Assessment of the Use of RGB Vegetation Indices to Determine Chlorophyll Content in Sugar Beet Leaves in the Final Cultivation Stage

L. F. Sánchez-Sastre, N.M.S. Alte da Veiga, N.M. Ruiz-Potosme, P. Carrión-Prieto, J.L. Marcos-Robles, L.M. Navas-Gracia and P. Martín-Ramos

SUPPORTING INFORMATION

Table S1. Summary of descriptive statistics for all the RGB vegetation indices studied in this work using mean values from all shoots

Vegetation index	Max	Min	Mean	Std. Error	CV (\%)
R	230.00	92.00	153.92	1.92	20.88
G	202.47	105.00	157.46	1.33	14.15
B	107.00	47.93	76.26	0.64	14.09
R/(R+G+B)	0.45	0.35	0.39	0.00	6.68
G/(R+G+B)	0.44	0.37	0.41	0.00	3.02
B/(R+G+B)	0.27	0.14	0.20	0.00	13.18
R-G	33.00	-19.00	-3.53	0.76	-358.01
R-B	138.00	22.00	77.66	1.73	37.14
G-B	118.00	34.00	81.20	1.14	23.37
(R-G)/(R+G)	0.09	-0.07	-0.02	0.00	-230.59
(R-B)/(R+B)	0.51	0.13	0.33	0.01	26.06
(G-B)/(G+B)	0.49	0.18	0.35	0.00	17.99
(R-G)/(R+G+B)	0.07	-0.06	-0.01	0.00	-242.53
(R-B)/(R+G+B)	0.31	0.08	0.20	0.00	26.18
(G-B)/(R+G+B)	0.28	0.11	0.21	0.00	15.07
RGRI	1.19	0.87	0.97	0.00	8.14
GLI	0.21	0.08	0.16	0.00	15.88
VARI	0.10	-0.11	0.02	0.00	213.62
IPCA	268.47	65.51	165.90	2.79	28.10
ExR	0.25	0.09	0.14	0.00	28.76
ExB	-0.01	-0.22	-0.13	0.00	-32.08
ExG	0.31	0.11	0.22	0.00	16.67
ExGR	0.19	-0.12	0.08	0.00	88.98
GREY	0.39	0.36	0.38	0.00	1.73
CIVE	18.74	18.67	18.70	0.00	0.08
PCA1	0.85	-0.01	0.44	0.01	42.98
PCA2	263.87	63.89	162.63	2.75	28.28
I1	248.00	56.00	1588.86	2.82	29.69
SRL1	62.97	-6.88	24.94	0.88	58.70
SRL2	58.00	-8.34	19.97	0.83	69.11
SRL3	59.08	-6.82	22.38	0.84	62.92
SRL4	62.36	-8.97	22.86	0.85	61.79
SRL5	57.18	-7.36	22.67	0.82	60.44
I2	0.51	0.01	0.21	0.01	58.62

Table S2. Factor analysis results for PCA1 vegetation index

Descriptive Statistics

| | Mean | Std. Deviation | Analysis N | Missing N |
| :--- | :--- | :--- | :--- | :--- | :--- |
| B/(R+G+B) | .199627956731097 | .027028231802961 | 139 | 0 |
| $(R-G) /(R+G)$ | -.019443921070417 | .038754594797646 | 139 | 0 |
| $(\mathrm{R}-\mathrm{B}) /(\mathrm{R}+\mathrm{B})$ | .326277485061056 | .087558626795844 | 139 | 0 |
| $(\mathrm{G}-\mathrm{B}) /(\mathrm{G}+\mathrm{B})$ | .344705529957940 | .064710443168605 | 139 | 0 |

Correlation Matrix

Correlation		B/(R+G+B)	(R-G)/(R+G)	(R-B)/(R+B)	(G-B)/(G+B)
	B/(R+G+B)	1.000	-.652	-. 989	-. 980
	(R-G)/(R+G)	-. 652	1.000	. 757	. 494
	(R-B)/(R+B)	-. 989	. 757	1.000	. 942
	(G-B)/(G+B)	-. 980	. 494	. 942	1.000
Sig. (1-tailed)	B/(R+G+B)		. 000	. 000	. 000
	(R-G)/(R+G)	. 000		. 000	. 000
	(R-B)/(R+B)	. 000	. 000		. 000
	(G-B)/(G+B)	. 000	. 000	. 000	

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.	.544	
Bartlett's Test of Sphericity	Approx. Chi-Square	2152.984
	Sig.	6

Component Matrix ${ }^{\text {a }}$

> Component

	Component
	1
$(R-B) /(R+B)$.995
$B /(R+G+B)$	-.977
$(G-B) /(G+B)$.916
$(R-G) /(R+G)$.771

Extraction Method: Principal Component Analysis.
a. 1 components extracted.

Communalities

	Extraction
$B /(R+G+B)$.974
$(R-G) /(R+G)$.584
$(R-B) /(R+B)$	1.000
$(G-B) /(G+B)$.880

Extraction Method: Principal Component Analysis.

Total Variance Explained

	Extraction Sums of Squared Loadings		
Component	Total	\% of Variance	Cumulative \%
1	3.438	85.952	85.952

Extraction Method: Principal Component Analysis.

Table S3. Factor analysis results for $P C A 2$ vegetation index

Descriptive Statistics

	Mean	Std. Deviation	Analysis N	Missing N
\mid R-B \mid	2109.3165	3816.02731	139	0
$\|G-B\|$	2131.0144	3743.85989	139	0
\mid R-G \mid	243.3813	501.97229	139	0

Correlation Matrix

		$\|\mathrm{R}-\mathrm{B}\|$	$\|\mathrm{G}-\mathrm{B}\|$	$\|\mathrm{R}-\mathrm{G}\|$
Correlation	$\|\mathrm{R}-\mathrm{B}\|$	1.000	.957	.745
	$\|\mathrm{G}-\mathrm{B}\|$.957	1.000	.768
	$\|\mathrm{R}-\mathrm{G}\|$.745	.768	1.000
Sig. (1-tailed)	$\|\mathrm{R}-\mathrm{B}\|$.000	.000
	$\|\mathrm{G}-\mathrm{B}\|$.000		.000
	.000	.000		

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.	.697	
Bartlett's Test of Sphericity	Approx. Chi-Square	458.840
	dig.	3

Component Matrix ${ }^{\text {a }}$

Component

	1
$\|\mathrm{G}-\mathrm{B}\|$.920
$\|\mathrm{R}-\mathrm{B}\|$.999
$\|\mathrm{R}-\mathrm{G}\|$.886

Extraction Method: Principal Component Analysis.
a. 1 components extracted.

Communalities

	Extraction
$\|\mathrm{R}-\mathrm{B}\|$.926
$\|\mathrm{G}-\mathrm{B}\|$.941
$\|\mathrm{R}-\mathrm{G}\|$.784

Extraction Method: Principal Component Analysis.

Total Variance Explained

	Extraction Sums of Squared Loadings		
Component	Total	\% of Variance	Cumulative \%
1	2.651	88.351	88.351

Extraction Method: Principal Component Analysis.

Figure S1. Relationship between (Left) $(\mathrm{R}-\mathrm{B}) /(\mathrm{R}+\mathrm{B})$ and (Right) (R-B)/(R+G+B) indices and the chlorophyll content measured with CCM-200 chlorophyll-meter for the dataset with information from the four days of the experiment (mean values of three shots are used for the first and last days). Regression lines, equations, R^{2} and R-values are shown.

Figure S2. Relationship between (Left) ExR and (Right) IPCA indices and the chlorophyll content measured with CCM-200 chlorophyll-meter for the dataset with information from the four days of the experiment (mean values of three shots are used for the first and last days). Regression lines, equations, R^{2} and R -values are shown.

Figure S3. Relationship between (Left) PCA2 and (Right) I_{1} indices and the chlorophyll content measured with CCM-200 chlorophyll-meter for the dataset with information from the four days of the experiment (mean values of three shots are used for the first and last days). Regression lines, equations, R^{2} and R-values are shown.

Figure S4. Relationship between (Upper left) SLR1, (Upper right) SLR4 and (Bottom left) I_{2} indices and the chlorophyll content measured with CCM-200 chlorophyll-meter for the dataset with information from the four days of the experiment (mean values of three shots are used for the first and last days). Regression lines, equations, R^{2} and R -values are shown.

Figure S5. Relationship between $(R-B) /(R+G+B)$ index and chlorophyll concentration measured with CCM-200 chlorophyll-meter for three shoots on (Left) the first day of the experiment and on (Right) the last day of the experiment. Regression lines, equations and coefficient of determination are shown.

Figure S6. Relationship between IPCA index and chlorophyll concentration measured with CCM200 chlorophyll-meter for three shoots on (Left) the first day of the experiment and on (Right) the last day of the experiment. Regression lines, equations and coefficient of determination are shown.

Figure S7. Relationship between I_{1} index and chlorophyll concentration measured with CCM-200 chlorophyll-meter for three shoots on (Left) the first day of the experiment and on (Right) the last day of the experiment. Regression lines, equations and coefficient of determination are shown.

Figure S8. Relationship between I_{2} index and chlorophyll concentration measured with CCM-200 chlorophyll-meter for three shoots on (Left) the first day of the experiment and on (Right) the last day of the experiment. Regression lines, equations and coefficient of determination are shown.

Figure S9. Relationship between (Left) (R-B)/(R+G+B) and (Right) IPCA indices and the chlorophyll content for the validation subdataset. Regression lines, equations, daily and global R^{2} values are shown.

Figure S10. Relationship between (Left) I_{1} and (Right) I_{2} indices and the chlorophyll content for the validation subdataset. Regression lines, equations, daily and global R^{2} values are shown.

