy using pesticide.
On the other hand, many tasks in plant stress detection analysis could be granted, such as classification,
and such a strategy may not be always optimal since it probably requires some post-processing, such
as segmentation. Further, semi-supervised and unsupervised deep learning are worthy of being
exploratory in the application of plant stress detection, though most of studies are based on supervised
approaches. The advantage of unsupervised methods is that the networks training process could be
operated without the ground truth labels. The unsupervised approach for detecting the plant stress
are generative adversarial networks (GANs) [90], while another common unsupervised approach,
i.e., variational autoencoders (VAEs), is rarely applied for crop disease diagnosis yet based on our
knowledge [91]. Further, deep learning has been applied for other objectives in agricultural imaging,
e.g., crop load estimation and harvesting, while image reconstruction remains unexplored, especially
for LiDAR point cloud data. In general, deep learning has provided promising results in plant stress
detection, which could accelerate the development of precision agriculture with the extension of
field application.
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