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Abstract: Tofu is an ancient soybean product that is produced by heating soymilk containing a
coagulation agent. Owing to its benefits to human health, it has become popular all over the world.
An important index that determines the final product’s (tofu’s) quality is firmness. Coagulants such as
CaSO4 and MgCl2 affect the firmness. With the increasing demand for tofu, a monitoring methodology
that ensures high-quality tofu is needed. In our previous paper, an opportunity to monitor changes in
the physical properties of soymilk by studying its optical properties during the coagulation process
was implied. To ensure this possibility, whether soymilk and tofu can be discriminated via their optical
properties should be examined. In this study, a He–Ne laser (Thorlabs Japan Inc., Tokyo, Japan, 2015)
with a wavelength of 633 nm was emitted to soymilk and tofu. The images of the scattered light on
their surfaces were discriminated using a type of deep learning technique. As a result, the images were
classified with an accuracy of about 99%. We adjusted the network architecture and hyperparameters
for the learning, and this contributed to the successful classification. The construction of a network
that is specific to our task led to the successful classification result. In addition to this monitoring
method of the tofu coagulation process, the classification methodology in this study is worth noting
for possible use in many relevant agricultural fields.

Keywords: coagulation; deep learning; diffuse reflection; firmness; machine learning; scattering
coefficient; soymilk; soybean; tofu; transfer learning

1. Introduction

Tofu, also known as soybean curd, is an ancient soybean product that is produced by heating
soymilk containing a coagulation agent [1–4]. Tofu is widely consumed in many Asian countries.
Further, Western populations have shown interest in soybean products as a result of the influence of
Asian immigrants and the possible benefits of soybeans for human health [5–7]. As one of the best
sources of plant protein, tofu is also rich in beneficial lipids, vitamins, and minerals as well as other
bioactive compounds such as isoflavones. Therefore, tofu reduces the risk of many diseases, including
hypertension [4,8].

An important index that determines the final tofu product quality is firmness [9], which is mainly
determined by the soymilk coagulation process. Hence, control of the coagulation process is crucial [10].
In this process, coagulants such as CaSO4 and MgCl2 affect the firmness [11]. However, manipulation
during the coagulation process is dependent on the intuition and experience of skillful artisans [12]. With the
increasing demand for tofu, a monitoring methodology that ensures high-quality tofu is desirable [13].

A monitoring method that can detect the coagulation of soymilk by electrical impedance
spectroscopy (EIS) has been developed [14–16]. However, the method requires the insertion of
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two electrodes into the tofu. Thus, this destructive method is unsuitable. Saito et al. [13] emitted a
He–Ne laser at a wavelength of 633 nm on tofu, and a significant correlation between the reduced
scattering coefficient and the firmness of soymilk and tofu was observed. This offers the opportunity to
monitor changes in the physical properties of soymilk via its optical properties during the coagulation
process [13]. To ensure this possibility, first, whether soymilk and tofu can be discriminated via diffuse
reflection light should be examined. If the discrimination can be done accurately, then the detailed tofu
coagulation process can be monitored. For example, it would be possible to evaluate the extent of the
coagulation of the soymilk from 1 to 10 non-destructively. The technique leads to a precise control of
tofu firmness, resulting in high-quality tofu.

Recently, a convolutional neural network (CNN), which is a deep learning technique, achieved
high classification accuracy in image analysis [17–19]. In a CNN, relevant contextual features
in image categorization problems are automatically discovered, and the use of CNNs is gaining
attention [20]. CNNs are being used in relevant agricultural fields such as plant species and disease
classification [20–23], remote sensing [24–26], and classification of cattle behavior patterns [27]. Using an
image analysis technique to monitor tofu and soymilk may be possible. For example, paying attention to
the attenuation of the light from the emitted light would lead to the discrimination of tofu and soymilk
due to the difference of the edge of the scattered light. However, to define the difference quantitatively
is not easy. Edge detection or the calculation of the standard deviation could be considered as a method
for defining the difference, but to build the features from lots of potential images is very tedious and
difficult. On the other hand, a CNN conducts the feature extraction automatically, so the use of a CNN
is appropriate here in this study.

However, the construction of a new neural network with appropriate architecture and weights is
difficult. A technique called transfer learning has recently gained attention. This approach utilizes
existing knowledge of some related task or domain in order to increase the learning efficiency of the
problem under study by fine-tuning pretrained models [28–30]. In a previous study, Itakura and
Hosoi [31] classified flower images accurately with transfer learning. In another significant work,
Suh et al. [32] utilized transfer learning for the classification of sugar beets and volunteer potatoes
under field conditions. Although transfer learning is effective in classification, it is essential to modify
the transferred model into a network that is specific to each task; that is, just using an existing network
(programming codes) for our task is not sufficient. Additional operations such as customizing the
network to the task and the optimization of hyperparameters are needed.

In this study, we constructed a tailor-made deep neural network using a transferred framework
by adjusting the network structure and hyperparameters for an accurate classification of soymilk and
tofu through their diffusely scattered light images. A He–Ne laser with a wavelength of 633 nm was
emitted to soymilk and tofu. Then, the image of the scattered light was taken. Whether the image
was from soymilk or tofu was estimated using a pretrained network. After adjusting the network
architecture and hyperparameters, the classification was conducted.

2. Materials and Methods

2.1. Sample Preparation

Tofu was made from soymilk (manufactured by Sujahta Meiraku Co. Ltd., Nagoya, Japan, 2016)
by adding 58.1 mL of coagulant (CaSO4·1/2H2O) and heating for 20 minutes. Then, the tofu was kept in
a refrigerator (4 ◦C) for more than 2 hours. To diversify the tofu firmness, the coagulation temperature
was set from 50 to 80 ◦C. The tofu was made in a tube with a volume of 80 mL and diameter of 18 mm.

2.2. Experimental Setup

Figure 1a shows the experimental setup. A He–Ne laser with a wavelength of 633 nm (Thorlabs
Japan Inc., Tokyo, Japan, 2015) was emitted to samples in a dark room (temperature: 20 ◦C), and an
image was taken by a digital camera (Canon, EOS Kiss X2). Figure 1b and c show the soymilk and
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tofu images, respectively. The focal (F) number was set to 3.5 and 6.3, and the shutter speed was set
to 1/10 s, 1/20 s, 1/40 s, 1/80 s, and 1/160 s. A total of 70 and 148 images of soymilk and tofu were
obtained, respectively.

2.3. Training of Classifier via Deep Learning Technique

2.3.1. Data for Classification

The number of images for training and validation during the training and test phases was 200,
40, and 58 (soymilk: 30 and tofu: 28), respectively. In the training process, the weights and biases for
the neural network were determined. In the validation process, how the network was adopted to the
classification task was predicted. If the adaptation is not enough, more training is necessary. If the
network adapts to the task too much, it leads to the over-fitting to the training data, resulting in low
accuracy in the test data set. Therefore, the validation set can contribute to a high accuracy. The training
process was performed with the images in the training dataset. At the same time, the classification
accuracy was calculated during the training process using the validation dataset. As the training
process goes on, the classification accuracy with the training images increases, however, the network
might be over-fitted to the training data, in which case the classification accuracy with training images
is high while the accuracy with other image data sets is low. Thus, a validation dataset was prepared to
escape the over-fitting, and the classification with the validation set was calculated. If the classification
accuracy with the training dataset increased and the accuracy with the validation set stopped increasing
or started decreasing, the training process terminated, preventing the over-fitting of the network, as the
network seemed to have started to over-fit the training dataset. Here, the number of training images
was 200 as mentioned, and the weights and biases were updated seven times in one epoch as explained
in Table 1. The number of maximum epochs was 10, meaning the update of the weights and biases was
made a maximum of 70 times. The accuracy assessment with the validation dataset was conducted
every three updating processes. The high frequency of the assessment with the validation dataset
provided early detection of over-fitting, while leading to a longer time for the training process. Samples
were randomly selected, and the training below was conducted five times. Then, the average accuracy
was calculated. For soymilk, images that were horizontally flipped [33,34] were added in order to
double the number of images. This technique, called data augmentation, is effective in teaching the
network the desired invariance and robustness properties when the number of training samples is
limited [35–37].
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Figure 1. Experimental setup and images obtained from soymilk and tofu. Notes: Panels (a) Show the
experimental set up. The laser beam was emitted to the sample and its diffuse reflection light was taken
by the camera. Panels (b) and (c) show diffuse reflection light from soymilk and tofu, respectively.



AgriEngineering 2019, 1 238

2.3.2. Network Architecture

The pretrained network GoogLeNet, which was made by Szegedy et al., was utilized [38,39].
This network introduces a new module called Inception, which concatenates filters of different sizes
and dimensions into a single new filter [40]. GoogLeNet is not a series network but a directed acyclic
graph network. The network performed at very high accuracy in the image classification of Imagenet,
which is an image database [41]. However, GoogLeNet is a network for 1000 classes; accordingly,
it cannot be used for the current task, i.e. two-class discrimination. A new structure for the current
work was needed. To create a network for the two-class discrimination, the final fully connected
softmax and output layers were cut off, and only the remaining network was transferred, as shown
in Figure 2a,b. Here, the network structure that was not cut off was exactly the same as GoogLeNet.
Then, new layers for two-class discrimination were built and directly connected to the last part of
the transferred network, as Figure 2c shows. Then, training was implemented with this customized
network. Constructing the CNN from scratch is not needed in this transfer learning method, and it is
comparatively easy to conduct the classification with the pre-trained deep neural networks.

This network consisted of 144 layers. As shown in Figure 2b, the weights and bias from the first
to the 110th layer were fixed, and the weight and bias values were the same as before the transfer
(i.e., learning rate = 0). Then, only the rest of the network was used for the learning, as shown in
Figure 2b,c. The learning rate in the 142nd layer was set at 10 times as much as the rest of the layers
after the 110th layer. With the method, it is likely that the processing time of the training for fixing the
weight and bias values can be reduced. To ensure this, the times when the parameters were fixed and
not fixed were compared.
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Figure 2. Network architecture. (I) GoogLeNet and its last three layers when cut off; (II) customized
network for this study, composed of transferred network from GoogLeNet and new layers for
two-class discrimination.

2.3.3. Hyperparameter Settings

The optimizer was stochastic gradient descent (SGD) with momentum [42]. The momentum,
weight decay [43], and initial learning rate that directly influenced the result were determined using
Bayesian optimization [44,45]. Owing to the optimization, the determination of the parameters could
be done automatically and appropriately [46–49]. Other hyperparameters were determined manually.
The parameters used are listed in Table 1. This study defined the parameter of validation frequency.
In the learning process, the accuracy of the validation set (as explained in Section 2.3.1.) was calculated
every three iterations. Then, if the accuracy did not increase five times in a row, the training process
stopped because it arrived at the critical point where the learning does not proceed further. This reduced
the training time and is called early stopping [43].
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Table 1. Parameters used for training.

Parameter Value or Name

Optimizer Stochastic gradient descent
Momentum 0.9

Weight decay 1.0 × 10−4

Initial learn rate 1.0 × 10−4

Max epochs 10
Minibatch size 30

Validation frequency during learning Every 3 iterations

3. Results and Discussion

3.1. Classification Accuracy

The estimation accuracy of soymilk and tofu was 99.0 ± 0.94%, indicating that the classification
could be done very accurately. In the coagulation process, molecular interactions between the
substances such as water soluble protein, particle protein, lipid sphere, phytin, and salt ions are
involved, which results in the three-dimensionally complicated structure of tofu. Then, the structure of
tofu and soymilk changes from colloid to card throughout the interaction. However, the interaction was
not investigated in detail for the classification of soymilk and tofu in this study. It is said that the change
of the optical properties originating from the structural alternation would lead to non-destructive
discrimination [13]. Therefore, the classification was tried with the scattering light image before and
after the coagulation. The tofu surface is uneven on the microscale, resulting in a scattered reflection
when the laser beam is emitted. Then, the scattered light waves interfere with different phases between
them. As a result, when images of the scattered light are taken by cameras, images with random
contrast are obtained [50]. Thus, a subtle difference between the soymilk and tofu images was observed
around the edge of a red circle.

However, generally, accurate classification is difficult when the shapes and colors of the images
are similar among the classes to be classified. This study imported a pretrained network that could
extract powerful and informative features, and utilized it as a starting point to learn a new task (transfer
learning). Then, the network made by the authors was connected to the last layers of the transferred
network. This customized network contributed to the high accuracy. This method is especially effective
when the amount of data is comparatively less, as in this study [28,51]. Further, a network composed
of many filters and layers like the network in this study learns increasingly higher-level features [52],
and these factors result in a higher accuracy. Moreover, the learning rate of the last softmax layer
(142nd) that directly influences the classification was 10 times larger than other layers, resulting in a
high classification accuracy.

In addition to a well-designed network architecture, appropriate image acquisition conditions
and optimization of the hyperparameters are essential when determining the effectiveness of transfer
learning. In this study, the diffused light was located around the center of the image, and the
configuration was not much different throughout the dataset. This unbiased localization of the target
contributed to the high accuracy [37]. In addition, the appropriate parameters for the network could
be determined based on Bayesian optimization.

It is desired to utilize this transfer learning method in agriculture-related tasks. In addition to
GoogLeNet, other frameworks that possess advantages such as high accuracy and smaller network
sizes have been introduced, including VGG named after Visual Geometry Group [53], squeeze net [54],
resnet [55], and DenseNet-201 [56]. By selecting a good framework that is familiar with each task,
more difficult tasks can be solved.
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3.2. Monitoring of Accuracy and Weight Change during Training Process

Figure 3 shows the relationship between the number of epochs (horizontal axis), the classification
accuracy in each epoch (first vertical axis), and the weight change in the last softmax layer (second
vertical axis). The weight change is the average value of the absolute change rate of the weight from
the previous epoch. The weight of the last softmax layer, in particular, influences the classification.
Thus, the value of the layer is tracked. As indicated by Figure 3, as the learning proceeded and the
number of epochs increased, the accuracy also increased. Simultaneously, the weight of the layer
became optimized. Then, the change rate became stable. By connecting the transferred network to
the customized layers, the training was done appropriately and the weight values were optimized.
Therefore, classification with a high accuracy was accomplished.

Observation of the weight value in the layers close to the input layer is also effective. Thus,
the occurrence of a gradient vanishing problem can be determined [57,58], and a better network
corresponding to the specific task can be created.
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3.3. Activation Map

Figure 4 illustrates a part of the image used for the classification. It was considered that each
image had an important part that contributed to the prediction. Figure 4a–c was created based on
the method proposed by Zhou et al. [59]. The first row (a) shows the raw images of soymilk and tofu.
In the second row (b), the parts that were highly utilized for the classification are indicated in white.
The first and second rows overlap in the last row. The part that contributes to the classification and one
that does not contribute are highlighted in purple and green, respectively. In this figure, the edges
in the larger circle in the image were utilized for the classification. The centers of the images were
saturated, and the retrieved information was limited. Thus, the observation around the edges and not
the center part was reasonable.

Note that the part near the edges in the smaller circle, which is the central saturated circle in tofu,
is also required for the classification as shown in Figure 4c. We can see that the edges of the smaller circle
are also uneven; the edge line of the saturated part can be informative for the classification. This feature
was not recognized by the authors until this figure was created. It is worth noting that a feature that
cannot be noticed by tofu manufacturers was found. In addition, only half of the lower or upper side of
the image was used for the classification. Further, as the coagulation proceeds, a microstructure forms
in the tofu [60,61], resulting in an increase in the diffuse coefficient [13]. As the diffused scattering
coefficient increases, the slope of the attenuation curve of the diffusely scattered light intensity increases
away from the emitted point [62]. This attenuation might contribute to the classification.
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3.4. Reduction in Processing Time

We tuned the weights of the layers after the 110th layer only. The processing time with the weights
and biases up to the 110th layer was 414 s (fixed) and 1163 s (not fixed), as shown in Figure 5. In Figure 5,
“Freezing” and “Not-freezing” represent the “sped-up version” and normal one, respectively.

If the parameters are fixed, the process of updating the parameters in the layers before the 110th
layer is not needed. Then, a backpropagation to the layers was not performed, resulting in a significant
decrease in the processing time. Furthermore, owing to the early stopping explained in Section 2.3.3.,
the processing time can be reduced.

The value of max epochs was 10, but the training was stopped in the middle of the 7th epoch
owing to early stopping. The processing times with and without early stopping were 355 and 570 s,
respectively, indicating a reduction in the processing time with a high accuracy of 99%. This technique
is also effective for halting the training when it is not appropriately conducted owing to non-optimized
parameters and network architecture. Moreover, it is also effective in detecting overfitting. If the
training loss is decreasing and validation loss is increasing, the training should be stopped because the
classifier learns a detail of the training data unrelated to the features of the classes.
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weights and biases up to the 110th layer was 414 s (fixed) and 1163 s (not fixed), as shown in Figure 
5. In Figure 5, “Freezing” and “Not-freezing” represent the “sped-up version” and normal one, 
respectively. 

If the parameters are fixed, the process of updating the parameters in the layers before the 110th 
layer is not needed. Then, a backpropagation to the layers was not performed, resulting in a 
significant decrease in the processing time. Furthermore, owing to the early stopping explained in 
Section 2.3.3., the processing time can be reduced.  

The value of max epochs was 10, but the training was stopped in the middle of the 7th epoch 
owing to early stopping. The processing times with and without early stopping were 355 and 570 s, 
respectively, indicating a reduction in the processing time with a high accuracy of 99%. This 
technique is also effective for halting the training when it is not appropriately conducted owing to 
non-optimized parameters and network architecture. Moreover, it is also effective in detecting 
overfitting. If the training loss is decreasing and validation loss is increasing, the training should be 
stopped because the classifier learns a detail of the training data unrelated to the features of the 
classes.  

 

Figure 5. Processing time for training when freezing and not freezing weights in forward layers. When 
freezing, weight values in layer before 110th were fixed and not changed in training process. 

Figure 5. Processing time for training when freezing and not freezing weights in forward layers.
When freezing, weight values in layer before 110th were fixed and not changed in training process.
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4. Conclusions

In this study, a He–Ne laser with a wavelength of 633 nm was emitted to soymilk and tofu. Then,
an image of the scattered light was taken. Whether the image was from soymilk or tofu was estimated
using a type of deep learning—transfer learning. First, a pretrained network, GoogLeNet was imported.
Next, the last three layers of GoogLeNet were cut off and new ones were added. Then, our customized
network was built. As a result, the images of the scattered light of soymilk and tofu were classified
with an accuracy of about 99%. We adjusted the network architecture and hyperparameters for the
learning, and this adjustment contributed to the successful classification. The construction of a network
that was specific to our task led to the successful classification result. To date, the coagulation process
has been monitored using confocal laser scanning microscope (CLSM), atomic force microscope (AFM),
and mathematical modelling [63–67]. In our future work, how the proposed optical method in this
study can reflect the changes in the coagulation process in the microscale should be explored. Our final
goal is to predict the extent of the coagulation of the soymilk and tofu. If we can reveal that changes
in the microscale can be monitored using the present method, the potential for the application of
this method and its reliability will become clearer. In addition to this monitoring method of the tofu
coagulation process, the classification methodology in this study is worth noting for possible use in
many relevant agricultural fields such as disease detection and classification, estimation of best harvest
time, and early detection of plant wilting. In our future work, the same experiment should be done
with different kinds of soymilk and tofu. Additionally, the feasibility of this classification with other
conditions such as a different light environment, cameras, and wavelength of emitted light should
be investigated.
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