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Abstract: This research work dealt with the development of an operational methodology with
appropriate technical components for monitoring and forecasting of rice crop (Boro) production
in Bangladesh. Designed system explores integrated application of remote sensing (RS) sciences
and Geographic Information System (GIS) technology. Terra MODIS 16-day Normalized Difference
Vegetation Index (NDVI) maximum value composite (MVC) image product MOD13A1 of 500 m
spatial resolution covering Bangladesh have been utilized for a period 2011–2017. Hence the
district-wise sum of NDVI on pixel-by-pixel has been calculated from Jan–April during 2011–2017.
Regression analysis between district-based pixel-wise summation of MODIS-NDVI and district-wise
BBS (Bangladesh Bureau of Statistics) estimated Boro production revealed strong correlation
(R2 = 0.57–0.85) where in March most of the regression coefficient shows significant correlation
due to maximize photosynthetic activities. Therefore, the highest regression coefficient value from
derived set of coefficient value (BCP-Boro Crop Production Model 2) has been utilized to obtain
year-wise rice productions for all the years (2011–2017). Global Positioning System (GPS)-based field
verification, accuracy assessment and validation operation have been carried out at randomly selected
geographical positions over the country using various statistical tools. The results demonstrate
good agreement between estimated and predicted yearly Boro rice production during 2011–2017
time period with Mean Bias Error (MBE) = −29,881 to 19,431 M.Ton; Root Mean Square Error
(RMSE) = 5238 to 11,852 M.Ton; Model Efficiency (ME) = (0.86–0.94); Correlation Coefficients = 0.65
to 0.87. Therefore MODIS-NDVI based regression model seems to be effective for Boro production
forecasting. The system generally appears to be relatively fast, simple, reasonably accurate and
suitable for nation-wide crop statistics generation and food security issues.

Keywords: Boro Crop; MODIS-NDVI products; ground-based estimates; regression model;
forecasting

1. Introduction

Rice is one of the most significant agricultural crops in many countries, and it is a primary food
source for more than three billion people worldwide [1,2]. The projected global rice consumption
is to be 873 million tons in 2030 [3] but the issues of population growth (in particular in the major
rice producing/consuming countries) [4] and climate change have created enormous pressure on the
global food demand and its production in recent decades [5]. According to [6], climate change will
likely increase the exposure of densely populated, low-lying areas to intensified flooding and cyclones
consequently and so far Bangladesh experienced 21 above-normal floods, 4 of which were exceptional
and 2 catastrophic, since 1954. Moreover, the scientific consensus for the Ganges, Brahmaputra,
and Meghna (GBM) rivers basin projected a temperature rise of 1–3 ◦C and 20 percent more monsoon
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rainfall by 2050, suggesting that Bangladesh will be exposed to more severe inland flooding [6].
Therefore the impacts of climate change issues may create negative impacts on agricultural yield and
production capacity of Bangladesh. Consequently, the changes in rice production and availability can
create food crises and food price discrepancy that can be the cause of social troubles due to economic
and political changes. Furthermore agricultural statistics has been playing an ever-increasing role
in shaping up and providing scientific information that is useful in almost every aspect of human
life and beyond. Agriculture statistics is a major concern for the world as a valuable assistance
for formulation of appropriate policy and strategic plan in boosting up the food security and rural
development. The urgency for an efficient crop forecasting system to provide timely and reasonably
accurate crop information in the context of global food security, climate change, production instability
etc. is well recognized over the world. Hence, the developing countries like Bangladesh need remote
sensing technology-based scientific study for updated crop information such as crop area and yield
estimation, crop biophysical property condition, weather conditions, and seasonal characteristics to
support early warning decision support systems in order to maintain food sovereignty because of
vulnerability to the abrupt climatic changes and frequent natural disasters.

In this regard, the potential application of remote sensing technology for monitoring crop
condition and predicting crop yields at regional scales over the past several decades have been studied
extensively [7]. The U.S. Department of Agriculture and Directorate General for Agriculture of the
European Community have been using Remote Sensing (RS) data to estimate the total production
of important crops like rice, wheat etc. [8,9]. The forecasting or prediction of the amount of rice
production prior to the end of growing season is crucial in order to ensure food security issues
of a country [10–13]. Moreover, the forecasting of rice production statistics can help governments,
planners, and decision-makers to formulate appropriate policies in rice importing in the event of
shortfall or exporting in the event of surplus as well as purchasing rice earlier at comparatively cheaper
rates if other rice-producing countries do not have information about forthcoming need [14]. Thus the
reliable forecasts of agricultural commodity production can have significant positive impacts on food
security, water resources, and economic stability of a country [15]. Moreover agricultural land area has
decreased from 13.3 to 12.17 million ha from 1976 to 2010, with the total loss of 1.11 million ha whereas;
cultivatable land area has decreased from 65.75% in 1976–1977 to 57.41% in 2010–2011 [16]. Noted that
the conversion of one landcover to another would directly alter vegetation cover and structure [17]
because vegetation and its underlying soil are important factors in global climatic variability [18,19].
Though, the impacts of changes in climate, society, and economy is quite difficult to compute [20] but
it is obvious that Bangladesh is facing numerous challenges in terms of rice production estimation and
forecasting which are the prime concerns of this research.

Previously several works have been performed to find out the alternate method of remote
sensing-based techniques for effective forecasting in rice yield and found strong relationship between
satellite-based NDVI with ground-based rice yield for forecasting purpose [11–13,21–24]. Furthermore,
the rice crop growth monitoring can be performed by developing regression modeling based on
remote sensing images and phenological field data over a period to compare with the past [25,26].
Besides various researchers have also performed relevant researches on the crop production estimates
using satellite remote sensing technology and which have been already applied for Pakistan [10] and
China [27]. In retrieving agricultural crop information, MODIS constellations [7,28] and MODIS images
have been widely used at larger regional scale due to its faster re-visit time (~1 day) and comparatively
smaller datasets (memory size or data volume) resulting from its lower resolution [20,29–33].

In Bangladesh, for yield/production information, the Bangladesh Bureau of Statistics (BBS) collects
data across the country. Notwithstanding the accuracy of these data and its ability to illustrate
historical trends, this method has two major drawbacks: (i) time-consuming, subjective, costly,
and labor-intensive [34–36]; and (ii) the results are usually made available to the government, planners,
and decision makers after several months of harvesting of the crop; thus become inconvenient for food
security purposes [13,14,37].
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Previously, very few works on remote sensing based crop yield forecasting systems have
been performed in the context of Bangladesh for example: (i) [23,24] observed that modeled and
ground-based rice yield revealed a R2 of 0.56 and 0.89 for Aus and Aman respectively over Bangladesh;
(ii) [38] have found high R2 of 0.84, 0.72, and 0.80 for the NDVI, LAI and fPAR, respectively between the
regression model of vegetation index and field level potato yield at Munshiganj District of Bangladesh;
(iii) [39] found good resemblance between forecasted (i.e., MODIS-based) and ground-based Boro
rice yield i.e., R2 (0.76 and 0.86); RMSE (0.21 and 0.29 Mton/ha), and RE (−5.45% and 6.65%) over
Bangladesh. Moreover various geo-bio-environmental factors such as climate change consequences,
increased natural disasters, uncertainty in geo-environmental variability appear to be as possible
factors determining the crop production to ensure nation-wide food security in this area. The reason
behind the selection of MODIS NDVI products is that the NDVI dynamics is representative of crop
growth and biomass changes and is closely connected to crop yield and has direct correlation with
LAI, biomass and vegetation cover [40–44]. Hence, the present research has been initiated to develop
a Boro crop production forecasting model based on MODIS-NDVI products at country scale. In dense
forest canopies, the Normalized Difference Vegetation Index (NDVI) shows saturation effects [11]
nevertheless because of the data accessibility and its robustness against noise and varying illumination
geometries it is widely-used indices for this purpose [10,12].

The present study is focused on NDVI because it is widely used in phenological works [45–47]
and is known to be more sensitive to small increases in the amount of photosynthetic vegetation [48,49].
In view of the above, the objectives of this research are: (a) to develop an effective methodological
framework to retrieve useful information on seasonal crop and (b) to forecast the seasonal crop
production estimates based on the developed methodology for potential use in country’s national food
security issues.

2. Materials and Methods

2.1. Study Area

The present study area is located between 20◦34′ to 26◦38′ North latitude and 88◦01′ to 92◦42′ East
longitude except the three hilly districts namely Rangamati, Khagrachari, and Bandarban (Figure 1).
The hilly areas have been excluded from this study because the influence of topographical variations
in delineating rice areas have been stated by several studies as the surface reflectance from the hilly
terrain might be influenced by the adjacent areas [31,32,50,51]. Moreover most of the areas under these
three districts are hilly areas where cultivation of Boro rice is extremely limited and are mainly covered
by forests and trees. Bangladesh is bordered by India on the west, north, and east, by Myanmar on the
south-east, and by the Bay of Bengal on the south. The country’s topography is extremely low and flat,
with two-thirds of its land area less than 5 m above sea level. However, in some place land elevation
levels reach up to 25 m higher than the adjoining floodplains, whereas the tertiary hills (northern and
eastern borders) have higher elevation, some reaching over 1000 m above mean sea level (MSL) [6].
The country has humid, warm, tropical climate which is influenced predominantly by monsoon
(June to early-October) and partly by pre-monsoon (March to May) and post-monsoon (late-October
to November) flows [52]. The mean annual rainfall is about 2300 mm whereas annual rainfall ranges
from 1200 mm in the extreme west to over 5000 mm in the east and north-east, however generally
the eastern parts of the country enjoy higher rainfall than the western parts [53]. Regardless of some
changeability in climatic conditions (in terms of both temperature and rainfall) the Boro cultivation
primarily depends on the groundwater-based irrigation schemes, besides frequent natural disaster like
flood, cyclone, drought, river erosion, etc. plays important role in the agricultural productivity [14].
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Figure 1. Map showing the sample MODIS imagery over the study area.

2.2. Rice Information

For over half of the world’s population Rice (Oryza sativa L.) is a staple food. Rice is grown on
approximately 146 million hectares, more than 10 percent of total available land [54]. About 535 million
tons of un-milled or rough rice (paddy) is produced in total in the world, with ninety seven percent
(97%) of the world’s rice grown by less-developed countries, mostly in Asia [55]. Bangladesh is the 4th
top rice producing country in the world [55]. The crop phenology over the entire lifecycle of a crop
brings important systematic changes in terms of both the architectural and radiative properties of crop
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canopy. Accordingly, crop radiative responses undergo significant changes over the crop life cycle
starting from cultivation stage to senescent stages.

However, phenology plays a dominant role in the estimation of vegetation-dependent processes [7].
Research on vegetation phenology uses phenological and spectral ground observation networks,
phenological modeling, eddy covariance towers and satellite-derived imagery to assess and monitor
vegetation status and dynamics [9]. At the peak or maximum green stage, the value of NDVI becomes
maximum because there is maximum chlorophyll in the green crop. However, the NDVI value shows
a decreasing value just after this phenological stage and the chlorophyll concentration also decreases.
Therefore, attention has to be made to select proper time. At this stage NDVI shows maximum
sensitivity to changes in biophysical condition of the rice crop under observation. Hence the Boro crop
phenology has been given in Table 1.

Table 1. Phenology of Boro rice in Northwestern Bangladesh.

Stage s (Days)

Initial Vegetative Flowering Maturing Total

25 60 40 20 145
1st Jan–25th January 26th Jan–25th March 26th March–5th May 6th May–25th May January–May

Source: [56].

2.3. Geospatial Data Requirements

To meet the objectives of this research two MOD13A1 scenes (MOD13A1: h25v06 and h26v06)
have been freely accessed from US National Aeronautical Space Agency (NASA) Earth Observing
System (EOS) website in Hierarchical Data Format-Earth Observing System (HDF-EOS) format to cover
the study area for each date studied [57]. The MOD13A1 version 6 products have been selected because
the algorithm for this product chooses the best available pixel value from all the acquisitions from the
16 day period with low clouds, low view angle, and the highest NDVI/EVI value [58]. Among the
MODIS VI products, the NDVI is chlorophyll sensitive whereas the EVI is more responsive to canopy
structural variations, including leaf area index (LAI), canopy type, plant physiognomy, and canopy
architecture [59,60]. Terra MODIS 16-day maximum value composite (MVC) NDVI image products
(MOD13A1) of 500 m resolution have been utilized for the present study to develop an effective
methodology to obtain crop information and forecasting of Boro crop production in Bangladesh.
Data coverage for each month from January to April time period covering Boro life cycle during 2011 to
2017 have been utilized. Ultimately, each image corresponding to each month as obtained is based on
the selection of the best pixel value from a total of 16 images of 16 consecutive dates of the same pixel.

For the present study, Bangladesh Bureau of Statistics (BBS) estimated Boro rice crop production
statistics during 2011–2017 were collected. For yield/production estimation information, BBS followed
the Food and Agriculture Organization (FAO) guided conventional methods (direct observation and
measurement) and collects data from 10,348 numbers of clusters where each cluster constituted 5 acres
of land on an average throughout the country as sample frame. Besides a well-defined crop calendar is
followed to collect data in the field level throughout the year. The cluster has been formed from cadestral
plot listed in the land records of Bangladesh and are allocated among the districts proportionately to the
size of the district with restriction that the number of cluster in a district should be at least 150. Then for
each cluster, the sample crop cutting method for Boro rice was used where a circular cut of total area
215.278 sq. ft. (20 sq meters) with a radius of 8.278 ft was considered. For the crop estimation reporting
system, the selected sample clusters were visited four times in a year and crop-cutting experiments were
conducted in due time to estimate the rice crop production of Bangladesh. Finally, the yield rate was
calculated and multiplied by the district area to find out the production estimate for each district therefore
the country level estimates qwre obtained by summing up the estimates of districts [61]. According to the
FAO guideline, the structural agricultural statistics of BBS were generated by collecting data through full
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count/sample census normally at a regular interval of ten years, whereas the annual agricultural statistics
were generated through annual/periodic sample surveys [62].

2.4. Normalized Difference Vegetation Index (NDVI)

NDVI, calculated as the difference between near-infrared and visible reflectance values normalized
over the sum of the two [63], was anticipated as a means to estimate landscape patterns of productivity.
But forest vegetation and homestead vegetation both contributed to the NDVI calculation. However,
increasing vegetation density enhanced the NDVI values for a given crop area, whereas decreasing
vegetation gave rise to reduced NDVI values over evolving crops and other surface features.

2.5. Maximum Value Composite (MVC) at MODIS VI Products (MOD13A1)

The MODIS VI products (MOD13A1) applied the maximum value compositing (MVC) technique
to derive NDVI over a time period of 16 days for each observation. This data product utilized MVC
technique to process MODIS data on a pixel-by-pixel basis for each from a total of 16 daily time series
data value [64]. Eventually, the MVC approach enabled the users to obtain pixel-by-pixel cloud-free,
quality images representing major changes in the crop properties, condition, as well development and
growth of growing Boro crop at different stages of development during the Boro lifecycle. Furthermore
the composite algorithm utilized the information in the reflectance quality assurance (QA) flags,
particularly those derived from the MODIS cloud mask product, to preprocess the atmospherically
corrected reflectance data of MODIS Bands 1–3, and 7 (red, NIR, blue, MIR) over land only where
the land pixels with clouds, shadow, and bad data integrity were excluded from VI composite [65].
Besides MVC’s had the added advantage of reducing the effects of other unwanted influences on
the NDVI values (such as atmospheric interference). An MVC NDVI image of the area provided
pixel-wise NDVI values indicative of the condition of each pixel under observation. Pixel-wise spatial
summation of NDVI values for all the individual pixels covering each individual district area in the
MVC NDVI image provided a single value for each district. It has been reported that this MVC data
product is known to be able to account for both background and aerosol effects [48,60]. The utility of
the maximum value composite Image technique has been tested in a case study to generate NDVI
over the Indian Subcontinent. The MVC technique minimized cloud contamination, reduces off-nadir
viewing effects, and generated maximum value composite image. It has been widely reported by
various researchers that MVC techniques remove most clouds and cloud shadows, offer high spatial
coherency, and present middle-to-low sensor zenith angles in time series images. Besides standard
NASA MODIS composite provides close to nadir observation angles, and good spatial coherency [66].

2.6. Digital Overlay and Masking Operation

In this research work, spatial masking layers played an important role in obtaining information
on seasonal crops like Boro rice as the calculated satellite-based NDVI values were influenced by the
forests, homestead vegetation, as well as seasonal vegetation other than Boro crop. Digital identification
and separation of surface features under different categories of vegetation and non-vegetation is the
initial step in this operation. Table 2 provides a list of surface feature categories contributing to the
pixel-wise ultimate radiative response values determining the NDVI magnitude of that particular pixel.
These feature elements had specific roles in determining the pixel-wise NDVI calculation. At this stage,
a spatial masking operation was carried out in the ERDAS Imagine platform using previously prepared
vegetation mask layer. In preparing the vegetation mask layers, a number of vegetative surface features
were considered. The vegetation mask layer includes (i) forest features, (ii) homestead vegetation together
with (iii) seasonal crops, and (iv) mostly non-vegetated soil areas. The purpose of the vegetation mask was
to screen out part of vegetation which was mostly stable or having unchanged cover for relatively longer
time period. The basic approach consisted of producing a vegetation mask layer to facilitate the process of
separating the forest and vegetation layer. Vegetation mask layers were generated from high-resolution
satellite data and were utilized to find the district-wise rice pixel only in present study. Regular updating
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of these layers in every 3–4 years period seemed to be satisfactory to obtain the updated surface features at
country scale. The spatial details used moderate high-resolution satellite images with a spatial resolution
of 5 m or so, on which the temporal dynamics of the crop, as demonstrated through NDVI, was taken into
account by supplementing with high resolution images with less frequent observation. Some information
on the satellite data, along with relevant characteristics/parameters, are given in Table 2. Increasing
vegetation density enhanced the NDVI values for a given crop area. While decreasing vegetation gave
rise to reducing NDVI values over evolving crops and other surface features. The detailed method of
generating and updating spatial vegetation mask layer is illustrated in Figure 2. However, the changes
in the mask layer feature (Figure 3a,b) for smaller area coverage (Madhupur tract) are illustrated in Table 3
to show the low variations from the 2011–2017 time period.

Figure 2. Methods of generating and updating raster binary vegetation mask layer. GIS: Geographic
Information System; GPS: Global Positioning System. AOI: Area of Interest
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Table 2. List of major surface features to be monitored along with necessary time interval, spatial
resolution, and data source.

Feature Category
Preferred Periodic Updating

Time Interval Spatial Resolution (m) Satellite/Sensors

Forests 3 years 30/22 Landsat TM/DMC
Homestead vegetation 3 years 5 RapidEye

Seasonal crop field Seasonal 500 TERRA/AQUA MODIS
Seasonal Boro rice Seasonal 30/22 Landsat TM/DMC

Non-Vegetated areas 3 years 5 RapidEye

Therefore, based on MODIS NDVI raster layer supported by the district GIS boundary layer,
a district-wise pixel-to-pixel addition operation was carried out. Such an operation provided an NDVI
summation of all the pixels i.e.,

∑n
i=1 NDVIi for each district areas as defined by the GIS district

boundary. Here n is the total number of data points (pixels) under a given district. Ultimately,
the derived summed NDVI corresponding to all the pixels within each district area have been prepared
and is assumed to be proportional to the presence of vegetation therein.

Table 3. Changes in mask layer feature from (2011–2017) at Madhupur tract.

Surface Feature Area in 2011 (Ha) Area in 2017 (Ha)

Water body 28,715 24,372.9
Vegetation 20,079.8 21,480.9
Crop area 12,913.6 16,370.8

Others 61,563.4 61,050.4

Figure 3. (a) Mask layer properties in 2011, (b) Changes of mask layer properties in 2017.

2.7. Spatial Resolution and Information Precision

The precise crop information relatively depends on the classification accuracies of different
surface features which are influenced by spatial resolution, window size, texture extraction, and spatial
structure. In the present study, the major surface features—likely forests, homestead vegetation, seasonal
crop field, seasonal Boro rice, and non-vegetated areas—were generated considering spatiotemporal
characteristics to monitor the changes of surface features at specific time intervals. However, for more
heterogeneous or fragmented landscapes, finer resolution, and larger window size were required,
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whereas a small window was preferable to improve the classification accuracy of different surface
features for spectrally homogeneous classes [67]. Therefore, in this study relatively slowly growing
vegetation features were generated from high resolution optical images and moderate high-resolution
satellite image with spatial resolution of 5 m or so were used for spatial details. A GPS-based field
verification campaign was conducted to verify the accuracy of the retrieved information using the
technique in identifying the feature type. However, the temporal dynamics of the crop were taken into
account through supplementary high-resolution images with less frequent observation. The image
classification accuracy was affected by boundary pixel, and finer spatial resolution increased the
spectral-radiometric variation of land cover types [68], whereas [69,70] evaluated that the impact
of resolution change is greater than the change of aggregation level on the information context and
classification accuracy. Hence the present study duly considered the temporal dynamic and spatial
heterogeneity characteristics in surface feature identification and masking operations with continuous
time intervals for regular updating (Table 2) for precise crop information.

The accuracy of the generated information was checked considering positions of randomly
distributed points. The whole process of verification was guided by Global Positioning System (GPS).
Verification positions included relatively distinct surface features under categories of vegetation,
ponds, and roads verifying positional accuracies. Identification of class category was also checked
showing positional accuracy of about 10 m for the surface features. It was observed that forest
and homestead vegetation covers generally exhibited relatively high NDVI values. Considering the
flattening (saturation) characteristics of NDVI curve, these categories of surface features are being
separated digitally using high resolution satellite images on a regular time interval of 2–3 years in order
to facilitate the information retrieval processes and to reduce possible interclass conflicts due to flattened
NDVI-curve for high NDVI values. Feature-based analysis of radiometric responses in different spectral
bands showed relatively high response values over the forests and homestead vegetation areas. In order
to reduce anomalies in feature identification using spectral signatures, optimum timing was considered
based on the crop calendar of the area. A carefully-selected time period for obtaining the forests and
homestead vegetation areas with minimum conflicts and overlapping with other co-existing vegetation
was selected over a time period when transition (gap) between two crop seasons occurred particularly
around (i) the harvesting period and subsequently (ii) the plantation period.

2.8. Methodological Framework

A comprehensive methodological step for this study has been illustrated in Figure 4. After acquisition of
these satellite images, multiple steps of pre-processing were performed to develop rice production forecasting
methods, likely (a) conversion of HDF format dataset into image compatible format through (MODIS
Conversion Tool-kit) MCTK and ENVI software; (b) re-projection of the NDVI images into Transverse
Mercator; (c) necessary geometric correction; and (d) digital mosaicking of the collected images (MOD13A1:
h25v06 and h26v06). The geometric and geo-referencing operations of Landsat TM imageries of the study
area to ensure proper geometric matching of different surface features in time series images were performed
using Ground Control Points (GCP) of the area as collected by the ground truth team of SPARRSO using
Global Positioning System (GPS) by following standard methodology as available in ERDAS Imagine Image
Processing software [71]. Besides, the MODIS VI products (MOD13A1) was atmospherically corrected and
modified by MVC techniques which addressed the atmospheric perturbation.

Therefore, after necessary pre-processing of satellite imageries, the country scale vegetation
layer was used to mask out the non-crop vegetation cluster to consider the rice pixel only hence
the district-specific sum of NDVI values has been extracted from January to April at respective
years. After that, regression analysis was performed between MODIS derive district wise sum of
MODIS-NDVI values with ground-based (BBS estimated) rice crop production statistics over the period
of 2011–2017. As a fundamental approach, the model coefficients were derived through mathematical
optimization of the functional model against a given data set covering a given time period 2011–2017.
Then, based on the highest regression coefficient value, the regression model of March 2014 has been
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applied to independently generate crop production data values at the country scale from the years
2011–2017. After that, the comparison was made with the RS model-based simulated results versus
ground-based BBS estimated crop production statistics for testing or validating the model which were
not used to retrieve the values of the parameters. Where the statistical parameters like (a) Mean Bias
Error (MBE); (b) Root Mean Square Error (RMSE); (c) Model Efficiency (ME) have been derived for
accuracy assessment by applying the Equations (1)–(3).

MBE =

n∑
i=1

(Pi −Oi)

n
(1)

RMSE =

√∑n
i=1 (O i − Pi)

2

n
(2)

ME =

[
n∑

I=1
Oi −

−

O)
2
−

n∑
I=1

Pi −Oi)
2]

[
n∑

I=1
Oi −

−

O)
2
]

(3)

where n is the number of data points, Pi is the i’th model predicted data point, Oi is the i’th observed
data, and O¯ is the mean of observed data.

Figure 4. Schematic diagram of remotely sensed Boro rice production forecasting methodology. RS:
Remote Sensing; NVDI: Normalized Difference Vegetation Index; BBS: Bangladesh Bureau of Statistics;
MCTK: Modis Conversion Toolkit.
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3. Results

The following section of this research will chronologically describe the present study outcome
with some recommendations for future study.

3.1. Development of Remotely-Sensed Boro Rice Production Model

Various studies have found the potentiality of a regression model derived from remote sensing based
NDVI and ground-based crop statistics to estimate the crop yield [38,72,73] and crop production [74]
under different management condition with reasonable validity [75,76]. Boro season in Bangladesh
generally continues from January to April where transplantation begins in January and the crops become
mature at the end of March. Maximum NDVI values are attained during peak greenness period around
3rd–4th week of March. Hence linear regression model based on the relationship between the sum of
MODIS-NDVI and the ground-based (BBS estimated) crop production from January to April during
2011–2017 have been developed and stated in Table A1 with the determination of coefficient. Accordingly,
regression coefficient shows highest regression value in March among the entire regression coefficient.
The regression coefficient value ranges from (0.57–0.85) among the individually developed twenty-eight
(28) regression coefficient. The lowest and highest regression coefficient value of R2 = 0.57 and R2 = 0.85
were found in April 2012 and March 2014 respectively. The reason for this is that the peak greenness
periods represent the highest NDVI values [29,77,78] and March 23/24 to April 6/7 depending on leap
year has been considered as a peak greenness period in the context of Bangladesh [14,23,24]. Some other
articles [29,78–81] also support these findings that the peak greenness period (March) is generally related
to the Boro crop production.

The regression coefficient during (2011–2017) shows strong positive relationships that are similar
to other studies [82]. This coefficient value from individually developed twenty-eight (28) regression
model shows the strength of the model in representing the bound variables of the independent variable.
Regression equation depicts that, there is a distinctive relation between Boro rice crop productions
with sum of MODIS-NDVI values which may mean that the increases in sum of MODIS-NDVI during
the peak greenness period is generally related to the Boro crop production. Figure 5 demonstrates
time series graph showing R2 in Y-axis and months (Jan–April) in X-axis for seven years regression
line (2011–2017).

Figure 5. Monthly scale variations of remote sensing regression models (2011–2017).

Hence, based on the highest regression coefficient, month-wise regression models have been
derived to simulate the Boro crop production like for the month of Jan–Feb; BCP Model-1 can be used
whereas BCP Model-2 and BCP Model-3 are applicable for March and April respectively. Hereafter the
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forecasting of Boro rice production as a function of the sum of MODIS-NDVI values can be described
by the following relationship:

(Jan/Feb) Boro Crop Production (BCP)(M. Ton) = 0.5238× σ− 82419(BCP Model − 1)

(March) Boro Crop Production (BCP)(M. Ton) = 0.4368× σ− 62650(BCP Model − 2)

(April) Boro Crop Production (BCP)(M. Ton) = 0.437× σ− 57214(BCP Model − 3)

where, the dependent variable (BCP) has been expressed in absolute values (M.Tons) for each district,
0.5238 and 82,419; 0.4368 and 62,650; 0.437 and 57,214 are the regression coefficients, and σ is the sum
of NDVI values for each district.

3.2. Simulation of Remotely Sensed Rice Production Model

Therefore, the remote sensing regression model (BCP Model: 1–3) with derived coefficients have
been applied to simulate the Boro crop production for each of the other individual years during
2011–2017 but, as expected, the difference between the predicted and the estimated production becomes
higher than the regression model of BCP Model-2. Because high NDVI values indicates enhanced
photosynthetic activities approaching towards peak growth stage of the rice crop around March.
Moreover, other RS-derived regression models can be used also but in the context of Bangladesh the
BCP Model-2 is more applicable and suitable because of the peak greenness period during March.
Hence, simulation results of the regression model (BCP Model-2) were summarized over the 2011–2017
period in this section. Coefficients values of the regression model were derived through mathematical
optimization of the model against a single year data of 2014. Then using the same set of derived
model coefficient values (that of the year 2014), data for the other year 2011–2017 were generated
independently. So that for training the model, only one year was utilized and the remaining years have
been evaluated. Table A2 provides statistics on Boro rice production for the years 2011–2017 according
to the SPARRSO RS Model-based estimation along with ground-based BBS estimation using sampling
and crop cutting following FAO guideline. Statistics as derived from RS Model-based observation
vs. BBS estimated production (Table A2) show a relatively high correlation (R2) values from about
0.65 to 0.87 for all the years from 2011–2017. It is noted that a greater signal to noise ratio offers
greater possibility to obtain better accuracy in production estimation. The differences between the
predicted values and the official statistical values demonstrate the potential of a remotely sensed
MODIS-NDVI based Boro rice production estimate at country level. Various studies relevant to the
crop yield forecasting notably [12,37,77,80] have also found good agreement between the estimated
and predicted rice yield in different countries. Then statistical measures like MBE, RMSE, and ME
were employed to analyze the suitability of the developed model [83].

3.3. Accuracy Assessment of Boro Rice Production Model

Finally, the accuracy assessment of the Boro production forecasting model was performed with
statistical tools (Equations (1)–(3)) described mathematically by [84] which was used in relevant
studies [83]. The regression model based estimated crop statistics from BCP Model-2 during 2011–2017
was assessed with statistical parameters MBE and RMSE presented in Figure 6. Besides, Figure 7 also
reveals strong relationships between the predicted and estimated value for the Boro crop in Bangladesh
as the R2 value at yearly scale ranges from 0.64–0.85 over 2011–2017. The MBE for the applied
Boro forecasting model ranges from (−29,881 to 19,431) M.Ton which reveals that the applied model
underestimates the Boro production in 2012, 2013, 2015, and 2016 whereas the overestimation have been
found in 2011, 2014, and 2017 as the positive MBE gives the average amount of overestimation in the
calculated value and vice versa [84]. The RMSE value for the applied model ranges from (5238–11,852)
M.Ton, which is a positive value and also the use of RMSE in model validation has been appreciated
by [83,85]. Model Efficiency (ME) is used to assess the potentiality of the model and in this study
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the ME ranges from (0.86–0.94) for the applied Boro crop forecasting model. The relevant literature
suggests that an ME of 1 is a perfect match of modeled data to the forecasted data and essentiality the
closer the ME is to 1, the more accurate the model is [86]. Hence the present ME over the period of
(2011–2017) shows potentiality for using this model for Boro crop production forecasting at country
scale. Therefore, the MBE, RMSE, and ME values in this study indicate close prediction results for
Boro crop forecasting estimates during 2011–2017 for Bangladesh (Table A2). Regardless of strong
relationship between the forecasted and estimated Boro production, it would be meaningful to note
that the model-based forecasting may be affected by unexpected weather condition [86,87].

Figure 6. Radar chart showing statistical accuracy of RS model simulation for each year. RMSE: Root
Mean Square Error; MBE: Mean Bias Error.

Nevertheless, these error rates at the potential relationship between the sum of MODIS-NDVIs and
estimated Boro rice production may be found due to the presence of cloud [88] and atmospheric-moisture
contamination in the NDVI signals as well as some methodological errors in the ground-based
data collection procedure due to field data collection procedure and data entry, delays in data
accumulation to the office, and delivery due to natural disasters like flood, drought, and cyclone. [89,90].
However, the fragmented landscapes [86], average small farm size (0.24 hectares), and heterogeneous
characteristics of Bangladesh may create some irregularity in the predicted model [91]. Besides the
ground-based and forecasted rice production estimates could be attributed by other factors, such as
the quality of acquired satellite data [85]; climate variability over the seasons [13,89]; and ambiguity
associated with ground-based estimates [39].

Based on the statistical parameters R2, RMSE, and RE, as well as graphic inspection of the
agreement between the production reported by ground-based estimates of BBS and the remotely sensed
products, we can summarize that the remote sensing-derived Boro rice-cropped production can be
predicted from MODIS-NDVI based regression model. The proposed model provides a flexible way of
generating Boro crop production statistics at country scale in heterogeneous landscape of Bangladesh
as the model shows promising results though there may have some limitations in its present form
but there are ways to improve in the future implications. The satellite-derived estimates also have
drawbacks such as dependency on the availability of NDVI images, image processing and analysis
error, and calibration error. On the other hand, pixel-level interpretation and imagining is challenging
because of low-resolution biasness of MODIS data in field observation and heterogeneity of cropping
systems to detect crop phenological changes [92]. Henceforth, the investigation of vital weather
parameters such as temperature, precipitation, and solar radiation in particular, as all these issues
play an important role in terms of forecasting model-based crop production statistics [93]. Moreover,
the developed satellite remote sensing-based model needs to be assessed prior to implementing in other
geographical locations.
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Figure 7. Relationship between model-based forecasted and ground-based (BBS estimated) production
estimates at 61 district-levels during (a) 2011; (b) 2012; (c) 2013; (d) 2014; (e) 2015; (f) 2016; and (g) 2017.
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4. Conclusions

The urgency for an effective rice crop estimation system is well-recognized under threats of
climate change phenomena with increased natural disasters the world over. The full potentiality of
satellite remote sensing and GIS is to be properly exploited for different application areas including
food security. Climate change phenomena influencing various meteorological parameters and thereby
introduce uncertainties in rice crop production. This research work concentrates on the development
of an effective and easy to use technical system to forecast the rice production in advance where
MODIS-MVC data product particularly MOD13A1 seems to be useful in such purpose. Time series
analysis and preparation of data through maximum value compositing technique seems to be suitable.
The methodology directly estimates the district-wise rice production from pixel-by-pixel NDVI
summation calculation. The sum of NDVI within a district area on pixel-by-pixel provides direct
estimation of the district-wise rice production. The methods used in this study allows predicting Boro
crop production before harvesting time though the district level NDVI value shows variability due
to regional geo-morphological unevenness over the country. The variation due to cloud coverage
and aerosol and Rayleigh scattering has been minimized through pixel-by-pixel selection of pixels for
maximum value of NDVI. Findings suggest that the MODIS-NDVI-based regression models could be
best suited as the estimated and predicted crop productions have resemblance to crop statistics with
reasonable statistical validity. Furthermore, model validation provides an indication of the reasonable
levels of model accuracy and reliability. However, more empirical studies need to be performed on the
use of MODIS-derived NDVI time series data and ground-based estimated statistics-based regression
models to enhance the understanding of its forecasting capacity and limitations.
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Appendix

Table A1. Monthly scale remote sensing regression models for Boro rice production (2011–2017).

Input Variables Month Day Year Satellite-Based Boro Crop
Production Model R2: Determination Coefficient

MODIS NDVI (MOD13A1) Versus
Ground-based estimated production 2011

January 01 2011 y = 0.7233 x = (−85,912) 0.61
February 18 2011 y = 0.4884 x = (−40,708) 0.74

March 22 2011 y = 0.3859 x = (−37,122) 0.84
April 23 2011 y = 0.4703 x = (−67,661) 0.76

MODIS NDVI (MOD13A1) Versus
Ground-based estimated production 2012

January 01 2012 y = 0.7048 x = (−107,167) 0.63
February 18 2012 y = 0.5363 x = (−32,878) 0.65

March 22 2012 y = 0.4357 x = (−31,912) 0.83
April 23 2012 y = 0.4736 x = (−51,550) 0.73

MODIS NDVI (MOD13A1) Versus
Ground-based estimated production 2013

January 01 2013 y = 0.7278 x = (−120,115) 0.63
February 18 2013 y = 0.5102 x = (−37,486) 0.65

March 22 2013 y = 0.4286 x = (−47,138) 0.84
April 23 2013 y = 0.437 x = (−57,214) 0.79
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Table A1. Cont.

Input Variables Month Day Year Satellite-Based Boro Crop
Production Model R2: Determination Coefficient

MODIS NDVI (MOD13A1) Versus
Ground-based estimated production 2014

January 01 2014 y = 0.7315 x = (−141,077) 0.70
February 18 2014 y = 0.5251 x = (−74,614) 0.64

March 22 2014 y = 0.4368 x = (−62,650) 0.85
April 23 2014 y = 0.5039 x = (−70,319) 0.77

MODIS NDVI (MOD13A1) Versus
Ground-based estimated production 2015

January 01 2015 y = 0.5238 x = (−82,419) 0.76
February 18 2015 y = 0.5101 x = (−78,691) 0.75

March 22 2015 y = 0.442 x = (−61,537) 0.84
April 23 2015 y = 0.5171 x = (−95,475) 0.72

MODIS NDVI (MOD13A1) Versus
Ground-based estimated production 2016

January 01 2016 y = 0.7232 x = (−133,568) 0.57
February 18 2016 y = 0.4871 x = (−85,741) 0.75

March 22 2016 y = 0.4872 x = (−89,482) 0.75
April 23 2016 y = 0.5456 x = (−73,336) 0.67

MODIS NDVI (MOD13A1) Versus
Ground-based estimated production 2017

January 01 2017 y = 0.6103 x = (−111,701) 0.60
February 18 2017 y = 0.4187 x = (−21,932) 0.57

March 22 2017 y = 0.4158 x = (−47,908) 0.65
April 23 2017 y = 0.4076 x = (−44,345) 0.65

Table A2. RS Model and BBS estimated Boro crop production at yearly scale with statistical analysis.

Year
Boro Rice Production (M.Ton)

R2 MBE (M.Ton) RMSE (M.Ton) ME
RS Model Estimated BBS Estimated

2011 18,540,281 19,725,604 0.84 19,431 10,624 0.94
2012 18,685,684 16,862,935 0.83 −29,881 5238 0.92
2013 18,718,556 18,186,067 0.84 −8729 9833 0.94
2014 18,931,747 18,932,353 0.85 9 9097 0.94
2015 19,112,340 18,775,269 0.84 −5525 7798 0.94
2016 18,860,386 17,981,769 0.75 −14,403 11,852 0.88
2017 17,935,857 18,090,556 0.65 2536 6830 0.86
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