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Abstract: Future climate change is projected to have significant impacts on water resources
availability in many parts of the world. This research evaluated climate change impacts on runoff,
aquifer infiltration, renewable water resources, and drought intensity in Salt Lake sub-basin, Iran, by the
Soil and Water assessment tool (SWAT) model and the Standardized Precipitation Index (SPI) under A1B,
A2, and B1 climatic scenarios for 2011–2030, 2046–2065, and 2080–2099, using 1986–2016 as the reference
period. The model was calibrated and validated by the SWAT-CUP software and SUFI-2 algorithm.
Nash–Sutcliffe (NS) coefficients (0.58 and 0.49) and the determination coefficients (R2) (0.65 and 0.50)
were obtained for the calibration and validation periods, respectively. In order to study the climatic
condition in the study basin, drought intensity was calculated. Then, drought intensity was predicted
using the SPI index for the period 2011–2030. The results showed that runoff, infiltration, as well as
renewable water resources will decrease under all climatic scenarios. Renewable water resources will
be approximately reduced 100 Mm3 by the year 2100. The future projections suggest a regional increase
of 2 ◦C in temperature and a 20% decrease in precipitation in the sub-basin. In particular, drought
intensity will be increased in the future. In 2015, this index was −1.31, and in 2016, the SPI index
was lower than −2. These projection scenarios should be of interest to water resources managers in
tropical regions.

Keywords: climate change; SWAT model; runoff; infiltration; renewable water; drought

1. Introduction

The management and planning of water resources are becoming more challenging as a
consequence of the uncertainties of climate change [1]. The increase in temperature, variations in
precipitation, and changes in the frequency of extreme events increase the probability of flood
occurrences and change the total and seasonal water supply [2]. Iran is considered among the arid
and semi-arid areas in the global climatic zonation [3]. Evidence from historic climatological data
and forecasts of Iran’s climatic conditions, as elsewhere worldwide, indicates climate change in recent
decades with an ongoing trend in the future. Climatic alterations will seriously affect water resources,
a large part of which, including surface waters, ground waters, and water-related constructions,
will undergo unintended consequences. Simulations using hydrological, general circulation, or regional
climate models are common methods for the study of the climate change impact on water resources.
Abbaspour et al. (2009) assessed the impact of climate change on water resources in Iran. They found
that the wet regions of the country will receive more rainfall, while the dry regions will receive less
rainfall in scenarios A1B, A2, and B1 [4]. Ficklin et al. (2010) conducted a study on climate change
effects upon basin runoff using the Soil and Water assessment tool (SWAT) model and the LARS-WG
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software in order to investigate the effects of climate change on sediment load, nitrate, phosphate,
and agricultural fertilizer residues in San Joaquin watershed, California, downscaled by LARS-WG
for 2100. Through the Special Report on Emission Scenarios (SRES) regarding CO2 emissions by
agricultural practices, they found that the rising levels of this pollutant would result in a 23% drop
in runoff and a 2 ◦C increase in temperature [5]. Faramarzi et al. (2013) conducted a research on
climate change impact on freshwater availability in Africa. The results showed that for Africa as
a whole, the mean total quantity of water resources is likely to increase. For individual subbasins
and countries, variations will be substantial. Also, they showed that the number and frequency of
dry days will increase in the future [6]. Devkota and Gyawali (2015) employed the SWAT model for
hydrological simulation in order to investigate the climate change effect on the management and the
hydrology of Kushi River basin in Nepal. Their results showed that climate change is not a large threat
to available water in that area, though the projected flow was strongly dependent on the climate change
implemented in the climate model [7]. Shrestha et al. (2016) applied the LARS-WG and SWAT models
to study climate change-related runoff and sediment uncertainty in future periods of 2030 and 2060
under the Global Circulation Models (GCM) and reported an increase in sediment load and a decrease
in runoff in the future [8]. Montaseri and Amirataee (2016) used 50 years of historical precipitation
data at 12 stations in different parts of the planet to produce 1000 consecutive series of artificial rainfall
and compared different methods of drought monitoring. Their results showed that the Standardized
Precipitation Index (SPI) method is the most accurate and realistic indicator for drought analysis [9].
Leta et al. (2016) assessed the climate change impact on water balance components in Hawaii using
the SWAT model. The predicted climate change scenarios showed that the decrease in rainfall during
the wet season and the marginal increase in the dry season will be the main factors for the overall
decrease in water balance components. Specifically, the groundwater flow may decrease by as much
as 15% due to predicted rainfall and temperature changes by 2100 [10]. Alipour et al. (2017), in three
central provinces of Iran, using 30-year precipitation data at 20 weather stations, showed that the SPI
index is more flexible in drought analysis at monthly, seasonal, and annual time scales compared to
other methods [11]. In another study, Kumar et al. (2017) investigated climate change impact on water
resources in India. The results indicated that simulated annual discharge and percolation for 2020s
will decrease by 2.9% and 0.8%, respectively [12]. Marcinkowski et al. (2017) conducted a study on
climate change effects upon two Lowland Catchments in Poland. The hydrological response to climate
warming and wetter conditions will include lower snowmelt, increased percolation, and baseflow and
higher runoff [13]. The influences of climate changes on surface water resources in the Pangani basin
were assessed by the Soil and Water assessment tools (SWAT) and Water Evaluation and Planning
system (WEAP) models (Kishiwa et al., 2018). The results indicated a 10% rise in runoff and almost
a 2 ◦C elevation in temperature during the 2050s compared to the baseline period. Irrigation is also
predicted to undergo a severe shortage, necessitating current and future planning for water use [14].
Zhou et al. (2018) assessed the quantitative effects of climate change and anthropogenic activities on
runoff fluctuations in Dongjiang River basin, China, and detected an elevated annual temperature and a
reduced evaporation rate. The SWAT model also displayed an acceptable performance. Furthermore,
climate change impacts (58%) have been slightly greater than those of anthropogenic activities (42%) in
the whole basin [15]. Yin et al. (2018) employed the Climate Model Intercomparison Project 5 (CMIP5)
and SWAT to investigate the climate change effects on Jinsha River flow. The results demonstrated a
drop in runoff by 2–5% as a result of 1 ◦C temperature rise, with 0.5–0.8% decrease in precipitation
and 1.31–1.87 ◦C elevation in temperature [16]. Using the SWAT model, the impact of climate change
on rice yield was studied in Nanliujiang basin, China [17], suggesting a high ability of the SWAT
model in simulating the studied basin. Rice yield increased from 1.4% to 10.6% under GFDL-ESM2M
(Geophysical Fluid Dynamics Laboratory- Earth System Models) and IPSL-CM5A-LR (IPSL Earth system
model for the 5th IPCC report) climate models, while HadGEM2-ES model (Hadley Global Environmental
Multiscale Models) resulted in a dropped yield (Yang et al., 2018). In Awash basin, Ethiopia, Daba (2018)
conducted a study on runoff sensitivity to temperature and precipitation and observed a high runoff
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sensitivity to both variables, so that annual temperature rises of 1, 2, 3, 4, and 5 ◦C led to annual runoff
reductions to −0.085, −0.88, −1.75, −2.55, and −3.30% [18]. In a study on the evaluation of climate
change impact on Kan basin runoff (Hajimohammadi et al., 2018), runoff was simulated monthly by the
SWAT hydrological model. The results indicated decreasing precipitation and rising temperatures in
all selected stations. The developed climate scenarios finally demonstrated increasing and decreasing
runoff levels in winter and other seasons, respectively. This present study evaluated climate change
impact on runoff and drought in Salt Lake subbasins [19]. In another study, Montecelos-Zamora et al.
(2018) assessed the potential impacts of climate change on water availability in the Cauto River basin.
The future projections suggest a regional increase of 1.5 ◦C in annual temperature and a 38% decrease
in annual precipitations in the subbasins. These changes translate to possible reductions in the annual
streamflow of up to 61% with respect to the baseline period, whereas the aquifer recharge in the basin
is expected to decrease up to 58%, with a consequent reduction of groundwater flow, especially during
the boreal summer wet seasons [20]. Eini et al. (2018) evaluated runoff by the SWAT model and
estimated drought intensity by the SPI index using Asfazari national database. Their results showed
high accuracy of the Asfazari database in simulating runoff and drought severity [21].

Given different climate changes around the world, Iran cannot be excluded from these large-scale
changes, the consequences of which are observed in many Iranian basins. As seen, very few studies
have evaluated the effects of climate change on renewable water resources. The innovation aspect of
this study is that we not only estimated the impacts of climate change on surface water, groundwater,
and renewable resources, but also predicted drought intensity in future periods under different
climate scenarios.

2. Materials and Methods

2.1. Case Study

This study was conducted in Salt Lake sub-basins, viz., Lavasanat, Damavand, and Varamin plain
basins located at 35◦0′0” to 36◦0′0” N latitude and 51◦0′0” to 52◦0′0” E longitude (Figure 1).

Figure 1. Study Basin.
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Lavasanat basin (983 km2) is a Salt Lake sub-basin located at the geographical coordinates of
35◦45′ to 36◦5′ N, 54◦50′ to 51◦20′ and 51◦58′ E, with an average annual temperature of 13.5 ◦C.
The annual precipitation reaches an average amount of 187 mm. Damavand basin (766 km2) is another
Salt Lake sub-basin situated at the geographical coordinates of 35◦33′ to 35◦52′ N and 51◦47′ to 52◦14′

E, with a mean annual temperature of 12.1 ◦C. The annual precipitation amounts to an average of
149 mm. Varamin basin (1720 km2) is sited at the geographical coordinates of 35◦7′ to 35◦39′ N and
51◦26′ to 51◦55′ E, with a mean annual temperature of 16.9 ◦C. The annual precipitation averages an
amount of 149 mm. The rivers Jajrod, Kandrod-Galandook, Damavand, and Ah are located in the study
basin, the most important of which is Jajrod, wherein the Latian Dam is present upstream. The Jajrod
river originates from the Alborz mountain ranges in the north of Tehran and runs southwest into the
Latian Dam, then it joins the Damavand and Ah rivers ending into Salt Lake. The Latian Dam plays
a major role in the hydrological cycle of the basin and also in downstream agricultural development.
The dam with a watershed area of 69,800 km2 and an average annual water flow of 350 mm3 is located
35 km northeast of Tehran and 5 km from the Jajrod tiver.

2.2. SWAT Data

In this study, the SWAT hydrological model was developed using a 90 m DEM (Digital Elevation
Model) layer, a land use layer of 2010, and a FAO v2 soil layer of 10 km (Figure 2A–C). In the first
phase of modelling, the basin was divided into sub-basins based on topography and dividing line
network in ArcGIS environment. Then, each sub-basin was divided into some hydrological response
units (HRUs) according to land-use features, soil profile, and slope. The studied basin was divided
into 68 sub-basins and 257 HRUs (Figure 2D).

Daily data of minimum and maximum temperatures and precipitation from three meteorological
stations were introduced into the model to simulate the intended processes for the period 1986–2014
using SWAT software (Ver. 2012) as a program in ArcGIS 10.2 software. The model was then calibrated
and validated using the monthly water yield from four hydrometric stations with SWAT-CUP software
with SUFI-2 algorithm. The characteristics of the Latian hydrometric station are shown in Table 1.

Table 1. Characteristics of the Latian hydrometric station.

Station Station Code Height Longitude Latitude

Latian 41119 1534 51◦41′07” 34◦46′32”
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Figure 2. Digital Elevation Model (DEM) (A), land use (B), soil map (C), hydrometric stations (D).

2.3. Monthly Climatic Scenarios Generated Using AOGCM Models

Before using SWAT model, Atmosphere–Ocean Global Circulation Models (AOGCM) have been
used to generate temperature and precipitation changes. Coupled three dimensional AOGCM are
currently the most reliable tools for the generation of climate scenarios [22]. These models are based on
physical relationships expressed by mathematical equations, which are solved in a three-dimensional
network on the globe. To simulate global climate, the main components of the climate system
(atmosphere, lithosphere, biosphere, and hydrosphere) are coupled in separate secondary models to form
the AOGCM models [23]. The first series of emission scenarios, called IS92a–IS92f, was presented by the
Intergovernmental Panel on Climate Change (IPCC) in 1992, which indicated increasing concentrations
of greenhouse gases at a constant rate until 2100 [24]. A special report [25] offered an updated series
of emission scenarios, called SRES. The report contains 40 scenarios for the world future divided into
four main groups or scenario families (A1, A2, B1, and B2) based on economic-social advancements,
accumulation of greenhouse gases, and suspended particles [26] (Table 2). LARS-WG is a model for
the generation of random climate data applied for the estimation of daily precipitation production,
radiation, and maximum and minimum daily temperatures in a station under present and future climate
conditions [27–29]. The first version of LARS-WG was coined in Budapest, Hungary (1990), as a means
of statistical downscaling. A random climate generator employs daily weather data recorded in a
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station to compute a series of parameters for probability distributions of meteorological variables and
their interrelationships.

Table 2. A summary of Special Report on Emission Scenarios (SRES) climate scenarios (A1, A2, B1,
and B2) characteristics in 2100 compared to 1990.

Scenario Feature 1990 B1 A2 A1 B2

World Population (Billion) 5.252 7 15.1 7.1 10.4
CO2 Concentration in Earth’s Atmosphere 354 547 834 680 601

Global Economic Growth index (GDP) 21 328 243 550 235

2.4. SWAT Simulation

SWAT is a continuous model in basin scale designed to project the impacts of various management
strategies on water levels, sediment, and chemical-agricultural substances in vast and complex basins
with different soil, land use, management, and morphological conditions in the long term. It is a
physical–distributional model for the assessment of soil and water issues. Instead of associating
regression equations to describe input–output interrelationships of variables, the model uses data
related to weather, soil profile, topography, vegetation, management strategies, and land use in
the basin. The model indirectly simulates physical processes associated with water flow, sediments,
plant growth, nutrient cycle, and so, on using input parameters. Computationally, it is a highly efficient
model that simulates large and complex basins with the least time expenditure, enabling the user to
address the long-term impacts of such factors as sediment, pollution, and erosion. This model is based
on a comprehensive and robust database for the above different components. This database determines
definitions and limits of parameters related to the above various components, then the locations of
synoptic and climatological stations and their data, as well as introduces into the model different
management strategies of water resources and current agriculture in the study area. The model inputs
are generally categorized into point and spatial data.

The SWAT model uses the water yield equation (Equation (1)) to simulate the hydrological cycle.
The simulated hydrological processes include evapotranspiration, runoff, snowmelt, surface seepage,
deep seepage, groundwater flow, and subsurface flows.

In this research, HRUs were first defined and then divided by introducing the above maps.
Thereafter, parameters related to each main component, namely, vegetation (DAT), edaphic (Sol),
groundwater (GW), management (Mgt), and riverine (Rte) were introduced into the model.

SWt = SW0 +
t

∑
i=1

(Rday −Qsurf − Ea −Wseep −Qgw)i
(1)

where SWt is the final soil water content on day t, SW0 is the initial soil water content, t is time (days),
Rday is the precipitation rate on day t, Qsurf is the runoff level on day t, Ea is the evapotranspiration on
day i, Wseep is the water seepage from root zone on day i, and Qgw is the returned flow on day i.

2.5. Calibration Analysis

Because there are many parameters in the SWAT model and because of the concurrent simulation
of many hydrological and agricultural variables in this model, a new model, called SWAT-CUP,
was developed, its sensitivity was analyzed, and calibration was performed. There are two analyses of
local sensitivity, either related to time or global sensitivity. In local sensitivity analysis, one input is
changed within predefined limits while keeping other inputs constant, then model output changes are
examined depending on changes in each parameter. The parameter with a higher absolute value of
t-stat and a p-value close to zero will have a greater effect on the variable. The model was calibrated
by the coefficient of determination (R2) and the NS coefficient.



AgriEngineering 2019, 1 50

2.6. SPI Index

The standard precipitation index (SPI) was first introduced in 1993 by McKee et al. This index is
calculated for each region on the basis of the record of its long-term rainfall. Rainfall is the only data
required for drought testing using the SPI index [30]. At first, the appropriate statistical distribution
is fitted with the long-run rainfall data. Then, the cumulative distribution function is converted to
normal distribution using equal probabilities (Equation (2)).

SPI =
Xi − X−

Sn
(2)

X− is the average rainfall per month, Sn is the standard deviation on time scale, and Xi is the rainfall
per month.

Because of the normality of the SPI index, dry and wet climates can also be monitored using the
SPI Index. Table 3 lists the drought classification based on the SPI index.

Table 3. Drought classification.

SPI Values

+2.0 and more extremely wet
1.5 to 1.99 very wet
1.0 to 1.49 moderately wet
−0.99 to 0.99 near normal
−1.0 to −1.49 moderately dry
−1.5 to −1.99 severely dry
−2 and less extremely dry

3. Results and Discussion

3.1. Sensitivity Analysis of the Model Parameters

The period 1998–2014 was selected after statistical analysis of the data from the climatological and
hydrometric stations in the studied basin and also considering the research objective and the model’s need
of inputs with continuous time paces and simultaneous time series. Of this statistical period, the years
1998–2011 were considered for calibration, and three last years (2011–2014) were used to validate the
model. Then, SWAT model calibration and validation were performed through the preparation of
monthly time series of the measured data using the SWAT-CUP software and the SUFI-2 algorithm.
A total of 103 sensitive parameters were calibrated and validated to simulate runoff in the model.

The parameters with relatively greater impacts on the streamflow are shown in Table 4. The letters
V and R are the codes that determine the type of changes applied to a parameter, that is, v denotes the
replacement of a parameter value with a new value of a new parameter, and r is the parameter value
multiplied by (1 + given value), replacing the parameter. Table 3 shows the effects of some important
parameters involved in the simulation of stream flow in the sub-basins together with p-values and
t-stats. The parameter with a relatively higher t-stat absolute value and a p-value close to zero has had
a greater impact on the stream flow.
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Table 4. Sensitivity analysis and determination of the effective parameters of the model; V: replacement of
a parameter value with a new value of a new parameter; R: parameter value multiplied by (1 + given value)

Parameter Name Parameter Definition t-Stat p-Value

R__CN2.mgt Scs runoff curve number −23.99 0
V__PLAPS.sub Precipitation lapse rate(mm/km) 20.84 0

R__SOL_BD( . . . ).sol Moist bulk density (mg/m3) 3.92 0
V__CH_N2.rte Manning’s n value for main channel −3.8 0

V__ALPHA_BF.gw Base flow alpha factor (days) 1.92 0.06
V__HRU_SLP.hru Average slope steepness (m/m) 1.92 0.06

V__LAT_TIME.hru Lateral flow travel time (days) −1.88 0.06
V__SLSUBBSN.hru Average slope length −1.62 0.11
V__RCHRG_DP.gw Deep aquifer percolation fraction 1.57 0.12

3.2. Calibration and Validation of the SWAT Model

After the sensitivity analysis, the model was calibrated and validated using monthly statistics from
Latian hydrometric stations. Model simulations were evaluated by the coefficient of determination
(R2) and the NS coefficient (Table 5). As shown in Figure 3, despite the vastness of the basin, the final
calibration values indicate the ability of the SWAT model to appropriately simulate the basin.

Table 5. Calibration and validation results for each hydrometric station in the period 1987–2014.
R2: coefficient of determination; NS: Nash–Sutcliffe coeffcient

Station River Station Code
R2 NS R2 NS

Calibration Validation

Latian Jajrod 41119 0.65 0.58 0.5 0.49

Figure 3. Observed and simulated time series graph with 95% probability band (Latian hydrometric station).

3.3. Annual Runoff Simulation

As SWAT model needs both parameters at the same time, HadCM3 was introduced as the selected
model, the data of which were applied in all phases. The scenarios were selected on the basis of drawing
future climate conditions. Therefore, A1B indicated a temperate weather, A2 presented the most critical
condition in parameter estimation, and B1 provided more optimistic consequences than the other two
scenarios following climate change. Following LARS-assisted downscaling of climate data for future
periods under the above scenarios and HadCM3 model, a 30-year time series of the data for all three
future periods was prepared to be introduced into the SWAT model. Afterwards, the SWAT output with
applied coefficients was analyzed by SWAT-CUP, and the annual runoff level was simulated based on the
baseline period duration for future periods under A1B, A2, and B1 scenarios (Figure 4). The results of the
LARS-WG model indicated that the mean annual temperature will increase 2 ◦C, and the mean annual
precipitation will decrease 20% in the future. Moreover, as shown in Table 6, a decrease of runoff will
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lead to a reduction in surface water. The greater reduction will occur in the period of 2080–2099 under
the A2 scenario. A 20% reduction in rainfall will lead to reduction in runoff. Reducing surface water
will not only decrease the water availability resources, but also have a negative impact on agriculture,
because all surface water in this basin will be consumed by the agricultural sector.

Figure 4. Simulation of runoff under the examined climate scenarios.

Table 6. Simulation of runoff and surface water under the examined climate scenarios.

Scenario Period Annual Runoff (m3/s) Surface Water (Mm3)

Base 13.69 431.3

A1B
2011–2030 13.6 428.8
2046–2065 13.23 416.2
2080–2099 12.8 403.6

A2
2011–2030 13.64 428.8
2046–2065 13.27 418.4
2080–2099 12.53 395.1

B1
2011–2030 13.67 430.2
2046–2065 13.3 419.4
2080–2099 13.11 413.4

3.4. Aquifer Percolation Simulation

After determining the model’s ability to simulate runoff, the aquifer infiltration was calculated
for the baseline and future periods. During the 30-year period, the groundwater level in the study
area dropped 37.50 m, with an average annual rate of 1.47 m. As shown in Table 7, the groundwater
recharge will be decreased under all climate scenarios because of climate changes. On the other hand,
water discharge will be constant (405 Mm3). The lowest amount of aquifer recharge will occur in the
2080–2099 period under the A2 emission scenario, whose recharge is 281 Mm3 (Figure 5).

Dropdown of groundwater in the study basin will have adverse consequences such as decreasing
the water resources, increasing the wells depth, and drying some fields and gardens, which are in
conflict with the goals of sustainable development of agriculture.
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Figure 5. Simulation of aquifer percolation under the examined climate scenarios.

Table 7. Simulation of aquifer percolation under the examines climate scenarios.

Scenario Period Groundwater Recharge (Mm3) Discharge (Mm3)

Base 330 405

B1
2011–2030 312 405
2046–2065 306 405
2080–2099 294 405

A1B
2011–2030 314 405
2046–2065 300 405
2080–2099 290 405

A2
2011–2030 305 405
2046–2065 301 405
2080–2099 281 405

3.5. Renewable Water Resources Simulation

Renewable water resources include surface water and aquifer infiltration. The results showed
that, because of the decreasing in runoff and recharge, the renewable water will be decreased in the
future periods considered. Unfortunately, it will decrease more than 100 Mm3 during 80 years under
the A2 scenario, as shown in Table 8. Moreover, the greatest decline in renewable water in the near
future will happen under the A1B scenario (Figure 6). Reducing renewable water resources will have
undesirable impacts on water availability.
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Figure 6. Simulation of renewable water under the examined climate scenarios.

Table 8. Simulation of renewable water under the examined climate scenarios.

Scenario Period Renewable Water (Mm3)

Base 750

B1
2011–2030 695
2046–2065 668
2080–2099 640

A1B
2011–2030 684
2046–2065 649
2080–2099 638

A2
2011–2030 690
2046–2065 644
2080–2099 620

3.6. Drought Severity

One of the negative impacts of climate change is the occurrence of drought. In order to investigate the
drought phenomenon and its severity in future periods, the 12-month SPI index was estimated for baseline
setting (1986–2016). Years when the SPI number is less than zero are years of drought, whereas those
when this number is higher than one are mild periods. As displayed in Figure 7, the largest mild period
lasted 5 years. Since 2008, relatively severe droughts occurred in the plain of Varamin. Since 2013 onwards,
the drought became very severe during, and the SPI reached the value of −1. In 2015, this figure was
−1.31, and in 2016, the SPI was lower than −2. The greatest drought hd happened in the base year of
1997, with an SPI of−3. On the other hand, the best mild period was in 1996, with an index over +2.

After the SPI was calculated for the period 1986–2016, the drought intensity was estimated for the
period 2011–2030 under A1B, A2, and B1 scenarios. As shown in Figure 8, in the years 2023 and 2027,
there will be severe drought in the study area. The most severe drought will happen in 2027 under the
A2 scenario. The drought will have negative impacts on water resources and agriculture of the region.
The assessment of the number of dry years and the frequency of their occurrences suggests an increase
in the drought events and their duration in the future.
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Figure 7. Standard precipitation index (SPI) chart of Varamin plain (1987–2016).

Figure 8. The SPI index for the period 2011–2030 under A1B (A), A2 (B), B1 (C) scenarios.

4. Conclusions

This study examined the climate change impact on the surveyed basin drought, runoff, percolation,
and renewable water resources during the periods 2011–2030, 2046–2065, and 2080–2099, using a
hydrological (SWAT) model. The results showed that severe droughts will be observed in the study
basin. Specifically, in the year 2027, the drought intensity will be extremely severe under the A2
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scenario, with and SPI of −3. On the basis of these future projections, there will be an increase of 2 ◦C
in the mean annual temperature and a 20% decrease in the mean annual precipitation. The predicted
climate change scenarios showed that the decrease in rainfall and increase in temperature will be the
main factors for the decrease in water availability. According to the A2 scenario, the surface water
resources in the study area will decrease 10%. Although the discharge from wells will remain constant,
the SWAT model also suggested a reduction of the aquifer recharge of 16% and of renewable water
of 20% due to climate change, which may have serious implications on groundwater availability in
the study area. Also, drought will have inevitable impacts on water resources. This poses additional
challenge to agriculture and food production. If no measures are taken, the water status of the area
will be critical. These projection scenarios should be of interest to water resources managers in tropical
regions. Moreover, the knowledge of a possible reduction of runoff, aquifer recharge, and renewable
water is strategic for adaptation actions in the study area.
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