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Abstract: In this study, GIS-based Multi-Criteria Decision Approach (MCDA) is used to identify
suitable locations to use groundwater for irrigation purposes in Salah-Al-Din Governorate, 180 km
to the North of Baghdad, capital of Iraq republic. Various criteria are adopted including Electrical
Conductivity (EC), Power of Hydrogen (pH), Sodium percentage (Na%), Sodium Adsorption Ratio
(SAR), Magnesium Adsorption Ratio (MAR), Kelly’s Ratio (KR), climate factor, aquifer thickness,
and aquifer elevation. Three datasets are integrated to produce the suitability model, including
geophysical data, groundwater wells data and satellite-based climate data. The criteria layers are
assessed using the multi-criteria decision approach by combining them together using the weighted
overlay function in ArcGIS 10.5. Appropriate weights assigned and integrated into GIS to create the
groundwater suitability map for irrigation. Finally, the suitability of the study area for irrigation
purposes with its percent to the total area is classified into three classes according to the set criteria
used for this purpose: high suitability (35.41%), low suitability (44.22%), and unsuitable/excluded
(20.37%).
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1. Introduction

Agriculture is one of the significant sources of livelihood for Iraqi people as one-third of the
population resides in rural areas and their livelihoods depend upon it [1]. The challenge of implementing
prosperous agriculture in the current time requires an integrated and systemic approach that should
address sustainable use and management of natural resources, especially water, to ensure food security
and agricultural livelihoods. However, many hindrances are facing this intention in Iraq, including
deteriorated infrastructure, poor operation and maintenance of the systems, weak governmental
support and lack of regulatory national plans [2].

Water is a crucial need for humans in many aspects of living including irrigation of agricultural
crops; however, there is a gradual decrease in the water resources of the world, especially in the arid
and semi-arid areas, with a confronting increase in requirement due to the rapid growth of the world’s
population and industrial/agricultural advancement. This universal water crisis is evident in Iraq in
the form of degradation of the Euphrates and Tigris rivers that has been evolving practically over the
last four decades. In 1975, Turkey started the works in Güneydoğu Anadolu Projesi (GAP), which
is a 22 dam project on the Tigris and Euphrates headwaters in Turkey intended for use in irrigation
and hydroelectricity. On the other side, Iran in 2017 completed Daryan dam on Sirwan River (Diyala
River in Iraq), and in 2018 Sardasht dam on the Little Zab river. This, in addition to other factors,
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leads to the logical expectation of declination of the Euphrates and Tigris output by 2025 to 50% and
25% respectively [3]. This problem coincides with a significant rise in Iraq’s population, increasing
water demand, inadequate infrastructure to maintain quality of life and lack of scientific planning for
water resources management. Another serious factor in this regard is that the Middle East region
(including Iraq) is one of the most vulnerable world regions to the potential impact of climate change
(less precipitation, higher transpiration, sea level rise, and drought). According to these facts, the
peak water supply in Iraq does not meet the needs, and this problem gets worse with time as the
increasing population, the climate change, and unpredictable weather increase water demands largely.
The consequences are many, which include a negative impact on agriculture, industry, tourism, and
energy sectors resulting in increasing unemployment rates, poverty, food insecurity, and malnutrition.

In recent times, there has been a worldwide conviction that groundwater is one of the most
important natural water supply resources. When compared with surface water, it has a number of
fundamental advantages: it is of higher quality, better protected from possible pollution, less subjected
to seasonal and perennial fluctuations, and much more uniformly spread over large regions than
surface water. Additionally, groundwater could be available in places where the surface water is
scarce. The importance of groundwater as one of the substantial natural resources is accentuated in
countries with arid and semiarid climates, where it is widely used for irrigation as in the countries of
the Arab region with desert climate [4], these countries started to focus on groundwater resources due
to water scarcity and pollution problems [5]. In the times of water scarcity, groundwater is an excellent,
renewable, qualitative and quantitative source of water supply, the timing of aquifer recharge is usually
related indirectly to the precipitation timing, making groundwater a reliable source of supply during
droughts and scarcity of surface water. It could be extracted at rates greater than recharge rates and
could be managed wisely to recover following the drought crisis.

Site selection of a water supply borehole must follow a planned manner to be productive
and cost-effective. Properly sited boreholes are usually productive, have a long lifespan and are
cost-effective. On the other hand, random drilling can result in an unproductive or low production
well with consequent economic loss. Accordingly, an ideal plan of drilling is essential for proper and
effective investment of groundwater. This can be achieved by establishing criteria that determine the
quality and quantity of groundwater to study the suitability of the aquifer. In this context, geophysical
surveys are used to detect the depth and thickness of aquifers, and climate data can be used to estimate
groundwater recharge. Water quality can be determined by groundwater wells data. These criteria can
be combined using Multi-Criteria Decision Approach (MCDA) to determine the appropriate location
for groundwater use.

The geophysical techniques are a noninvasive, cost-effective, highly relevant method that has
gained widespread acceptance in groundwater exploration all over the world [6]. The surface electrical
resistivity sounding is one of the important geophysical methods in the investigation and determination
of aquifers parameters, providing preliminary information and suggesting the most suitable area
for drilling wells with a relatively low cost. While the vertical electrical sounding (VES) technique
provides detailed information about the thickness and hydroelectrical parameters of the aquifers in
any studied area [7].

Geographic information system (GIS) technique is highly relevant in this regard because it offers
the capability to efficiently manage and integrate large volumes of spatial and temporal data, in addition
to its prediction and validation in solving spatial decision problems [8]. MCDA is an approach for
decision analysis that combines both qualitative and quantitative information by decomposing their
problems into systematic orders depending on a number of criteria [9], it is a useful tool to explore and
solve complicated problems. MCDA, given a common output of different alternatives with respect
to different perspectives and priorities, can evaluate these alternatives depending on the theory of
decision science [10]. Several studies have used the MCDA approach to assess the spatial distribution
of the environmental problems [11–14], while others have combined the MCDA with cost-benefit
analysis [15]. Additionally, various studies used MCDA in site selection as a decision making tool
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with good results [16–20]. The applied MCDA efficiency is greatly enhanced by employing GIS
technique taking advantage of it in spatial analysis efficacy. Therefore, GIS-based MCDA technique
that efficiently combines multiple hydrological data to produce a reliable decision model is an effective
tool to enhance the suitability analysis in an area of interest. Several researchers have used remote
sensing and GIS-based MCDA in groundwater studies with effective results [21–25].

This study aims to collect and analyze the available VES data, groundwater wells data and
satellite-based climate data, to set the criteria that define the groundwater quality and quantity, and to
integrate these parameters into the MCDA to identify the suitable groundwater location to use for
irrigation purposes in Salah Al-Din Governorate/Iraq. The significance of this study lies in its relation
to several fields such as water management, agricultural productivity, sustainable environment, and
human livelihoods. It seeks to manage production and enhance the planning of agricultural production
by identifying suitable sites to use water for irrigation purposes. It is expected that this will assist in
water resource management and planning and proposed to be helpful in setting regions into single
planning and management units aiming for economic integration.

2. Materials and Methods

2.1. Study Area

The study area is located in Salah Al-Din Governorate, about 180 km to the North of Baghdad, the
capital of Iraq republic, between longitudes (43◦00′–45◦05′ E) and latitudes (34◦00′–36◦50′ N) (Figure 1).
Topographically, it is a semi-flat area with the presence of some elevated local features represented by
the deposits of river terraces and several depressions [7]. Geologically, most of the area is covered by
Quaternary deposits (Pleistocene) including the alternation of sediments such as clay, sand, and gravel
which belong to recent sediments, with an underlying Pre-quaternary (Tertiary) deposit represented
by Mukdadiyah Formation (Pliocene), which consists of the alternation of sandstone, siltstone and
claystone, and Injana Formation (U. Miocene). This consists of a sequence of silty, sandy, gravel
and mud; all of these formations are suitable for groundwater storage. Tectonically, the area lies
in the Stable and Unstable Shelf geotectonic units within the Mesopotamian zone, Ammara–Tikrit
secondary subzone [26]. The study area is an important economic area, where the population depends
economically on agriculture, especially crops of grain production, such as wheat, barley, and corn.
Farmers depend on rainwater and groundwater as a source of irrigation to plant some summer and
winter vegetables. Additionally, the areas of the two banks of the Tigris and the Al-Udheim rivers
depend also on the water of these rivers for agriculture.
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2.2. Dataset

2.2.1. Vertical Electrical Sounding (VES)

Geophysical methods are considered the most important techniques in groundwater and other
hydrogeological explorations. This research includes collecting and analyzing vertical electrical
sounding data provided by previous studies that were conducted in the study area [27–30]. The total
number of VES data are 185 data point; Figure 2 shows the VES point distribution.
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The data contain the aquifer thickness and elevation in excel sheet form and paper maps. These
data were geo-referenced, digitized, converted to shapefile and projected to WGS 84/UTM zone 38N.
After the pre-processing steps, the aquifer thickness was interpolated using the Ordinary Kriging
method, while the aquifer water level was interpolated using the Topo-to-Raster method. Figure 3
shows the aquifer thickness and aquifer elevation.
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2.2.2. Climate Data

Remote sensing rainfall estimation based on satellite-derived data from the Tropical Rainfall
Measuring Mission (TRMM) is a possible way of supplementing rain gauge data, with a good spatial
cover [31,32]. Climate data for the period 2000–2017 based on satellite data were downloaded and
processed with spatial resolution 0.25 deg. The data interpolated using the Ordinary Kriging method.
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The total annual precipitation ranged between 200–480 mm. Figure 4 presents the total annual
precipitation based on TRMM_3B43 v7 satellite data per mm over December 1999–October 2017.

AgriEngineering 2019, 2 FOR PEER REVIEW  6 

 

annual precipitation based on TRMM_3B43 v7 satellite data per mm over December 1999–October 
2017. 

 

Figure 4. Annual time-averaged map of precipitation based on TRMM data. 

Figure 5 presents the average annual air temperature based on satellite data during the period 
2000–2017, which were downloaded from GLDAS Model (NOAH025_M v2.1). The data, originally 
in the Kelvin unit (°K), were converted to Celsius (°C) and interpolated using the Ordinary Kriging 
method. 

 

Figure 5. Time-averaged map of near-surface air temperature based on the GLDAS model. 

2.2.3. Groundwater Wells Data 

The groundwater wells data were acquired from the General Commission for 
Groundwater/Ministry of Water Resources/Iraq. The total number of the data points are 340, each 

Figure 4. Annual time-averaged map of precipitation based on TRMM data.

Figure 5 presents the average annual air temperature based on satellite data during the period
2000–2017, which were downloaded from GLDAS Model (NOAH025_M v2.1). The data, originally in
the Kelvin unit (◦K), were converted to Celsius (◦C) and interpolated using the Ordinary Kriging method.
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2.2.3. Groundwater Wells Data

The groundwater wells data were acquired from the General Commission for
Groundwater/Ministry of Water Resources/Iraq. The total number of the data points are 340, each
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point contains pH, EC (µS/cm), K (ppm), Na (ppm), Mg (ppm), Ca (ppm), Cl (ppm), and SO4 (ppm).
The distribution of the wells is shown in Figure 6.
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2.3. Data Interpolation

Kriging interpolation method represents a group of geostatistics-based interpolation techniques
that attempt to give an optimal estimate of the value of a variable on a surface. Kriging was initially
developed in the 1960s by Matheron [33] based on the theory of regionalized variables which was, in
turn, an extension of the methods employed by David Krige in the mining industry of South Africa. It
is a multistep process often used in soil science and geology. Kriging method comprises exploratory
statistical analysis of the data. The general formula is:

Z(So)=

N∑
i=1

λi Z(Si) (1)

where Z (si) is the measured value at ith location, λi represents an unknown weight for the measured
value at the ith location, so is the prediction location, and N is the number of measured values.

The selection of the semivariogram model influences the prediction of the unknown values,
particularly when the shape of the curve near the origin differs significantly, so it is a fundamental
step between spatial description and spatial prediction. There are five semivariogram models namely
spherical, exponential, Gaussian, linear, and circular; every model is designed to fit different types of
phenomena accurately. The following equations of semivariance models were used in this study [34]:

(a) Spherical semivariance model

γ(h) =


co + c

((
3h
2a −

1
2

(
h3

2a3

))
0 < h < a

co + c h > a
0 h = 0

(2)
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(b) Exponential semivariance model

γ(h) =

 co + c
(
1− exp

(
−h
a

))
h > 0

0 h = 0
(3)

(c) Gaussian semivariance model

γ(h) =

 co + c
(
1− exp

(
−h2

a3

))
h > 0

0 h = 0
(4)

where C is constant, h represents the distance, and a is the range.
Many authors applied the semivariance models in their studies. Muhamad and Othman [35]

stated that the spherical model has good performances to produce a spatial rainfall map model because
all priority weight sets had similar results that ranked the spherical model in the first place. Moreover,
the spherical model was suitable for EC and exponential model for Na, K and Mg [36], while the
exponential model was the best fit for soil pH [37]. In addition, monthly and annual temperature
have spatial structure and their spatial variation conform to the spherical and exponential models [38].
Finally, a Gaussian model is a suitable choice to apply in monitoring the groundwater level [39].

In this study, the Ordinary Kriging method is used for interpolation of all layers except the water
elevation (which is interpolated using Topo-To-Raster). Additionally, the semivariogram model is
chosen according to the previous studies as follows: the Gaussian model used for the aquifer thickness;
the spherical model used to produce the layers Ec, Kf, precipitation, and temperature, while the
exponential model used for the layers SAR, NA%, MAR, KR, and pH.

2.4. Agricultural Water Quality

As various types of water are used for different purposes, it is necessary to use a specific system for
water quality standards assessment because water suitable for a given purpose may not be suitable for
another. Risk should be taken into consideration when assessing the suitability of water for irrigation.
The following terms are the main important characteristics of groundwater that are used in the present
study to determine its suitability:

2.4.1. Salinity Hazard

Thorne and Peterson in 1954 [40] modified the classification proposed by the US Salinity Laboratory
in 1954 as shown in Table 1. For this study, the values of EC vary from 2700 to 5400 µS/cm, where all
the values lie in the fourth category (very high salinity water). Figure 7 illustrates the interpolated EC
value distribution in the study area using the Ordinary Kriging method.

Table 1. US Salinity Laboratory’s grouping of irrigation water [41].

Classification of Water
Salinity

Electrical Conductivity
(µs/cm) Description Salt Concentration

Low O < EC < 250 Used for crops irrigation on most soils. <0.20

Medium 250 < EC < 750 Used in case of moderate amount of
leaching occurs. 0.20–0.50

High 750 < EC < 2250 Cannot be used in soil with restricted
drainage. 0.50–1.50

Very high 2250 < EC ≤ 5000

Used under special circumstances. The soils
must be permeable, irrigation water must
be applied in excess to provide considerable
leaching, drainage must be adequate, and
salt tolerant crops should be selected.

5–3



AgriEngineering 2019, 1 311
AgriEngineering 2019, 2 FOR PEER REVIEW  9 

 

 

Figure 7. Interpolation map for Electrical Conductivity (EC) values of the study area. 

2.4.2. Power of Hydrogen (pH) 

Water pH and redox potential significantly affect the chemical and biochemical processes in the 
water, therefore their determination has great importance. It helps to distinguish the presence of 
different forms of elements in water, which is one aspect of assessing the corrosive properties of 
water that affects the efficiency of most chemical, physical-chemical and biochemical processes of 
the water. The permissible limit prescribed by WHO varies from 6.5 to 8.1 with a mean value of 7.5 
[42]. For this study, the average value of pH is 6.98, where all values lie in the range 5.93–8.54, 
indicating slightly alkaline water. The pH values distribution of the study area is shown in Figure 8. 

Figure 7. Interpolation map for Electrical Conductivity (EC) values of the study area.

2.4.2. Power of Hydrogen (pH)

Water pH and redox potential significantly affect the chemical and biochemical processes in the
water, therefore their determination has great importance. It helps to distinguish the presence of
different forms of elements in water, which is one aspect of assessing the corrosive properties of water
that affects the efficiency of most chemical, physical-chemical and biochemical processes of the water.
The permissible limit prescribed by WHO varies from 6.5 to 8.1 with a mean value of 7.5 [42]. For this
study, the average value of pH is 6.98, where all values lie in the range 5.93–8.54, indicating slightly
alkaline water. The pH values distribution of the study area is shown in Figure 8.AgriEngineering 2019, 2 FOR PEER REVIEW  10 

 

 
Figure 8. Interpolation map for pH values of the study area. 

2.4.3. Sodium Hazard 

Sodium is one of the major factors governing water quality. There are two indicators used to 
evaluate the sodium hazard of irrigation water, the sodium adsorption ratio (SAR) and sodium 
percentages (Na %). The sodium and salinity hazards are the essential factors that could be used to 
indicate the water suitability for irrigation usages [43].  

(a) Sodium Adsorption Ratio (SAR) 

SAR is a quality parameter for irrigation water; it is used mainly in the management of 
sodium-affected soils. It is one of the most important factors for assessing the suitability of water for 
irrigation due to its effect on soil and vegetation as it has a direct relationship with sodium 
absorption in soil. SAR is calculated according to the formula: SAR = 𝑁𝑎𝐶𝑎 + 𝑀𝑔2  

(5) 

where the ionic sodium, calcium, and magnesium concentrations are expressed in meq/L. Table 2 
shows the sodium hazard classes. For this study, the SAR value is computed using equation 5 where 
the values of SAR lie in the range 7.54–41.1 ppm. These values are interpolated using the Ordinary 
Kriging method. Figure 9 illustrates the SAR value distribution in the study area. 

Table 2. Sodium hazard classes [40]. 

SAR Value Sodium Hazard Classes 
0 < SAR < 10 S1: Low 

10 < SAR < 18 S2: Medium 
18 < SAR < 26 S3: High 

SAR > 26 S4: Very High 

Figure 8. Interpolation map for pH values of the study area.



AgriEngineering 2019, 1 312

2.4.3. Sodium Hazard

Sodium is one of the major factors governing water quality. There are two indicators used
to evaluate the sodium hazard of irrigation water, the sodium adsorption ratio (SAR) and sodium
percentages (Na %). The sodium and salinity hazards are the essential factors that could be used to
indicate the water suitability for irrigation usages [43].

(a) Sodium Adsorption Ratio (SAR)

SAR is a quality parameter for irrigation water; it is used mainly in the management of
sodium-affected soils. It is one of the most important factors for assessing the suitability of water for
irrigation due to its effect on soil and vegetation as it has a direct relationship with sodium absorption
in soil. SAR is calculated according to the formula:

SAR =
Na√
Ca+Mg

2

(5)

where the ionic sodium, calcium, and magnesium concentrations are expressed in meq/L. Table 2
shows the sodium hazard classes. For this study, the SAR value is computed using equation 5 where
the values of SAR lie in the range 7.54–41.1 ppm. These values are interpolated using the Ordinary
Kriging method. Figure 9 illustrates the SAR value distribution in the study area.
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(b) Sodium percentage (Na %)

Assessment of sodium percentage is needed to evaluate the water quality. The sodium percentage
is calculated based on the relative ratio of cations existing in water, using Wilcox formula [44], the
sodium percentage, expressed in meq/L, is defined as:
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Na% =
Na + K

K + ca + Mg + Na
(6)

Table 3 illustrates the various classes of water based on Na% values. For this study, the values of
Na% are computed using equation 6; the values lie in the range 20.5–64.6. These values are interpolated
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2.4.4. Magnesium Adsorption Ratio (MAR)

Magnesium Adsorption Ratio is one of the essential qualitative criteria for evaluating the water
quality for irrigation purposes [45]. MAR is calculated by the following formula:

MAR =
Mg ∗ 100
Ca + Mg

(7)

High magnesium adsorption ratio affects the soil negatively when the MAR ratio exceeds 50.
For this study, MAR values lie in the range of 8.75–45.8 ppm. Figure 11 illustrates the MAR values
distribution in the study area.
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2.4.5. Kelly’s Ratio (KR)

Kelly in 1957 defined Kelly’s Ratio as [46]:

KR =
Na

Ca + Mg
(8)

When KR less than one, the water quality is classified as good, while water with a ratio of more
than one is considered not suitable for irrigation purposes. For this study, the values of KR lie in the
range 0.259–2.27. Figure 12 illustrates the KR value distribution in the study area.
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2.5. Climate Factor

In this study, the climate factor is considered to identify a suitable location for groundwater use.
Lang factor (Kf) is employed to estimate the possibilities of groundwater recharge during wintertime.

Precipitation Factor by Lang (Kf)

This factor is based on the relationship between precipitation and air temperature. It is expressed
as follows:

Kf =
Z
T

(9)

where Z is the total precipitations calculated for each year (mm) and the parameter T is the average
annual air temperature in individual years (◦C). Climatic regions, which are classified by this method,
are shown in Table 4. For this study, the values of Kf lie in the range of 8.43 to 19.7; all the regions lie in
the first category, which is a dry condition (irrigation required). A Lang factor (Kf) value of less than 20
indicates smaller possibilities of groundwater recharge during wintertime. The groundwater recharge
is proportional to Kf, where the highest value refers to a location that is more suitable. Figure 13
illustrates the Kf values distribution in the study area.

Table 4. Climatic regions classification [47].

Kf Area

<60 Dry, irrigation required
60–70 Relatively dry
70–80 Transient

80–100 Wet
>100 Very wet
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2.6. GIS-Based Multi-Criteria Decision Analysis

GIS-based MCDA is the process that integrates and transforms geospatial data and values to
get an overall evaluation of the decision alternatives. GIS techniques play a significant role in the
decision analysis method by recognizing them as a decision-support system that integrates spatial
reference data into a problem-solving environment. GIS-based suitability analysis is the process used
to evaluate the suitability for a specific area for a definite purpose, for example, urban development,
agriculture, and livelihood projects. In the MCDA process, every criterion is given an accurate weight,
which represents the importance of this criterion. Figure 14 illustrates the multi-criteria evaluation
flow chart. Nine criteria are used in this study to find out the groundwater suitability for irrigation
purpose, which are EC, pH, Na%, SAR, MAR, KR, Climate factor, aquifer thickness, and the aquifer
elevation. Table 5 summarizes the standardized scales and weights for each layer. The standardization
commonly referred to as the process that converts the data to a uniform numeric scales. Usually, the
standardized criteria are combined by the weighted linear combination, where each factor is multiplied
by the assigned weight, and then the results collected to reach a multi-standard solution [21]:

Suitability = Σ WfXf ∗Π Ci (10)

where

Wi = Weight of factor f
Xi = criterion score of factor f
Cj = constraint i.
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Table 5. Standardization layers used in groundwater weighted overlay model.

No. Thematic Layer Value Source Type Interpolation
Method Reclassify Weight

1 Aquifer Thickness 66–347 Meter VES Data Point Kriging/Gaussian 1 = 347 (good)
305 = 66 (Bad)

2 Aquifer Elevation 53–160 Meter VES Data Point Topo To Raster 1 = 53 (good)
105 = 160 (Bad)

3 Kf Factor 8.43–19.7 mm/◦C
Satellite-based Precipitation and

Temperature Point Kriging/Spherical 1 = 20 (good)
105 = 8.43 (Bad)

4 EC 2700–5400 µs/cm Groundwater Wells Point Kriging/Spherical 1 = 2700 (good)
105 = 5400 (Bad)

5 SAR 7.54–41.1 ppm Groundwater Wells Point Kriging/Exponential 1 = 7 (good)
55 = 41 (Bad)

6 NA% 20.5–64.6 ppm Groundwater Wells Point Kriging/Exponential 1 = 19 (good)
55 = 65 (Bad)

7 MAR 8.75–45.8 ppm Groundwater Wells Point Kriging/Exponential 1 = 8 (good)
105 = 45 (Bad)

8 Kr 0.259–2.27 Groundwater Wells Point Kriging/Exponential 1 = 0.2 (good)
105 = 2.2 (Bad)

9 pH 5.93–8.54 Groundwater Wells Point Kriging/Exponential 1 = 6 (good)
105 = 8.5 (Bad)
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3. Results and Discussion

Analysis of the results of this study reveals that the values of EC are lying in the range
2700–5400 µS/cm, where all values fall in the fourth category (very high salinity water). The pH range
is 5.93–8.54, which indicates that water is slightly alkaline. SAR range is 7.54–41.1 ppm that fall in all
categories. The higher the SAR values in the water, the greater the risk of sodium. If the SAR values
are high, the irrigation water will cause permeability problems with shrinking and swelling in clayey
soils. For this study, the values range of Na% is 20.5–64.6 (excellent to doubtful, respectively). MAR
values are less than 50 ranging from 8.75 to 45.8 ppm. KR varies from 0.259 to 2.27, values less than
one are classified as good, while higher values are considered as not suitable for irrigation purposes.
The sodium present in irrigation water reacts with soil causing absorptivity problems, which affect soil
structure that becomes more compact with permeability reduction leading to little or no plant growth.
The precipitation factor Kf values in this study are less than 20, indicating the dry condition (irrigation
is required) that means smaller possibilities of groundwater recharge during wintertime.

3.1. Weighted Overlay Analysis

The weighted overlay is a process applied to put common measures of values to a variety of
dissimilar and miscellaneous inputs to create an integrated analysis. Geospatial problems often require
an analysis of different criteria using GIS. In this study, weighted overlay analysis in ArcGIS 10.5 is
used to generate the final suitability map of the groundwater reservoir for irrigation (Figure 15). The
primary task of the weighted overlay is that for each spatial data set the cell values of the input are
multiplied by the weight of the raster (the weight of the standard).
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3.2. Reclassifying Datasets

The first step to build the suitability model is the derivation of databases. In this approach, for
every criterion input, each cell in the study area has a different value for each layer. The suitability map
is created by combining the derived layers to identify suitable groundwater locations for irrigation.
As it is not possible to combine these layers in this form, the next step is to reclassify the previous
maps into a relative five classes to have a common value. In the resulted maps, the suitable locations
are referred to as number one, while number five indicates unsuitable locations. Figure 16 shows the
reclassified map for the nine criteria used in this study.
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3.3. Suitability Map

MCDA is an appropriate and significant tool for suitability analysis of groundwater in terms of
their adequacy levels by measuring the various criteria under consideration. In this context, various
studies utilized MCDA for groundwater suitability analysis with successful results. For example, Aziz
et al. [25] selected the best site to drill groundwater wells in the Fadak farm, South Iraq for irrigations
purposes. The optimal location was selected depending on the hydrogeophysical data including
resistivity, depth, thickness, and transmissivity of the aquifer. These parameters were integrated
precisely into GIS to find the preferable sites. Finally, the region was divided into three classes; good,
medium, and bad. In addition, Ebuka et al. [19] selected the best drilling site of new groundwater
exploration wells using GIS. The optimal locations were selected depending on the geophysical
data including longitudinal conductance, aquifer thickness, apparent resistivity, and transmissivity.
According to the results, the region was divided into three classes; not suitable, moderately suitable
and highly suitable with respect to the input factors using the Fuzzy overly method. Khalil et al. [48]
used Landsat (ETM+) images, GIS, hydrological modeling and geoelectrical resistivity techniques,
in an integrated manner, to identify the groundwater potentialities in West Sinai, Egypt. The results
revealed the successful integration amongst the geoelectrical parameters, hydrological data, and GIS
in the site selection process to identify the optimum locations for dam construction.
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In this study, GIS-based Multi-Criteria Decision Approach is used to identify suitable locations to
use groundwater for irrigation purposes in Salah-Al-Din Governorate. Various criteria are adopted
including Electrical Conductivity (EC), Power of Hydrogen (pH), Sodium percentage (Na%), Sodium
Adsorption Ratio (SAR), Magnesium Adsorption Ratio (MAR), Kelly’s Ratio (KR), climate factor,
aquifer thickness, and aquifer elevation. The criteria layers are assessed using the MCDA by combining
them using the weighted overlay function in ArcGIS 10.5. Appropriate weights are assigned and
integrated into GIS to create the groundwater suitability map for irrigation. The final suitability map is
classified into three categories, high suitability, low suitability and unsuitable (excluded) as shown in
Figure 17. In addition, the total area and percentage are determined for each class as shown in Table 6.
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Table 6. Percent area under the three category.

Category Area (km2) Percentage

High suitability 1999.48 35.41%
Low suitability 2496.23 44.22%

Unsuitable 1150.38 20.37%
Total Area 5646.09 km2

4. Conclusions

This study is directed to identify the suitable groundwater location for irrigation purposes in Salah
Al-Din Governorate, Iraq. Three datasets are integrated to produce the suitability model, including
geophysical data, groundwater wells data and satellite-based climate data to define the groundwater
quality and quantity. The criteria layers are assessed using the MCDA approach by combining them
using the weighted overlay function in ArcGIS 10.5. Weighted overlay of the geospatial dataset seems
to be an effective method to identify the suitability classes of groundwater for irrigation purposes in
this study. Integration of GIS technology with MCDA can provide a good guideline regarding the
identification of groundwater natural resource condition and for the sustainability of this valuable
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resource. According to the irrigation water classification based on electrical conductivity, it can be
concluded that the water of the study area falls in the high saline category that may harm the plants
with low tolerance to salinity. The suitability of the study area for irrigation purposes is classified into
three classes according to the set criteria used for this purpose: high suitability (35.41% of the total
area), low suitability (44.22% of the total area), and unsuitable (20.37% of the total area) depending
on the specific criteria used for this purpose. It is suggested that this classification is to be adopted
by farmers in the study region, plan makers and governmental authorities. Further studies in this
field are recommended to establish a cornerstone for a planned, scientifically based approach for water
management in Iraq. The resulted information should be available for all persons involved in the
agricultural sector in Salah Al-Din governorate.
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16. Gigović, L.; Pamučar, D.; Lukić, D.; Marković, S. GIS-Fuzzy DEMATEL MCDA model for the evaluation of
the sites for ecotourism development: A case study of “Dunavski ključ” region, Serbia. Land Use Policy 2016,
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