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Abstract: Irrigation districts play a decisive role in Portuguese agriculture and require the adaptation
to the new water management paradigm through a change in technology and practices compatible
with farmers’ technical know-how and economic sustainability. Therefore, improvement of water
management, focusing on water savings and increasing farmers’ income, is a priority. In this
perspective, an applied research study is being carried out on the gravity-fed Lis Valley Irrigation
District to assess the performance of collective water supply, effectiveness of water pumping,
and safety of crop production due to the practice of reuse of drainage water. The water balance
method was applied at irrigation supply sectors, including gravity and Pumping Irrigation Allocation.
The average 2018 irrigation water allocated was 7400 m3/ha, being 9.3% by pumping recharge,
with a global efficiency of about 67%. The water quality analysis allowed identifying some risk
situations regarding salinization and microbiological issues, justifying action to solve or mitigate
the problems, especially at the level of the farmers’ fields, according to the crops and the irrigation
systems. Results point to priority actions to consolidate improved water management: better
maintenance and conservation of infrastructure of hydraulic infrastructures to reduce water losses
and better flow control; implementation of optimal operational plans, to adjust the water demand
with distribution; improvement of the on-farm systems with better water application control and
maintenance procedures; and improvement of the control of water quality on the water reuse from
drainage ditches. The technological innovation is an element of the modernization of irrigation
districts that justifies the development of multiple efforts and synergies among stakeholders, namely
farmers, water users association, and researchers.
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1. Introduction

Irrigation districts with gravity-fed and conveyance canals have specific operative and water
distribution characteristics. The management becomes complex when water flow is manually controlled,
appealing to the active participation of farmers in the establishment of calendars and irrigation times to
achieve equitable water partition by on-farm fields. Management is hampered in water running systems
without upstream reservoirs that ensure the availability of inlet flows, requiring high distribution
flexibility on the collective conveyance. In addition, the water reuse from the drainage ditches allows
mitigating the water shortage, with higher distribution equity and water productivity. In this context
of irrigation water reuse, controlling its physicochemical and microbiological quality is of utmost
importance to prevent and control the health safety of farmers, food and consumer safety, as well
as soil salinization. Under such conditions, these systems require a highly interactive management
approach between the water users association and the farmer-beneficiaries themselves [1]. The rational
management of collective irrigation should be based on an information system, with data from field
monitoring, that provides key knowledge such as irrigation water volumes demanded and supplied,
energy consumed on irrigation and drainage, costs of maintaining and conserving infrastructure,
cultivated crops, and applied irrigation systems. Several examples of models and procedures have
been developed and applied: Playán et al. [2] developed a database tool for enhancing irrigation
district management; Dedrick et al. [3] proposed the concept of the Management Improvement
Program; and Sagardoy et al. [4] and Mateos et al. [5] presented a scheme irrigation management
information system.

The development of modern water management systems (conservation, storage, irrigation,
and drainage) allows for environmentally and economically sustainable solutions [6]. Technological
innovations, namely on the management process, tend to emerge in response to water scarcity, soil
constraints, climate change, and also new economic opportunities [7]. On one hand, consumer demand
for food products is changing for economic reasons and for the perception of sustainability issues
related to production. On the other hand, water management requires the modernization of systems
compatible with the overall development of the economy. The improvement of water management,
at the irrigation district level, is usually a complex task that requires multiple actions and significant
resources. The water monitoring is a basic process to improve irrigation district management, providing
information about delivery and demand water quantity, and irrigation and drainage water quality,
on space and time, identifying the infrastructures and operation bottlenecks, health, and environmental
risks, and the required farm practices adjustments to cope with water scarcity and quality problems.
These aspects are elements of the irrigation systems governance issue, and as Lenton [8] concluded,
should support farmers in adopting more environmentally friendly practices that would contribute to
irrigation sustainability.

With regard to irrigation conditions in Portugal, it should be highlighted that the entrepreneurial
competitiveness of the Portuguese agriculture depends heavily on irrigation [9], a situation evidenced
by the Value of Standard Production of more than 5000 €/ha in irrigation and only 800 €/ha in the rainfed
agriculture [10]. Irrigation competitiveness results from increased land productivity and control of the
effects of climatic variability, but also from the possibility of producing crops with higher added value,
such as horticultural crops. Therefore, all efforts to improve irrigation water management are of great
use in the development and sustainability of Portuguese agriculture. Climate change scenarios that
indicate a decrease in available water resources [11] also determine higher strategic importance and
priority in irrigation development.

This paper presents a study of a gravity-fed irrigation district, the Lis Valley, carried out on the
framework of an Operational Group of EIP-AGRI [12], focusing on the results of the 2018 season.
The overall objective is the improvement of water management, as a result of monitoring at district and
on-farm scales. The specific objectives consider the following improvements: performance of collective
water supply, effectiveness of water pumping, and safety of crop production due to the practice of
reuse of drainage water.
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2. Materials and Methods

2.1. Study Area

Lis Valley Irrigation District (LVID) is a public irrigation district managed by a Water Users’
Association (WUA), located in the Coastal Center of Portugal (coordinates 39◦51’22.1”N 8◦50’56.1”W),
belonging to the counties of Leiria and Marinha Grande (Figure 1). The total area is about 2000 ha,
and the main crops are forage corn, forage grass, horticultural, orchards, and rice. The hydraulic
infrastructures have the objectives of perimeter drainage defense through slope collectors and valley
ditches, the irrigation water supply through a canal conveyance system, and the field drainage based
on a ditch network. Water is supplied by an open-channel conveyance network from weirs installed
along the Lis river and tributaries, having the primary network with a length of about 44.5 km, and by
pumping from drainage ditches [13].
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Figure 1. Location of the Lis Valley Irrigation District (a) in Portugal and (b) in Leira and Marinha
Grande counties (source: Google Maps, https://maps.google.pt).

The water conveyance and distribution for the irrigation district is subdivided into supply sectors
(hereinafter referred to as sectors). Each sector comprises a main canal, gravity-fed by a river diversion
from a weir. During the irrigation peak period, the downstream irrigated areas of some sectors are not
fully supplied. To overcome this problem, recharging water is pumped from the river or drainage
ditches. The sectors are the main elements of the system operation by the WUA, which controls
the inflow from the weir, the pumping recharge and the distribution to the secondary irrigation
network, which consists of small lined or earthen channels to distribute the water to the field hydrants.
This secondary component of irrigation network is managed by groups of local farmers, in articulation
with the WUA. Sectors are identified by the name of the main canal (C1, C2, etc.). The canals C1 and
C2 are quite long (ca. 10km), therefore being recharged by pumping stations at intermediate sections.
Upstream of these canal sections there are the sectors C1A and C2A, and downstream, the sectors C1B
and C2B. Overall, there are seven sectors, C1A, C1B, C2A, C2B, C4, C5, and C7 (Figure 2), with a total
area of 1639 ha, corresponding to about 82% of total area. The remaining area excluded from this
analysis for operational reasons, corresponds to marginal areas where, in general, the distribution of
water is made directly by farmers, without a significant WUA intervention.

https://maps.google.pt
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The hydraulic infrastructures of LVID were implemented in 1957, though having been partially
rehabilitated and equipped with new weirs. There are frequent problems of water loss in the transport
network, due to the weakness of certain canal sections, and the existence of aquatic vegetation in
the canals that diminishes transport capacity and obstructs gates and hydrants. Critical issues to be
addressed are the water scarcity (an endemic problem in summer months in Lis Valley), particularly in
dry years, the related environmental risk related to soil salinization, and the economic impacts due to
irrigation pumping from the drainage system and yield losses. The lack of automation mechanisms to
control water levels in the network channels lead to malfunctions and a high labor load, which is partly
mitigated with the participation of farmers in the operation of the main and secondary networks. Under
the national rural development program, modernization works are planned to partially transform the
water distribution network of the downstream area, under a pressurized system, which will change
the water management paradigm, and stimulate agricultural development [14].
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The soils are mainly modern alluvial with high agricultural quality, but some are poorly drained,
with waterlogging and salinization risks, particularly on the downstream areas. The structure of the
on-farm parcel property is characterized by a majority of small parcels (94.6% of which are smaller than
0.5 ha), with an average of 0.20 ha (Figure 3). This aspect is an effective constraint to the modernization
of field irrigation and agricultural development and sustainability, which is being mitigated through
an informal parceling of the fields done by farmers, through the leasing of the properties, as previously
reported [15].
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The on-farm assessment of irrigation and drainage practices has great importance when regarding
the general improvement of an irrigation district scale [16]. The prevailing dominant irrigation
technology in LVID is the surface irrigation [17], by graded furrow or by flooding level basins, applied
essentially to fodder maize and permanent pastures. In some cases, it is characterized by a poor land
leveling and water distribution by unlined channel, resulting in reduced efficiency; however, the laser
precision leveling is applied in the larger fields, which allows a great efficiency improvement [18].
In the majority of the cultivated area (79.3%) maize, pastures, and rice are grown (Table 1). Pastures
are the dominant crop in C1A and C7 sectors, while rice is mostly grown in C5, and maize prevails in
C2A, C2B, C4, and C5 sectors.

Rice is cultivated in traditional paddies, with ca. 10cm of ponding depth, and an irrigation
frequency varying from daily to a few days. Water plays a main role in temperature regulation and
weeds control. This crop is grown on lower soils with heavy texture, drainage problems, and a shallow
groundwater table, totalizing an area of about 140 ha. The irrigation water is supplied from irrigation
canals, or in some fields by farmer’s pumping from ditches. The water shortage within the irrigation
district is a major constraint to rice crop sustainability and expansion. An ongoing study [19] aiming
for water-saving on rice irrigation is assessing the reduction of water depths, along the crop season,
thus decreasing percolation and reducing irrigation water use, as well as the intermittent flooding
practice [20].

Pressure systems are becoming of great importance with autonomous pumping. Examples are
the drip or microsprinkler, which is the most representative, used for fruit plants, horticultural and
nurseries, and sprinkler systems, including pivots, used for corn; meadows; and horticulture [21,22].
The drainage system works on the surface, through the leveling of the ground and the use of open
drains, which lead the water to the collective main drainage network [23].

The need to improve the rural development conditions in the Lis Valley led to the creation of the
Operational Group [24–26], aiming to enhance competitiveness and environmental quality through
monitoring and experimental actions.
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2.2. Water Supply Monitoring

The monitoring methodology of collective irrigation supply systems followed the methodology
presented by [16,27,28], including the observations of operative practices and the measuring of supply
discharges, to evaluate the water derived for irrigation and the energy consumed on pumping stations.

The most relevant measured data is the affluence discharge to each sector. For this purpose,
the canal section velocity method was used, where the point velocities were measured with an
electromagnetic current meter (brand, VALEPORT; model, EM flow meter model 801 flat), about once
a week, allowing the determination of 10 days’ time base of sector inflow volume. These punctual
discharge measurements were empirically adjusted based on the record of inlet gates operation,
particularly when the inflow was reduced during the night or during Sunday. Some sectors also have
the pumping recharge. These field measurements follow the procedures presented by [29] and [30].

Table 1. Irrigated area and crops grown by Sectors, in 2018, in LVID.

Sector C1A C1B C2A C2B C4 C5 C7 Total

Total area, ha 175.6 104.4 189.7 286.2 418.4 207.6 257.1 1639
Irrigated area, ha 114.2 82.8 159.5 214.7 292.8 166.1 205.7 1236
Irrigated area, % 65 80 85 75 70 80 80 75.5

Maize, % 20 18 43 33 61 60 9 38.4
Pastures, % 48 30 7 24 29 10 77 32.5

Horticulture, % 5.5 13 14.5 13 5 0 0 6.7
Rice, % 0 5 0 15 5 30 1 8.3

Vineyard, % 20 15 15 15 0 0 3 7.9
Fruits, % 6.5 19 20.5 0 0 0 10 6.2

To determine the water demand during the irrigation season—between May and October—10-day
(decade) meteorological data (ET0, reference evapotranspiration, and P, precipitation) were obtained
from IPMA [31], regarding the Leiria site.

The crop evapotranspiration (ETc) of each sector, corresponding to the water used by the
crop consumptively, was calculated with Equation (1) on a 10-days’ time-step, from the reference
evapotranspiration and the sector weighted crop coefficients (Kc) [32]. The irrigation water used
beneficially or the Net Irrigation Demand (NID) was calculated by Equation (2), being equal to the
evapotranspiration deficit, ETc - P, where P is the effective precipitation, being assumed that the initial
soil water and the groundwater capillary rise contributions were not significant.

The evaluation of irrigation water delivery was based on a previously described
methodology [16,33,34]. The water diverted for irrigation from its water sources, the Total Irrigation
Allocation (TIA), was calculated with Equation (3), summing the Gravity Irrigation Allocation (GIA),
with the Pumping Irrigation Allocation (PIA). The Global Irrigation Efficiency (GIE) is the ratio of
irrigation water used beneficially (NID) to water diverted from its source (TIA) (Equation (4)).

ETc = ET0 × Kc, (1)

NID = ETc − P, if ETc > P (2)

TIA = GIA + PIA, (3)

GIE = NID/TIA, (4)

GIE is an integrative efficiency indicator, which relates water consumptively used by crops to
the water used on irrigation at district scale [35–37]. It takes into account several processes of water
flow, including the water diverted from its source transported to the farm, the application on the
field, and the use by crop, being an assessment of the district-wide irrigation efficiency. Due to the
large-scale scope of this procedure, some limitations are accepted, like the overestimating of TIA due to
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the double accounting of the reused water that has been upstream irrigation runoff, the overestimation
of NID due to the null contribution of initial soil water and groundwater capillary rise to the crop
evapotranspiration, and the neglecting of the deficit irrigation. These limitation issues could be more
expressive during the crop developing phase, in the Spring season, but are not significant on the
seasonal irrigation assessment.

2.3. Water Quality Monitoring

The methodology for monitoring water quality of irrigation and drainage networks followed
the main guidelines proposed by Lothrop et al. [38]. It ensured the spatial representativeness of all
irrigation sectors, through the sampling at the main inlet and outlet, and relevant intermediate sites,
and also the seasonal irrigation representativeness, including the beginning and the peak periods of
the irrigation, drainage, and groundwater. The sampling sites studied in 2018 are described in Figure 4.
It is worth mentioning that some of these sampled sites on the drainage system have a double function:
drainage and irrigation. The water sampling at the downstream Lis river section (Bajanca bridge site,
Table 5) was done at low tide to avoid the influence of brackish seawater.

The physicochemical quality of the water samples was evaluated with a precalibrated in-situ
portable multiparametric probe (SmarTROLL RDO Handheld, Fort Collins, CO 80524, USA) for the
following parameters: Electrical Conductivity (EC, µS/cm), Saturation of Dissolved Oxygen (SDO,
%), Temperature (T, °C), and Total Dissolved Solids (TDS, ppm). Nitrates were also evaluated in
the laboratory using ion chromatography. The results obtained were compared to the Maximum
Recommended Values (MRV) of the Portuguese Irrigation Water Quality Standards [39].

Microbiological analyses of water samples included the enumeration of Total Coliforms (TC),
expressed as the Most Probable Number (MPN/100mL) by the dilution method with the multiple
fermentation tube technique and incubation at 37°C ± 1 °C in an appropriate culture medium, in
accordance with the analytical reference methods [39].
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the C1 canal from its inlet to the outlet of C1A, which is connected with the C1B inlet, where the pump
recharge is made. The same applies to canal C2.

The results of the decennial water balance per sector show that on the 17th decade (June the 2nd)
the TIA is lower than the NID. A similar situation occurred on the 18th decade for sectors C1A, C1B,
and C2B (Figure 5). This result might be explained by the simplified methodological approach, which
might have neglected the effective contribution of soil water. In fact, in these periods the precipitation
was very frequent; therefore, soil water was enough for crop demand. Nevertheless, during the 17th
and 18th decades, irrigation was applied in the sectors C2A and C7 due to particular crop demands.
The peak supply period occurred between the 20th decade (July the 2nd) and the 24th (August the
3rd). Sectors C4 and C5 were analyzed together because they share the same surface drainage system,
where the drainage water is reused for irrigation by pumping. A particular aspect of the runoff from
rice paddies is that they drain to a ditch network that is an important water source for irrigation,
implying a notable efficiency at the sector level, allowing the recovery of nutrients from drainage
water [40]. The negative values of NID occur on decades, with a surplus of precipitation over the
evapotranspiration, indicating that irrigation is unnecessary. The supply on the 15th, 16th, and 29th
decades is explained by the time-step analysis of 10 days, and also by the delay on the inlet gates close
up (Figure 5).

Table 2. Meteorological data and average crop coefficients per Sector, in 2018.

Month May June July August September October

Decade 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

ET0, mm (1) 35.4 41.6 31.6 25.5 44.7 37.9 37.0 38.6 43.9 37.0 76.3 82.0 35.8 35.4 33.9 34.8 21.3 19.8
P, mm (1) 0.0 0.5 26.0 38.9 1.8 17.6 1.7 0.1 0.1 0.7 0.3 0.7 0.9 0.0 0.1 0.0 27.4 42.9

Kc
(1) (C1A) 0.62 0.65 0.74 0.81 0.83 0.85 0.89 0.91 0.91 0.91 0.91 0.91 0.87 0.83 0.77 0.72 0.71 0.71

Kc (C1B) 0.61 0.64 0.72 0.79 0.83 0.85 0.89 0.90 0.90 0.90 0.90 0.90 0.87 0.84 0.77 0.72 0.70 0.70
Kc (C2A) 0.43 0.47 0.58 0.69 0.75 0.79 0.88 0.92 0.92 0.92 0.92 0.92 0.86 0.81 0.68 0.61 0.58 0.58
Kc (C2B) 0.61 0.63 0.71 0.78 0.81 0.85 0.92 0.95 0.95 0.95 0.95 0.95 0.90 0.85 0.77 0.72 0.72 0.72
Kc (C4) 0.53 0.53 0.59 0.66 0.72 0.78 0.91 0.97 0.97 0.97 0.97 0.97 0.91 0.84 0.72 0.66 0.66 0.66
Kc (C5) 0.57 0.57 0.63 0.69 0.75 0.81 0.93 0.99 0.99 0.99 0.99 0.99 0.93 0.87 0.75 0.69 0.69 0.69
Kc (C7) 0.79 0.80 0.82 0.84 0.86 0.87 0.89 0.90 0.90 0.90 0.90 0.90 0.89 0.88 0.85 0.83 0.82 0.82

(1) Leiria data [31], in decades (counts from the beginning of the year); ET0, reference evapotranspiration; P,
precipitation; Kc, crop coefficient per Sectors: C1A, C1B, C2A, C2B, C4, C5, C7.

Table 3. Irrigation supply and outflow characteristics per Sector, in 2018.

Sector C1A C1B C2A C2B C4 C5 C7

Maximum Discharge (l/s) 231 152 401 244 369 168 240

Average Discharge (l/s) 119 68 195 120 156 71 120

Nb. of Days with Supply 125 110 159 159 146 151 140

Inflow (103 m3 year −1) 1289 1958 2682 1776 1966 1012 1456

Outflow (103 m3 year −1) 237 ——- 1650 —– —– —– —-

The TIA values of the 2018 irrigation season per sector varied between 6470 m3/ha and 9220
m3/ha (C1A and C2A, respectively), with an average of 7400 m3/ha. The NID values ranged between a
minimum on sector C2A (4670 m3/ha), and a maximum on sector C7 (5130 m3/ha), with an average of
4950 m3/ha. The pumping allocation recharge corresponds to 60% in the C1B sector, 10% in sectors C4
and C5, and 7.6% in the C2B sector, with a global average of 9.3% (Figure 6).
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The GIE varies between 0.53 and 0.72 (in Sectors C1A, C2A, and C7, respectively), with an average
of 0.69 (Figure 6). Generally it can be conclude that the supply was adequate, according to the on-farm
irrigation demand, with a satisfactory water distribution equity, as a result of strong collaboration
between WUA and farmers. The GIE average value of 0.69 (varying from 0.53 to 0.72) is considered
satisfactory [41]. However, this data did not provide enough information to allow splitting this
efficiency in the off- and on-farm components. On one hand, the main canals transport efficiency is
very variable, sometimes lower than 70%. On the other hand, the observed field irrigation leads to the
conclusion that on-farm application efficiency varies between 65% and 90%, according to the irrigation
method from the surface to the drip systems. As previously mentioned, major water losses by surface
runoff had conditions to be reused downstream. Therefore, these apparent losses became beneficial
water use, thus allowing an increased efficiency.

A water supply challenge would be set if all of the total equipped areas of LVID would be fully
irrigated. This issue deals with the maximum discharge of main canals and recharge pump stations,
and how to cope with the conveyance management with the probable water scarcity in the peak period,
considering that actually only 75% of the total equipped area is irrigated (Table 1).
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Regarding the water salinity, the results highlight higher values on water samples from the
downstream area of the valley (sectors C4, C5, and C7). An area particularly saline is one close to
the Monte Real Thermae, upstream of sector C7, where it was observed on groundwater at a 2 m
depth a salinity of 4.26 PSU and an EC of 7640 µS/cm. The negative agricultural effect of this problem
is controlled, as much as possible, by the direct river drainage of this area by pumping to the Lis
river, downstream the last irrigation pumping station. The results of the salinity of Lis river water on
LVID (Table 5) show a significant increase toward Lis mouth. Moreover, the river water downstream
Salgadas weir is not feasible for irrigation. The low quality of the downstream section referring to
salinity and TC is explained by the cumulative of several drainage ditches, aggravated by the fact that
this river section is the effluent discharge site of an urban wastewater treatment plant.
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The saturation dissolved oxygen (SDO,%) values of water samples (Table 4) were often higher than
50% for drainage, and oftentimes higher than 90% for irrigation. Note that, according to Skula et al. [40],
though there are no references to irrigation water, it is recommended a value higher than 50% for
drinking water, allowing the conclusion that dissolved oxygen in these water bodies is good or
acceptable. The very low value for the groundwater sample (SDO = 28.9%) is explained by the local
standing water condition on the piezometer.

In sectors C1B and C2B, the irrigation water (collected from the Lis river, upstream from the
drainage ditches discharge) has a nitrate content of 17 mg/L, whereas in drainage water, these values
were below 10 mg/L (Table 4). Sector C7 shows a trace value of nitrates in the drainage network,
which might be explained by the dominant cultural system, permanent meadows, with null or reduced
nitrogen fertilization. Countering this trend, in sectors C4 and C5, the irrigation water has a lower
level of nitrates (7.1 mg/L) than the drainage water (8.6 mg/L), and the groundwater (9.0 mg/L), which
is explained by the intensive production system, namely with soil manure amendment. Although the
data is still scarce, it indicates that irrigation in the Lis Valley has no significant negative effect on the
nitrate load on water resources. A clearer view will be possible when monitoring is concluded and
extended to all sectors and quantifying the total nitrogen.

The analysis of water microbiological quality, assessed through the TC enumeration at the sector
level, shows a spatial variation within the valley. In each sector, TC counts were higher in drainage
than in irrigation water, except for sector C7, which revealed a different situation: the TC counts in
drainage water were four times lower than that in irrigation water. This might be explained by the soil
reducing effect on Enterobacteriaceae numbers and also by a lower soil manure amendment on pastures
than in the crops of other sectors. The high TC values of irrigation water of sectors C1A and C2A
(Lis river water at Arrabalde weir), and drainage water of sector C2A, is explained by contamination
from external sewage sources from the irrigated area [42]. It is noteworthy that the TC load on the
medium section of Salgadas weir is much lower the upstream one (Table 5), revealing the cleaning
effect of the open hydraulic system, such referred before.

Table 4. Physicochemical and microbiological parameters of water sampled per sector and water body
in 2018 (average ± standard deviation).

Sector Water Body
Water Quality Parameters

pH
(6.5–8.4) *

EC, µS/cm
(1000) * SDO, % SDT, ppm

(640) *
TC, 105

MPN/100mL
Nitrates,

mg/L (50) *

C1A
Irrigation 7.30 556.0 — 399.5 10.6 —
Drainage 7.32 ± 0.1 783.7 ± 245.8 59.8 ± 9.5 509.4 ± 159.5 — —

C1B
Irrigation 7.63 ± 0.1 849.9 ± 100.5 96.4 ± 1.1 552.4 ± 65.2 — 17 ± 2.8
Drainage 7.32 ± 0.1 783.7 ± 245.8 59.8 ± 9.5 509.4 ± 159.5 — <6.5

C2A
Irrigation 7.30 556.0 — 399.5 10.6 —
Drainage 7.54 ± 0.27 620.67 ± 97.6 94.97 ± 7.3 403.9 ± 63.7 13.1 —

C2B
Irrigation 7.54 ± 0.17 753.2 ± 237 96.2 ± 2.2 489.5 ± 154 — 17 ± 2.8
Drainage 7.52 ± 0.2 558.8 ± 66.8 90.9 ± 6.2 363.2 ± 43.4 1.91 10

C4+C5
Irrigation 6.66 ± 0.98 494.5 ± 439 92.8 ± 9.1 321.6 ± 286.6 2.70 7.1 ± 1.3
Drainage 6.84 ± 0.32 972.9 ± 245.4 81.2 ± 5.2 632.9 ± 165.6 7.20 8.6 ± 3.5

Groundwater 6.52 1472 28.9 959.5 — 9 ± 8.5

C7
Irrigation 7.26 ± 0.3 627.38 88.86 409.58 4.70 —
Drainage 7.45 ± 0.08 705.3 78.56 458.4 1.15 <3

EC—Electrical Conductivity; SDO—Saturation of Dissolved Oxygen; SDT—Dissolved Solids; TC—Total Coliforms.
* Maximum Recommended Values according to the Portuguese Irrigation Water Quality Legislation [39].

The TC values do not allow comparisons with the Portuguese legislation [39] regarding the
irrigation water since it establishes, as maximum, a recommended value of 100 MPN/100mL restricted
to the fecal coliforms group. However, all the TC enumerations, both from irrigation and drainage
water samples, are above the maximum admissible value (10.000 MPN/100mL) to aquaculture and
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bathing [39]. On the other side, irrigation water quality standard [43] refers to quality requirements for
the reuse of urban wastewater treated in the irrigation of agricultural, forestry, ornamental, nursery,
lawn, and other green spaces. Relative to the microbiological quality requirements, that standard [43]
has taken into consideration the use of irrigated crops (e.g., human or animal consumption, or industrial
crops) and the respective irrigation method applied is less restrictive and more flexible than [39].
According to Monte and Albuquerque [44], the Portuguese legislation [39] is very demanding since the
water in most rivers does not have fecal coliforms content below 100 MPN/100mL.

The identification of situations of microbial contamination risk in irrigation water of LVID, whose
main responsibility is external to agriculture, requires special precautionary measures, in particular
regarding the safety of farmers and consumers. These risks will also need to be assessed for the
influence of agricultural activity within the irrigation district, particularly at the drainage network level.

Table 5. Physicochemical and microbiological parameters of water sampled, at Lis river sections, in
2018, in LVID (average values).

River Section Water Quality Parameter

pH EC, µS/cm SDO, % SDT, ppm TC, 105 MPN/100mL

Upstream, Arrabalde weir 7.30 556.0 — 399.5 10.6
Medium, Amor ditch mouth 7.34 776.0 100 504.6 —

Medium, Salgadas weir 7.26 627.4 88.86 409.6 4.70
Medium, Junceira bridge 7.29 1958.7 79.16 1273.1 —

Downstream, Bajanca bridge 7.08 2777.2 94.47 1807.2 46.0

EC—Electrical Conductivity; SDO—Saturation of Dissolved Oxygen; SDT—Dissolved Solids; TC—Total Coliforms.

4. Discussion

The rationalization of water management in LVID should be based on improving forecasting
of irrigation water demand throughout the crop season and across the various supply sectors.
This determination requires knowing the crop pattern per sector and the respectively applied field
irrigation methods. Distribution system operation planning must meet this water demand through
the operating mode of the water intakes and regulating and pumping mechanisms. The functional
relationship between the collective distribution network and on-farm irrigation is a key element in
overall district performance. Actual real-time operation of the distribution system will depend on crops’
development and the existing weather conditions, especially the precipitation during the Spring season.
To this end, it is essential to link farmers’ water demand information with WUA’s short-term demand
forecast to establish the operational supply data, namely the inflow flow rates and timing. Adjustment
between supply and demand and distribution of water on sectors should be made according to the
criterion of better efficiency, losses control, and better spatial distribution equity. These issues meet
with the conclusions of several authors [45–48].

LVID’s practical conditions highlight a set of problems that limit the best system performance.
As the network of conveyance system is by open canal, one problem is the existence of a high quantity
of debris on water, namely aquatic vegetation, due to the charge on nutrients on water from its original
source on rivers. This problem requires high maintenance hand labor and cost, making it a lowly
effective task because the network is very extensive, with a total of 180 km including the secondary
canals, and this work is only well feasible during the non-irrigation period. Its impact is a reduction of
canals discharge capacity, gates clogging, and loss of accuracy of managing water control. Equipment
to remove this debris is required, like screens and trash racks, and these have been developed for
screening irrigation water. Possible solutions, described by Replogle and Kruse [16] and Skogerboe
and Merkley [49], are screens placed below canal drops that use the energy flow to move the trash far
enough away from the overfall to allow the water to pass through, or using water wheels or electric
motors to power brushes that pass repeatedly over the screen surface, moving trash to one side.
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In addition, there is uncertainty about the available flow rates at the source because the river flow
has no regularization by reservoirs, and it suffers a significant decrease in the summer period. Given
this reality, irrigation water management is based on quasi-real-time supply adjustment in the very
short time of a few hours or a few days, taking into account the following: (i) The relative independence
of the supply of several sectors allows that the decision-making is made with higher proximity of the
users, creating higher management flexibility. In its turn, cooperation behavior among the group of
users at the secondary canal level facilitates the management and favors the equity of water distribution,
particularly on the downstream ones. WUA’s position of arbitration and regulation is fundamental to
guarding and moderating the possible focus of conflict between users. This example meets many cases
in which participatory irrigation district management has shown good results [1,50,51]. In reinforcing
the importance of this issue, Ricart et al. [52] present a study that analyzes how to improve irrigation
water governance, bearing in mind the balances that must be involved. (ii) The supply water scarcity
risk and the deficiency of the conveyance system lead to the need to install recharge pump stations
from drainage water. So, the drainage system also works complementary with the irrigation one, like
an off-field water reservoir. This supply recharge by pumping is done particularly during peak periods
to supply the downstream areas, having a very relevant role in their irrigation. Rice crop is especially
favored by this highly flexible supply. On one hand, it reduces the risk of water scarcity, and on the
other hand, allows the pumping directly from the ditches to the farmers’ private pressurized systems.
These complementary drainage–irrigation networks are fundamental to achieve a good performance
of the irrigation district. However, the water reuse by pumping has a significant cost that is supported
by WUA when it refers to the collective supply, or by the farmers when it is done at field level.

The assessment of supply sectors requires also information from the field irrigation demand,
because it influences the irrigation duration, frequency, and applied volumes [16,37]. The Operational
Group project will study the on-farm management, evaluating farmers’ fields, according to the type of
soil, crops, production technologies, and irrigation methods. It will consider representative sprinkler
and micro-irrigation of vegetables, surface or sprinkler irrigation with fodder corn and permanent
pastures, paddy rice, and drip irrigation of apple fruits. The methodology to follow [53] includes the
soil water content measurement, the irrigation applied depths, the field distribution uniformity, the soil
fertility, the water table depth, and crop productivity.

The physicochemical and microbiological quality of water samples reveals: (i) A significant source
of problems is external to the irrigation district, as various measurements demonstrate. Thus, it is up to
the WUA and farmers to adapt the operating mode and technologies to minimize the negative impacts
of these problems. Water quality monitoring in the district is a very important procedure to know the
local reality over time and allow adjustments to be as effective as possible, as highlighted by [38,54,55].
(ii) The organic load of livestock applied to the soil in certain areas of the district makes the emerging
microbiological risk significant [56]. (iii) The downstream part of the district has hydrogeological
characteristics of significant salinity, which is a risk factor for soil due to capillary rise or drainage
water reuse [57]. Surface drainage water, groundwater, and soil monitoring play an important role in
assessing the problem to determine action in the most severe cases.

Poor water quality leads to multiple risk problems, requiring protection, adaptation, or mitigation
measures: (i) Judicious use of manure as soil fertilizer, which should be appropriately composted
in farms and slaughterhouses treatment plants [58]. Cautions should be reinforced when applied
to horticultural crops, or crop handling, to protect environmental and public health problems due
to microbes and other contaminants like antibiotics [56]. (ii) Choice of irrigation technology should
take into account irrigation water quality and should be adjusted according to the risk assessment
for the farmer and the consumer of the product. For fresh crops, preference should be given to drip
irrigation; surface furrow irrigation has no special restrictions for other crops and sprinkler irrigation
is preferentially dedicated to forage crops, or crops with post-harvest processing. Farmers should be
informed about special hygiene and safety precautions where microbiological contamination is most at
risk [59].
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From the study, the following future research topics are presented: (i) A framework to develop
irrigation management operational plans, based on monitoring, simulation, and forecasting tools
to integrate multiple information, and to provide water demand and supply data to operate the
conveyance system [60,61]. Thus, monitoring information, such as collective network performance,
water quality, crop mapping, and water use conditions and economics, could be applied in a timely
manner to system management, for improved water management, and better conveyance distribution,
especially in times of scarcity and cost reductions, according to WUA’s objective [62,63]. (ii) Actions
directed at farmers carried out by WUA and other stakeholders, to improve irrigation on the field by
experimenting and demonstrating the various irrigation technologies, with the best adaptation to local
conditions. Attending to the full context of local water use is critical to understanding the irrigation
methods that are selected by farmers. Several authors [50,64–66] present studies demonstrating this in
several regions, like Mauritania, southwestern United States, Southern Ethiopia, and the Mediterranean.
(iii) Recommend further studies in the canal supply system maintenance and monitoring, aiming
higher reliability, efficiency, and automaticity, and to achieve a higher level of water, energy, and labor
savings [67]. Discharge measurement, debris and trash water cleaning, and water loss control are the
main issues. New methodologies allow modeling-based multidisciplinary approaches [68], or the use
of sensing equipment/information technologies to create management support warning systems [69].

5. Conclusions

The 2018 results of LVID water monitoring shown a Total Irrigation Allocation of 7400 m3/ha, being
9.3% by pumping recharge. The Global Irrigation Efficiency was 67%, varying between 53% and 72%
among sectors. Higher efficiency results from the reuse of drainage water by pumping, thus resulting
in increased cost for energy consumption. The results of the physicochemical and microbiological
analysis allowed us to conclude that surface and subsurface waters indicate risk situations at pH,
salinization, and microbiology level, justifying action to solve or mitigate these problems, especially at
the level of the farmers’ field.

Results point to priority actions to consolidate improved water management: better maintenance
and conservation of infrastructure of hydraulic infrastructures to reduce water losses and better flow
control; implementation of optimal operational plans, to adjust the water demand with distribution;
improvement of the on-farm systems with better water application control and maintenance procedures,
reducing labor and increasing the distribution uniformity, applying irrigation scheduling plans based on
monitoring systems, using weather stations combined with soil moisture devices or crop remote sensing;
and improvement of water quality control on the water reuse from drainage ditches. Technological
innovation is an element of the modernization of irrigation districts, which justifies the development
of multiple efforts and synergies among stakeholders, namely farmers, water users association,
and researchers.
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