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Abstract: Several yield monitors are available for use on cotton harvesters, but none are able to
maintain yield measurement accuracy across cultivars and field conditions that vary spatially and/or
temporally. Thus, the utility of yield monitors as tools for on-farm research is limited unless steps
are taken to calibrate the systems as cultivars and conditions change. This technical note details the
man-machine-interface software system design portion of a harvester-based yield monitor calibration
system for basket-type cotton strippers. The system was based upon the use of pressure sensors to
measure the weight of the basket by monitoring the static pressure in the hydraulic lift cylinder circuit.
To ensure accurate weighing, the system automatically lifted the basket to a target lift height, allowed
basket time to settle, then weighed the contents of the basket. The software running the system was
split into two parts that were run on an embedded low-level micro-controller, and a mobile computer
located in the harvester cab. The system was field tested under commercial conditions and found
to measure basket load weights within 2.5% of the reference scale. As such, the system was proven
to be capable of providing an on-board auto-correction to a yield monitor for use in multi-variety
field trials.
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1. Introduction and Overview of the Research and Results of System Performance That This
Technical Note Is in Support of

Several yield monitors are available for use on cotton harvesters, but none are able to maintain
yield measurement accuracy across cultivars and field conditions that vary spatially and/or temporally.
Thus, the utility of yield monitors as tools for on-farm research is limited unless steps are taken to
calibrate the systems as cultivars and conditions change. This technical note details the man-machine
interface software design for a harvester-based yield monitor calibration system for basket-type cotton
strippers and is one of three technical notes that are in support of a master research paper covering
the development and design of the calibration system. This technical note is presented, along with
requisite supporting software source-code files, for the purpose of transferring the technology to
the research community and general public. In addition to the source-code files, the technical notes
provide documentation describing key strategies and methodology utilized in the design as well as
background summary on the research.

In the process of evaluating the effects of production inputs and practices on crop yield and farm
revenue, large scale field experiments are needed to investigate treatment effects across varying field
conditions. Normally, these investigations require the use of additional labor and expensive ancillary
equipment to weigh the crop harvested from a given area. The time required to collect this data
reduces harvest productivity and efficiency. In order to reduce the dependence on ancillary equipment
and labor, and increase the efficiency of data collection, yield monitors used on grain combines have
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proven to be reliable tools in on-farm research efforts due to their consistent accuracy and lack of need
for variety specific calibration. However, yield monitors used on cotton harvesters do not exhibit the
same utility for on-farm research as they require frequent calibration when varieties or crop conditions
change (Rains et al., 2002; Wilkerson et al., 2002; Robertson et al., 2006; Stewart et al., 2008; Taylor et al.,
2014; Wanjura et al., 2014; Vories et al., 2019) [1–7].

Cotton yield monitors sense the flow of seed cotton inside conveying ducts or as the material
passes into the basket or accumulator on the harvester. Yield flow sensors are generally of two
designs: (1) Light attenuation (Givili, 1998; Wilkerson et al., 2001; Thomasson and Sui, 2000) [8–10]
or (2) microwave reflectance (John Deere, 2010) [11]. In either case, the flow of material is related
to the amount of light attenuated or microwave energy reflected by the flowing material. Material
properties such as boll size, seed size, foreign matter content, lint turnout, fiber quality, and seed cotton
moisture content are related to the accuracy of cotton yield monitors; all of which, except seed cotton
moisture content, are cultivar specific properties (Head et al., 2009; Wilkerson et al., 2002; Wanjura et al.,
2014; Vories et al., 2019) [2,6,7,12]. Setup and operation factors such as sensor alignment, stray light,
temperature, and dust/foreign matter accumulation also affect cotton yield monitor performance
(Wolak et al., 1999; Sassenrath-Cole et al., 1999, Sui and Thomasson, 2002) [13–15]. While uncalibrated
systems can realistically reflect in-field variability (Thomasson and Sui, 2003) [16], calibration of cotton
yield monitors is of utmost importance in producing accurate yield data.

Wanjura et al. (2015 and 2016) [17,18] describe the development and testing of a system for use on
cotton harvesters that measures accumulated cotton weight inside a harvester basket; thus, facilitating
the frequent calibration of cotton yield monitors without the need for expensive, time consuming,
and often unavailable ancillary mobile scale equipment. The design of the system described by
Wanjura et al. (2015 and 2016) [17,18] is briefly detailed herein with the main focus of this report being
relegated to the final version of the electronic design of the system.

The harvester-based yield monitor calibration system (Wanjura et al., 2015 and 2016) [17,18]
measures accumulated cotton weight in a harvester basket based on measurements of hydraulic
pressure in the basket lift cylinder circuit. The system was designed and implemented on a John
Deere 7460 (John Deere, Moline, IL) basket-type cotton stripper. A model relating hydraulic pressure
in the lift cylinder circuit at a single basket position in the dump cycle was developed for basket
weights ranging from 27 to 1633 kg (60 to 3600 lb.). The linear calibration model (R2 = 0.998) was
developed from 161 basket loads and exhibited RMSE of 9.9 kg (21.8 lb.) with mean absolute error
of 0.44% (span). Hydraulic pressure was measured using a pressure transducer with 0–17,237 kPa
(0–2500 psi) pressure range from Omega Engineering (PX409-2.5KG5V-EH, error specification +/−0.05%
FS = +/−8.62 kPa). A pulse-width modulated, proportional directional control valve (model SP08-47C,
HydraForce Inc., Lincolnshire, IL) and solenoid operated check valves (model SV10-29, HydraForce
Inc., Lincolnshire, IL, USA) were used in parallel with the harvester hydraulic system to raise the
basket to the desired measurement position (13.7◦ from fully down) and hold it there once motion
stopped. Two limit switches mounted at the rear of the harvester basket slowed and stopped the
motion of the basket as it approached the target position. During the development of the linear
calibration model, a magnetostrictive linear position sensor (MHC1400MN10E3V11, MTS Sensors,
Cary, NC; error specification +/−0.04% FS = 0.56 mm, repeatability +/−0.005% FS = 0.07 mm) measured
the extension of the lift cylinders to confirm that the limit switches could repeatably stop the basket
at the desired position. Average lift cylinder extension during calibration model development was
160.53 mm (6.32 in) with standard deviation of 0.898 mm (0.035 in) which corresponded to a basket
rotation angle of 13.7 degrees +/−0.2 degrees from the down position.

Control of the calibration system hydraulic valves and data acquisition were accomplished with
custom designed electronics [19], that was driven by custom embedded micro-controller software, [20].
A low-level microcontroller, and supporting circuitry [19], was mounted to a specially designed
printed circuit board [19] that controlled the hydraulic valves during basket positioning and recorded
pressure data once the basket was properly positioned. The hydraulic control algorithm raised
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the basket into position through a twostep process whereby the pulse-width-modulated, PWM,
directional-control-valve, DCV, raised the basket at 100% duty cycle until the basket passed the first
limit switch. The PWM DCV duty cycle was lowered slowing the basket to about 25% of the original
lifting speed as it approached the target position. The DCV was closed and the basket stopped when the
basket passed the second limit switch. Simultaneously, the control algorithm closed the check valves
on the lift cylinder circuit to isolate the static pressure in the lift cylinders and recorded the pressure
after a brief stabilization period (2 sec). A 22-bit analog to digital converter was used to capture the
pressure transducer analog-signal, with help from custom designed circuitry to minimize the influence
of electrical noise and improve accuracy, [19]. A serial communication protocol was implemented
between the embedded micro-controller software, [20], and the human-machine- interface, HMI,
software, described herein, running on a mobile computer in the harvester cab. The HMI software,
described herein, was programmed to calculate and display the weight of cotton in the basket using the
pressure measured in the lift cylinder circuit and the initial calibration model. GPS position data was
collected from a Greenstar 3000 receiver (John Deere, Moline, IL, USA) on the harvester and processed
by the HMI software that used the GPS position data along with the user input of harvester width, to
calculate the area from which the cotton in the basket was harvested. Seed cotton yield was calculated
using the measured cotton weight and harvested area. Cotton ownership information (client, farm,
and field) and machine header width (number and spacing of harvesting units) were recorded by the
HMI software for each load measured.

The harvester-based yield monitor calibration system was field tested under commercial conditions
on four producer-owned and operated cotton strippers. Weight measurement accuracy observed
for the system during field testing was characterized by RMSE between 1.7 and 2.3% of span. Thus,
it was concluded that the on-harvester calibration system would provide producers and researchers
an accurate tool for use in (1) conducting on-farm research in which total plot yield is the evaluation
metric, and (2) in calibrating cotton yield monitors without the need for costly and labor-intensive
mobile scale systems.

The objective of this article is to describe the design of the man-machine-interface software that
provides the main interface for the operator of the harvester to allow for interaction with the embedded
micro-controller software [20] that provides the control and interfacing to the electronic data-acquisition
and control sub-system [19,21] that all together in combination forms the cotton harvester yield monitor
calibration system.

2. Man-Machine-Interface Software Design

2.1. Background Development Tools

The software discussed in this technical note provides the bridge between a hardware
micro-controller (machine controller) and the human operator. Hence, the use of the HMI label,
which we’ve borrowed from common usage from the Industrial Control sector given they are basically
doing the same thing (human operator interface that talks to a micro-controller (PLC) that actually
provides the control of the machines. In the system discussed herein; the man-machine-interface,
MMI, software design was designed around an event driven windows style program using the
cross-platform C++ programming libraries and integrated-development-environment, IDE, provided
by QT Company, hereafter known as QT [22]. One of the main advantages of using QT is that it allows
for a write-once run anywhere model that is supported across a great number of operating systems, OS,
and hardware platforms such as (Linux ARM, Linux x86, Machintosh OS, IOS, Windows, Android).
The QT libraries have built into them a very clean event driven model that is based around a signal-slot
paradigm whereby when a device or function wants to generate an interrupt-service request it issues
a signal to the library that then calls any associated slot-flagged functions. Utilizing this technique,
the programmer can link a function, designated as a slot, that will be called every time the signal is
emitted by any other function or library request for servicing. This methodology provides a clean
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event driven system that can easily be leveraged to build a windows style program that is completely
event driven such that any user input, via mouse or keyboard, will be rapidly responded to by the
QT library and slot-associated functions provided by the programmer. In this manner, QT provides
the underlying architecture for a generic idle, till event occurs, scan loop. Using the QT paradigm,
the yield calibration system man-machine-interface software was constructed so that all the main
functions sit idle till an event is triggered that fires that corresponding function. Some of the key events
the software utilizes that trigger the slot-denoted functions are:

• Serial-port communication reception of bytes
• Asynchronous functions responding to events
• User clicking or pressing on form buttons or typing in text boxes
• QT Timers

Another key feature that enables for rapid program development using QT is its IDE, which
features an easy to use form layout tool that automatically links slot-functions to appropriate buttons,
text boxes, radio-buttons, and other assorted graphical-user-interface, GUI, form elements. As the
target of the system was to run on a harvester, the OS of choice was to utilize Linux as it has the best
support for embedded hardware that is most appropriate for non-desktop industrial environments.

2.2. User Interface

Utilizing the QT platform, a series of forms were developed that shaped the operator interface for
the software. The main screen is shown in Figure 1. The main setup screen is shown in Figure 2.
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Figure 2. The setup screen that allows for user input so the software can associate the client-farm-field
information with the subsequent data-acquisitions.

2.3. Software Design

The software was designed so that upon program startup (boot), the initialization routines are
automatically run, by utilizing default and previously saved settings. This boot-up was designed as a
two-step process, as shown in Figure 3. The main core of the initialization routines are:

• Instantiate all supporting utility classes,
• Configure QT event driven signal-slot connections for each of the serial ports for {global satellite

positioning system (GPS), Data-Acquisition},
• Configure and verify serial communication to:

# GPS
# Data-Acquisition

• Load default standard saving locations, filenames, and data-base settings,
• Load farm-field setup screen and get user input as to specifics by which to tag all collected data,
• Delay using QT timer long enough to allow for GPS to establish connection and verify connection,
• Verify connection to the micro-controller that provides the data-acquisition and weigh controller

functionality.

From the system’s main state-diagram, Figure 3, the process starts out with a couple of initialization
steps and then after it loads default parameters from a file and verifies that GPS and the data-acquisition
system are available on the serial ports, it then proceeds to the Idle state block. The Idle state-block
provides the main loop for the system design and is provided by the “Main_Window” QT event
loop, Figure 4. In Idle mode; the system basically waits until an event happens and then reacts to
this event. For example; the “GPS_Comm” state block, Figure 4, shows the state-transition from
“GPS_Comm” reception of serial data to appropriate “Main_Window” functions that are fired upon
the generation of a signal occurring on receipt of a message from “GPS_Comm” that includes the serial
bytes received. These bytes are then parsed to form a complete GPS message that is encapsulated in the
“GPS_Data” passed to a processing function, “Receive_GPS”, in the class “cGPS_utils”. The expansion
of “GPS_Comm block”, of Figure 3, is detailed with a state-diagram in Figure 4. “GPS_Comm” starts
out in the “Main_Window” event loop where it waits on reception of serial bytes from the GPS, where
upon reception it automatically fires the serial-data received signal which in turn fires the event driven
slot-linked function “Read_data_GPS”. Upon activation with the serial data, “Read_data_GPS” parses
the data and ensures it contains a complete GPS National Marine Electronics Association, (NEMA)
0183 RMC message [23] that it then passes in a function call to the “Receive_GPS” function, that is
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located in the C++ class “cGPS_utils” where the location, velocity, and time information is extracted
and saved into relevant data-structures for later processing.AgriEngineering 2019, 2 FOR PEER REVIEW  6 
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The “Receive_GPS” function, Figure 4, removes the waiting serial bytes from the GPS serial-port
buffer and applies it to the end of its GPS data-buffer; then parses the string looking for the first
occurrence of “$RMC”, which is the start of the NEMA-0183 RMC data-message [23] and checks if
there is a carriage-return following $RMC that would indicate a complete message was obtained. This
process is detailed in the flow-chart shown in Figure 5. Once a complete RMC message is found,
the function then calls into the “cGPS_utils” class function “Receive_GPS”, Figure 4. Which parses
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the RMC message for position (latitude, longitude), Coordinated-Universal-Time, UTC-time, travel
velocity estimation and direction of travel [23]. This data is saved into short-duration history, for
distance tracking purposes and later data-set creation and saving into the data-base.
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2.4. GPS Distance Computation

With the valid RMC GPS location position fix; the “Receive_GPS” function passes data to the
“GPS_DATA” function for further processing, which uses the most recent current position fix along
with its saved position history to compute distance traveled using the Haversine formula, (Goodwin,
1910) [24]. Hence at every valid GPS RMC message, the distance from the original starting point,
and the last point is computed. This was done to provide a real-time display estimate of the area
covered during the harvest operation between operator flagged points of interest noted by operator
pressing “Area Start” and “Area Stop” buttons on the user interface, Figure 1. The Haversine formula
was used to compute the shortest distance following the arc of the earth’s surface, Figure 6.
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The haversine formula is well conditioned even for points as close to each other as a few meters.
The formula is designed to calculate the great-circle distance between two points and is detailed in
Equations (1)–(3). In the software, the haversine formula is computed in the source code located in the
“cHaversine” class in the function “gps_distance”.
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a = sin2
(

∆ϕ
2

)
+ cos(ϕ1) cos(ϕ2) sin

(∆λ
2

)
(1)

c = 2 atan2
(√

a,
√

1− a
)

(2)

d = R ∗ c (3)

where

ϕ1 is latitude of first location
ϕ2 is latitude of second location
λ1 is longitude of first location
λ2 is longitude of second location
∆ϕ is latitude difference between points 1, 2
∆λ is longitude difference between points 1, 2
R is earth’s radius (mean radius = 6371 km)
atan2() is four quadrant function that computes tan−1()
c is angular distance in radians
a is the square of half the chord length between the points
d is the distance between the two GPS points (m)

2.5. GPS Distance Integration

After completion of GPS distance traveled computation, the distance traveled is then relayed back
to the “main-window” “Idle” loop, Figure 4, that updates the display with the total area covered by
the harvester since the last time the “Area Start” button was pressed, Figure 1. How the main “Idle”
event loop is processed is detailed in Figure 7, where it is shown that upon the press of the “Area
Start” button, (shown on state diagram as “Button: Mark_Start_Location”) that a call is made into
“cGPS_utils” class function “mark_start_GPS()”, which saves the current GPS location as the starting
location point by which to measure area harvested. It also writes a flag into the stored dataset for
post-processing notification as to where the start of the harvested plot was located.AgriEngineering 2019, 2 FOR PEER REVIEW  10 
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2.6. GPS Area Marking

Similarly, the “Area Stop” button fires the “mark_stop_GPS” function which marks the final
position location and terminates the distance logging feature. The “Weigh Basket” button, Figure 1,
triggers the state “Run_Weigh_Operation”, which is a multi-step process that starts by automatically
calling “Area Stop” event that then proceeds by sending a serial request string to the micro-controller to
perform a weigh cycle. Upon sending the serial request to the micro-controller to perform a weigh-cycle,
the “Run_Weigh_Operation” function then exits into the main “Idle” loop to await an asynchronous
response from the micro-controller. Upon completion of the weigh operation, the micro-controller
responds back to the HMI software with serial data form the weigh operation. The reception of the
serial data triggers a serial-data-received event that contains the basket weigh information, there-by
completing the full weigh cycle. As the weigh cycle takes some time to complete, the program
reverts back to “Idle” mode while it awaits the weigh data. The software design to accommodate this
multi-system distributed asynchronous event driven design is accomplished using the same topology
that was used to interface to the GPS system, Figure 7. In the case of the micro-controller interface;
the transition occurs upon receipt of serial data from the micro-controller which causes a serial event
trigger “readData_daq” whereby the serial handling function for the micro-controller checks for valid
message and when found relays the cleaned up message to “readDAQ” function, which then posts the
weigh information onto the main screen and saves the data to data-base along with the previously
saved “Area Stop” GPS location. The final distance is then computed using the Haversine formula on
the GPS location points marked at time the button events triggered by the “Area Start” and “Area
Stop” button press occurrences. This GPS measured harvested travel distance is then multiplied by
the user provided harvested width where the product provides the harvested area. The harvester’s
width is set in the initial setup screen, Figure 2, which is used at the start of the harvesting session
by the user to provide key information, such as the farm, client, and field names and any notes of
relevance the user wants to save along with the data-set. An additional parameter of interest on the
setup screen in Figure 2 is the wind conditions, (calm, gusty), the user is currently having to contend
with. The wind-condition parameter provides both a useful note into the data-set, as the harvester’s
basket presents a sizable area that is impacted by a significant wind-load impacting the accuracy of the
weighing operation; as well as allows the software to request that the micro-controller software [20]
utilize a longer settling time to help ensure an accurate weigh operation is conducted.

2.7. Software Design Summary

This review covered the main aspects of the software source code; for specific details on the full
code implementation, a list of all the functions that make up the man-machine-interface software are
shown in Figure 8 and a full copy of the documented source code is attached in supplemental files.

While there is a great deal more code in this software package, the rest of the code is self-explanatory
and well documented in the attached files and is left to the reader to peruse.
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Figure 8. The C++ class definitions used in the man-machine-interface software. In the figure’s class
specifications, the leading ‘+’ signifies public functions. While the leading ‘-‘ signifies private functions
and the leading ‘$’ signifies event response function, SLOT, that are called and used by the windowing
event loop structures. The SLOT functions provide the equivalent of an interrupt service routine that
frees up active process from having to continuously poll various resources for data event occurrences.
The class structure is flat with no inheritance by any of the classes; the arrows between classes only
indicate which class is calling other classes by means of publicly visible functions.

3. Conclusions

The man-machine-interface software design covered in this technical note was tested in conjunction
with the electronic design [19], the vehicle transient surge protection circuitry [21] and the embedded
micro-controller firmware software [20]. The system was proven both on the laboratory bench and on
the harvester under field conditions, and was found to be stable, robust, accurate, and suitable for
use in on-farm research efforts [17,18]. With some minor software modifications, the system could be
easily extended to dynamically correct yield monitor data as well. Future notes are planned to cover
both the hydraulic circuit design as well as the companion software implementation that provides the
industrial PC operator interface code.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2624-7402/1/4/37/s1.
The software source code files are available along with this technical note online and is released into the
public-domain as Open-Source Software under MIT Open-source license. The code is written for QT windowing
API and was compiled using QT Creator IDE using QT-5 Application-Programming-Interface, API.
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