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Highlights

What are the main findings?

• A hierarchical ontology (SMOF) with universal and extended properties and a concise
relation scheme that draws on authoritative standards/ontologies (e.g., IFC, CityGML,
SSN/SOSA) to support city-wide, cross-domain data integration.

• Combined quantitative analyses, LLM as judge assessment, expert evaluation, and
two empirical scenarios confirm SMOF’s structural soundness, conceptual richness,
and capacity to integrate heterogeneous data for querying and reasoning.

What is the implication of the main finding?

• By harmonizing heterogeneous data and semantics, SMOF enables coordinated urban
services ranging from emergency management to transportation and infrastructure.

• Its scalability and reusability provide a foundation for extending ontology-driven
approaches to broader domains of smart city governance and decision-making.

Abstract

Rapid urbanization and the proliferation of heterogeneous urban data have intensified
the challenges of semantic interoperability and integrated urban governance. To ad-
dress this, we propose the Smart City Ontology Framework (SMOF), a standards-driven
ontology that unifies Building Information Modeling (BIM), Geographic Information
Systems (GIS), Internet of Things (IoT), and relational data. SMOF organizes five core
modules and eleven major entity categories, with universal and extensible attributes
and relations to support cross-domain data integration. SMOF was developed through
competency questions, authoritative knowledge sources, and explicit design principles,
ensuring methodological rigor and alignment with real governance needs. Its evalua-
tion combined three complementary approaches against baseline models: quantitative
metrics demonstrated higher attribute richness and balanced hierarchy; LLM as judge
assessments confirmed conceptual completeness, consistency, and scalability; and expert
scoring highlighted superior scenario fitness and clarity. Together, these results indi-
cate that SMOF achieves both structural soundness and practical adaptability. Beyond
structural evaluation, SMOF was validated in two representative urban service scenar-
ios, demonstrating its capacity to integrate heterogeneous data, support graph-based
querying and enable ontology-driven reasoning. In sum, SMOF offers a robust and
scalable solution for semantic data integration, advancing smart city governance and
decision-making efficiency.
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1. Introduction
As reported by the United Nations Population Fund (UNFPA) [1], urban residents

already account for 56% of the global population, around 4.4 billion people, and this share
is projected to approach 70% by 2050. Rapid urbanization has therefore magnified the com-
plexity of city governance. At the same time, advances in information and communication
technologies (ICT) have enabled every urban department or agency to build dedicated
datasets for its own objectives. The architecture, engineering, and construction industry
adopts BIM for project life-cycle data; the geomatics community collects, analyzes, and
visualizes spatial data through GIS; and relational and time-series databases record trans-
actions and sensor readings across municipal departments. The resulting surge in data
volume and variety has catalyzed the emergence of the smart city paradigm, which seeks
to strategically harness ICT and diverse urban datasets to address governance complexities,
enhance sustainability, and improve citizens’ quality of life [2–4].

Within this smart city paradigm, the combined use of BIM/GIS/IoT data flows and
other representations of the physical world equips stakeholders with insights from macro-
scale urban planning to micro-scale sensor behavior. Together, these data enable a compre-
hensive understanding of city operations [5]. Multi-source heterogeneous urban data have
thus become indispensable for public service management, resource optimization, and
resilience enhancement. Yet, the multidisciplinary nature of urban science poses formidable
challenges [6]. First, the diversity of data representation and granularity complicates
integration. Different standards adopt distinct modeling schemes and levels of detail.
For instance, CityGML encodes city-scale geometries in XML, whereas the IFC standard
captures fine-grained building components and topology in STEP format. As a result,
mismatches in scale and structure hinder seamless data fusion. Second, semantic ambiguity
across institutions hampers the effective use of data. Different agencies often generate
overlapping datasets that describe the same urban phenomenon but adopt inconsistent
labeling and classification [2,3]. For example, one dataset may record “urban greening,”
while another refers to “urban parks.” This inconsistency leads to semantic fragmentation
and significant challenges for interoperability. Third, many application scenarios demand
simultaneous integration of heterogeneous data types. Complex urban services often re-
quire multiple datasets to be combined in real time. For instance, a fire emergency response
typically calls for the seamless integration of BIM/GIS/IoT and relational data. The absence
of effective integration mechanisms in such cases seriously hampers the timely application
of heterogeneous urban data [7,8].

These challenges, including diverse data representations and granularities, semantic
ambiguities, and the need for real-time integration, underscore the urgent need for robust
mechanisms for semantic interoperability. To address these integration hurdles, ontologies
and knowledge graphs are considered effective means [9]. An ontology provides a formal-
ized specification of domain concepts, attributes, relationships, and constraints, offering
a unified language for applications hindered by structural and semantic disparities. A
knowledge graph instantiates this ontology by mapping and extracting core semantics
from heterogeneous sources into a machine-readable network, thereby enabling integrated
querying and reasoning across diverse datasets [10]. In this context, a smart city ontology
can be defined as a formal, structured representation of concepts, attributes, and their
interrelationships within the massive knowledge sources of a city. It is designed to enable
semantic interoperability between different urban data sources for specific purposes [3].
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Previous research has developed ontologies either for particular business processes—such
as flooding or fire safety—or for single data standards such as IFC or CityGML. However,
these efforts usually focus solely on their specific mandate and do not treat city-wide enti-
ties as reusable management units, nor do they impose a layered structure on those entities.
More recent attempts have led to representative frameworks such as UrbanKG (UKG),
KM4City, and CIMO. While these models demonstrate the potential of ontology-driven
integration—covering multimodal entities, large-scale municipal datasets, or BIM/GIS/IoT
extensions—they remain limited in scope. Specifically, they are often designed for particu-
lar application domains, lack comprehensive coverage of heterogeneous city assets, and
provide only partial support for extensibility across layers of urban knowledge. As a result,
existing urban ontologies, and the knowledge graphs built on top of them, frequently lack
reusability and extensibility, and few attempt to break data silos and model urban assets
hierarchically from a holistic perspective.

Building on these gaps, our research is guided by the following questions:
RQ1: How can multi-source heterogeneous urban data be semantically integrated to

address issues of semantic fragmentation and representational differences?
RQ2: How can an ontology framework be constructed to encompass the vast range of

urban management objects and associated knowledge?
RQ3: How can the proposed ontology framework be applied and validated in real

urban scenarios?
To answer these questions, we propose the SMOF, designed to support integration

and application of heterogeneous urban data from a city-wide management viewpoint [11].
The main contributions are threefold: (1) We formulate competency questions, clarify
foundational design principles, and collect authoritative City Information Modeling (CIM)
standards as knowledge sources. (2) We construct the SMOF’s hierarchical entity taxonomy,
universal attributes, and relationship patterns, and detail its mappings to existing ontolo-
gies. (3) We answer the competency questions using SPARQL-OWL (SPARQL for OWL,
where SPARQL denotes the Simple Protocol and RDF Query Language, and OWL refers
to the Web Ontology Language) queries. We then evaluate SMOF through quantitative
metrics, expert scoring, and an LLM as judge protocol, and demonstrate its practical utility
in two scenarios.

The remainder of the paper is organized as follows. Section 2 reviews related work
on multi-source urban data integration. Section 3 presents the workflow and design of the
SMOF in detail. Section 4 reports multi-dimensional evaluation results, including quantita-
tive metrics, LLM as judge analysis, expert-based assessment, and empirical validation in
two scenarios: fire emergency and traffic congestion scenarios. The paper’s findings are
detailed in Section 5, with concluding remarks in Section 6.

2. Related Work
2.1. Integration and Application of Multi-Source Heterogeneous Urban Data

Integrating and exploiting heterogeneous urban data from multiple sources has be-
come a focal research topic under the data-driven smart city paradigm. Scholars generally
follow two technical routes—deep learning pipelines and knowledge graph pipelines—to
derive actionable insights from voluminous, structurally diverse datasets.

(1) Deep-learning-centered studies. Recent studies use deep neural networks to extract
latent representations from multimodal urban data and support a wide range of analytics.
UrbanVLP [12] and RSGPT [13] exemplify this trend by coupling visual streams with
text to pre-train or align models for downstream scene understanding. Adegun et al.
(2024) combine YOLOv8 with an ontology guided pipeline to detect buildings, roads,
and coastlines, and then populate a structured knowledge representation that can be
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queried via SPARQL for semantic post-analysis [14]. Zou et al. and Alahi et al. review
cross-domain data fusion techniques for urban analytics and categorize deep learning
methods into feature-, alignment-, contrast-, and generation-based fusion; they further
map urban application scenarios to planning, economy, society, energy, transport, public
safety, and environment [2,15]. In recent studies, Choi et al. [16] propose an AI multi-
agent data integration framework for urban building energy modeling based on LLMs,
enabling the automated integration and analysis of GIS and relational data related to urban
buildings. However, research on LLM based data integration remains at an early stage and
still requires further expansion of multi-source data capabilities and the development of
ontologies to enhance adaptability.

Despite their power, deep models suffer from well-known drawbacks. Their decision
logic is often opaque, which hampers adoption in urban service contexts where explain-
ability is mandatory [17]. Moreover, training effective models typically demands large
labeled corpora, yet annotating city-scale data is costly and error prone, injecting noise that
degrades generalization.

(2) Knowledge-graph-centered studies. Knowledge graphs are widely applied in smart
city research, yet their semantic validity ultimately depends on well-defined ontologies that
provide the conceptual vocabulary and design rules. Guided by ontologies, knowledge
graphs represent entities and relations explicitly, ensuring unified semantics for targeted
applications. Representative efforts span infrastructure asset-management workflows [18],
multi-domain information integration for flood-risk assessment [19], and POI graphs that
fuse spatial/semantic links to support personalized routing [20]. Panagiotopoulou et al. [3]
address the problem of fragmentation and insufficient integration of multi-dimensional
smart city performance indicators (sustainability, resilience, inclusiveness) by embedding
these indicators into an ontology, thereby proposing an ontology oriented framework for
the integration of performance assessment indicators. Liu et al. survey smart city data inte-
gration solutions and conclude that ontologies and knowledge graphs offer superior inter-
pretability and less reliance on labeled data than deep-learning-only pipelines—advantages
that are crucial for disaster management, environmental monitoring, and other semantics
intensive scenarios [21].

The value of a knowledge graph fundamentally depends on its underlying ontology;
therefore, numerous researchers have sought to construct ontology models adaptable to
multi-source data or complex scenarios by leveraging reference data standards, compe-
tency questions, and fundamental design principles. Huang et al. [22] integrate three
Open Geospatial Consortium standards—CityGML, IndoorGML, and the SensorThings
API—into a single knowledge graph that powers smart home automation, e-health, and fire
evacuation systems. Building on the CityRDF ontology, Ding [23] demonstrate semantic
interoperability for CityGML and assembled a knowledge graph that supports representa-
tion and querying of diverse 3D geospatial datasets. Grisiute et al. [24] constrain the scope
and objectives of the ontology by employing competency questions, thereby providing
an ontology model capable of automatically generating three-dimensional master plans.
Tok et al. [25] review key considerations regarding ontology design principles identified in
comprehensive surveys and apply them to his own ontology. This effort further ensured
the rigor and methodological soundness of his ontology construction process for smart
city infrastructure.

In summary, knowledge-graph-based approaches can effectively integrate multi-
source heterogeneous urban data, while the incorporation of competency questions, funda-
mental ontology design principles, and reference knowledge standards ensures that the
underlying ontologies remain rigorous and consistent. In turn, these ontologies provide
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the semantic backbone that allows knowledge graphs to function as robust, interoperable
platforms for data storage, querying, and reasoning in urban services.

2.2. Ontology Construction for Multi-Source Urban Data

Urban ontologies, the semantic foundation for knowledge-graph construction, aim
to unify fragmented urban concepts, attributes, and relations through formal modeling.
Early studies highlighted the integrative potential of knowledge-graph technologies to
organize diverse urban business processes. For example, Abid et al. [26] leverage DBpedia
to link issue reports, sensor observations, and administrative elements, enabling semantic
linking and interoperability of municipal services. Sujata et al. [27] propose the SMELTS
framework spanning the social, management, economic, legal, technological, and sustain-
ability dimensions; although not a strict ontology, it provides valuable guidance for the
hierarchical construction of urban knowledge systems. The Smart City Services Ontology
(SCSO) [28] adopts a service-oriented perspective to develop a layered ontology organized
around the policy–service–user hierarchy, supporting applications that involve municipal
management, citizen interactions, and IoT devices. Notably, SCSO does not explicitly model
the full range of urban entities; instead, it employs a generic framework complemented by
extendable domain ontologies, ensuring adaptability across diverse scenarios.

Despite the advances above, most urban ontologies remain focused on specific busi-
ness objects, lack structured organization, and fail to represent latent objects of urban
governance; moreover, business-driven attributes and relations are difficult to reuse across
scenarios [29,30]. Recent studies address these gaps via hierarchical modeling with scenario-
specific extensions. Pereira et al. [31] adopt a BIM-inspired modular design to integrate
knowledge of the built environment, water bodies, infrastructure and services, and mobility,
supporting complex decision-making in planning and construction. Xu et al.’s work on
CIM semantic trees [32] shows that graded, hierarchical schemes improve the organization
and analysis of urban entities. Although their study did not incorporate other spatiotem-
poral data sources such as GIS and IoT, it demonstrated the effectiveness of hierarchical
structures in semantic analysis and knowledge organization. Drawing on the SCSO idea,
CIMO separates BIM/GIS/IoT ontology construction into a generic core and an extension
layer, building the foundational ontology at the generic level and refining it for concrete
scenarios in the extension layer [33]. Taken together, although they do not yet adopt a city-
wide perspective that integrates additional spatiotemporal sources, these studies advance a
practical recipe for complex urban knowledge architectures and cross-domain extensibility:
organize entity models in a modular, hierarchy-first manner, establish a generic ontology,
then extend it for specific scenarios. This approach connects disparate domains while
maximizing extensibility and reducing complexity.

Based on the research questions and the current state of related work, this study
proposes the following hypotheses:

Hypothesis 1. By employing ontology methodologies in conjunction with competency questions,
ontology design principles, and domain standards, it is possible to effectively mitigate semantic frag-
mentation and representational inconsistencies, thereby enabling the unified semantic representation
of multi-source heterogeneous urban data.

Hypothesis 2. Adopting a hierarchical entity modeling approach, while balancing generality and
extensibility in the design of attributes and relations, can achieve systematic modeling of diverse
urban objects and their associated knowledge.
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Hypothesis 3. Through empirical applications in representative smart city scenarios, the pro-
posed ontology framework can be validated in terms of effectiveness and applicability, thereby
demonstrating its practical value in real urban environments.

To anchor subsequent comparisons, and following the representative directions identi-
fied by Wang [34], we adopt three widely cited frameworks as baselines: UrbanKG [35], an
aggregated city knowledge graph built on ontology (e.g., POIs, regions, users, brands,
images) designed to bridge modality and structural gaps for graph-based analytics;
KM4City [36], a municipal semantic backbone integrating administration, road networks,
POIs, public transport, sensors, temporal aspects, and meta-information to support city
services at scale; CIMO [33], a BIM/GIS/IoT ontology that, in line with the core-plus-
extensions idea noted above, layers a generic core with scenario-level refinements to obtain
richer built-environment semantics. These baselines span complementary emphases—data
aggregation (UrbanKG), service-centric municipal integration (KM4City), and layered
BIM/GIS/IoT semantics (CIMO). We evaluate SMOF against them using objective metrics
and a mixed subjective protocol, with results in Sections 4.2 and 4.3.

3. Ontology Framework Design
3.1. Overall Workflow

In this paper, the ontology framework denotes the complete package that integrates
the ontology-engineering methodology and the schema specification (classes, attributes,
and relations). It also includes the application workflow that operationalizes the schema
through queries and reasoning. Entity modules are the top-level domain partitions in the
schema; the entity hierarchy is the class taxonomy within each module; and the knowledge
graph is the instance-level dataset instantiated from the ontology schema.

Developing a city-scale ontology is a demanding engineering task. We therefore adopt
Methontology, the life cycle methodology devised by the AI Lab of the Technical University
of Madrid, whose phases—specification, conceptualization, formalization, integration,
implementation, and evaluation/maintenance—provide a proven scaffold for rigorous
ontology work [37]. To meet the realities of heterogeneous, multi-source urban data, we
adapt Methontology into a three-stage workflow (Figure 1): (i) Specification and knowledge
acquisition—define competency questions (CQs), gather authoritative knowledge from
standards and mature ontologies, and set foundational design principles, ensuring clarity,
consistency, and scope compliance; (ii) Conceptualization and fusion—adopt a top-down
strategy to build hierarchical core entity modules together with universal and extended
attributes and relations, balancing generality and domain specificity; and (iii) Implementa-
tion and evaluation—instantiate the ontology in Protégé, verify CQs via SPARQL-OWL
queries, and assess performance through expert review and scenario-based validation. This
adaptation preserves the rigor of Methontology while directly addressing the integration
and reasoning challenges posed by city-scale, cross-domain datasets.

3.2. Specification and Knowledge Foundations

The scientific validity and operational value of an ontology depend not only on
methodological rigor but also on explicit specification and systematic knowledge acqui-
sition. In the workflow outlined in Section 3.1, this stage involves three essential tasks:
(1) competency questions, which anchor the ontology to concrete requirement directions;
(2) knowledge sources, which ensure alignment with authoritative standards and mature
ontologies; and (3) modeling principles, which regulate granularity, naming, and classi-
fication. These tasks correspond to the specification phase of Methontology [37] and are
widely acknowledged in ontology engineering practice [23–25]. Their purpose is to provide



Smart Cities 2025, 8, 165 7 of 32

methodological transparency and to ground the design process in verifiable requirements,
credible references, and disciplined modeling standards.

 

Figure 1. Overall workflow design.

3.2.1. Competency Questions

Competency questions specify the requirements that must be addressed during on-
tology development. They are typically defined by domain experts prior to ontology
construction and, once the ontology is built, are answered by developers using ontol-
ogy query languages (commonly SPARQL). This process ensures that the development
remains aligned with the original objectives. Drawing on Keet’s typology [38], the CQs
were categorized into five groups: scope delimitation, verification, foundational align-
ment, relation-oriented, and meta-attributes. To adapt this framework to the context of
this study, the CQs (as described in Table 1) were generated and refined by domain ex-
perts, ensuring that the general structure was preserved while being extended to meet
the practical requirements of smart cities. For instance, within the verification CQs, we
assessed SMOF’s cross-domain mappings to widely used urban ontologies and required
that it encode the spatial information needed to integrate heterogeneous multi-source
data. In the relation-oriented CQs, CQ7 checks whether core relations (part–whole, depen-
dency) are correctly defined, and CQ8 tests logical coherence via transitivity and reasoning.
Contradictory answers would signal internal inconsistencies. These adaptations align
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the CQs with multi-source integration needs, guiding development and later serving as
validation instruments.

Table 1. Competency question categories and examples.

CQ Category Purpose Concrete Question

Scope-defining Delimit the thematic
range of the ontology

CQ1: Can SMOF represent hierarchical
structures among entities, the intrinsic

information of each entity, and
inter-entity relations?

CQ2: Which urban domains can
SMOF cover?

Verification Validate ontology
content

CQ3: Can SMOF encode spatial
information in terms of address,

latitude–longitude, and topology?

CQ4: Can SMOF map to the
macro-classes defined in KM4City,
UrbanKG, and related ontologies?

Foundational
alignment

Align domain entities
with foundational

ontologies

CQ5: Can SMOF interoperate with
ontologies that capture spatial and

geometric information?

CQ6: Can SMOF map to
sensor-oriented ontologies?

Relation-
oriented

Characterize key
relational patterns

CQ7: Can SMOF express basic relations
such as whole-part and dependency?

CQ8: Can SMOF support semantic
reasoning based on the

defined relations?

Meta-attribute Specify essential
attributes

CQ9: Can SMOF represent common
attributes such as name and state?

CQ10: Can SMOF ensure global identity
uniqueness for entities

via meta-attributes?

3.2.2. Knowledge Sources

Knowledge of urban services comes from a variety of sources, such as stan-
dards/specifications, scholarly and professional publications, reports, and news media [39].
Among them, standards and specifications are particularly crucial as they provide sys-
tematic, standardized, and professional knowledge. Even though urban data standards
typically do not specify ontologies for data objects, their conceptual representations of
domain objects can underly the creation of urban entities. At the same time, there are
numerous ontologies in the urban domain, and reusing existing authoritative ontologies in
new ontologies is also an essential part [30].

Based on these considerations, we built the ontology on authoritative standards
and ontologies, integrating nine national and international standards and five reference
ontologies spanning urban governance, three-dimensional modeling, and component/asset
management. A summary of representative standards and ontologies is provided in
Table 2, while the complete list with detailed specifications and references is available
on figshare. We prioritized widely recognized, practice-tested standards—CityGML, IFC,
and SSN/SOSA—which offer comprehensive conceptual models and are broadly applied
in smart-city projects, providing a robust semantic foundation. National specifications
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(GB/T 40765-2021, GB/T 36625.5-2019) ensure alignment with China’s urban-governance
requirements, yielding both international interoperability and local applicability. These
standards and ontologies can be accessed through official platforms, such as the National
Public Service Platform for Standards Information (https://std.samr.gov.cn/gb/), accessed
on 1 October 2025, for Chinese specifications, and through corresponding websites and
publications for international standards like CityGML and IFC.

Table 2. Summary of representative standards and ontologies incorporated into the SMOF.

Category Representative
Standards/Ontologies

Purpose/Role in
Ontology Construction

Geospatial Standards

GB/T 40765-2021 [40];
GB/T 13923-2022 [41];

CityGML [42];
CJJ/T 197-2018 [43]

Define geographic
ontology models,

classification codes, and 3D
city object schemas

Urban Management
GB/T 30428.2-2013 [44];
GB/T 28590-2012 [45];

GB/T 36625.5-2019 [46]

Provide taxonomies and
coding for managed

components, underground
facilities, and municipal

infrastructure data

Building Information IFC 4x1 [47];
GB/T 51269-2017 [48]

Standardize BIM
information structure

and coding

Cross-domain Ontologies
KM4City [36];
UrbanKG [35];

SSN/SOSA [49]

Integrate multi-domain
municipal, transport, and

POI datasets

Temporal & Semantic
Standards

TimeOWL [50];
GB/T 32853-2016 [51]

Support temporal
reasoning and unified

geospatial classification

3.2.3. Modeling Principles

Given the diversity of knowledge and uneven granularity across urban domains,
explicit principles are still required to guide the design of the SMOF. Drawing on prior
studies, we distilled the following modeling principles for the SMOF [25,52]:

(1) Modeling scope. The SMOF focuses on objectively existing urban entities that carry
clear management imperatives, including natural features, manmade infrastructure, and
socio-economic objects, all of which exhibit spatio-temporal attributes and rich semantics.
The SMOF inherits existing classification systems to ensure compatibility. Pragmatic
extensions are then added to meet data-exchange requirements in urban management.

(2) Modeling scheme. The ontology adopts a four-dimensional framework [52]—
Entities (E), Properties (P), Relations (R), Instances (I)—formally,

SMOF = (E, P, R, I) (1)

where entities are urban objects such as buildings, sensors, or natural resources; properties
capture intrinsic and extrinsic features (such as location, ID and state); relations encode
interactions like spatial, compositional and functional; instances are concrete manifestations
generated via multi-source mapping.

Urban management objects are numerous, domain-specific, and strongly hierarchical.
To address this, we employ a linear classification strategy [32,53,54]. Entities are partitioned
by attributes and features into discrete modules and successive levels, ultimately yielding a

https://std.samr.gov.cn/gb/
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hierarchy-structured taxonomy. Each class at level k is a specialization of its parent at level
k − 1, and classes within the same level are mutually exclusive. Formally,

E = ∪n
k=1Ek, Ek = ∪mk

i=1Ek
i (2)

where k = 1, 2, . . . , n denotes the hierarchy level, Ek the set of entities at level k, mk the
number of classes in that level, and Ek

i the i-th class, such that

Ek
i ∈ Ek

parent, Ek
i ∩ Ek

j = ∅ i ̸= j (3)

where Ek−1
parent represents the parent class set of level k.

(3) Classification criteria.
(a) Entities, attributes, and relations must strictly follow the reference sources. Both

intension and extension are defined unambiguously to avoid vagueness or polysemy,
thereby ensuring accurate and consistent information exchange.

(b) A unified prefix–namespace scheme underpins all identifiers. Reserved extension
slots allow scenario-driven enlargement and explicit mappings to external ontologies,
fostering semantic interoperability and data linkage.

(c) When semantic conflicts arise between standards, the overriding objective is loss-
free data exchange. Modeling choices therefore prioritize representations that preserve all
critical elements during transfer and transformation.

(d) The ontology framework is designed for continuous iteration. Categories, at-
tribute definitions, and relation sets will be refined as management requirements evolve,
technologies advance, and empirical feedback is obtained from deployment.

(e) To secure a common semantic core while retaining domain specificity, attributes
are partitioned into universal and extended sets. Relations are likewise divided into uni-
versal and extended groups, which strikes a balance between universality and situational
fitness [28,33].

By anchoring the SMOF on these foundations, we provide a consistent yet extensible
framework that can reconcile redundant standards, integrate core data models, and flexibly
serve diverse smart city services.

3.3. Core Entity Module Design

Following the principles and knowledge bases outlined in Section 3.2, we developed
the SMOF by extracting classifications, attributes, and relations from each reference stan-
dard, semantically consolidating overlapping content, and disambiguating redundancies.
The resulting entity hierarchy constitutes the backbone that links data integration, semantic
definition, scenario extension, and decision support. Guided by the source standards,
the SMOF partitions urban entities into five core modules, eleven primary classes, and
forty-two intermediate classes. The modules—Land Planning, Natural Resources, Building
Infrastructure, Pipelines, Traffic, Time, Geometry, Population and Social Organizations, Spe-
cial Topic Data, Urban Management Facilities and Components, and Events—are organized
into the conceptual hierarchy illustrated in Figure 2.

Infrastructure module. We treat infrastructure as the union of Buildings, Pipelines,
and Transport, drawing chiefly on GB/T 28590-2012, the IFC 4×1 ontology, CJJ/T 197-2018,
and GB/T 32853-2016 for tiered classification.

Natural resources and planning entities. The primary classes Natural Resources and
Land Planning merge the concept models of GB/T 32853-2016, GB/T 40765-2021, and
CityGML, yielding a unified taxonomy of terrain, water bodies, protected zones, and
land-use parcels.
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Spatio-temporal fundamentals. Spatial position and temporal extent are modeled in
accordance with CityGML and the Time Ontology in OWL, enabling every urban object to
carry precise geographic and temporal metadata.

Sensors and managed components. Urban management facilities such as lampposts
and charging piles are subclassed using GB/T 30428.2-2013 and GB/T 36625.5-2019, while
sensor entities adopt the modular SSN/SOSA ontology to capture observations, actuators,
and deployment contexts.

 

Figure 2. SMOF core entity modules and primary classes. The five dashed boxes represent the core
ontology modules, each containing corresponding top-level classes (11 in total).

Society and special topic data. Beyond cataloging natural resources and physical
infrastructure, urban service must also manage its primary administrative subjects—natural
persons and organizations. Accordingly, we introduce a Social and Thematic module,
augmented with specialized datasets to accommodate remote sensing imagery, POI layers,
panel statistics, and other domain specific resources.

Through this layered design, the SMOF delivers a coherent yet extensible schema
capable of aligning heterogeneous standards, integrating redundant data models, and
supporting a broad spectrum of smart city applications. Moreover, entity definitions
can be further extended within specific application scenarios, enabling domain-oriented
refinement without compromising the integrity of the universal hierarchy.

3.4. Attribute and Relation Design

To achieve a unified data vocabulary and promote inter-departmental collaboration,
the ontology must specify not only what entities exist but also which characteristics they
carry and how they interact [52]. In the SMOF, attributes capture intrinsic or extrinsic
features of an entity, whereas relations embed entities into a coherent semantic network.
Building on the modeling principles above, the SMOF adopts a dual-tier attribute–relation
strategy that combines a universal semantic core with a thematic extension mechanism.

To balance generality with domain specificity, attributes are divided into a universal
set and an extended set. The universal set forms the semantic core and is applicable to
all classes, ensuring interoperability across domains. Extended attributes are introduced
only when a particular application scenario requires additional detail. Following this
layered strategy, three categories of universal attributes are defined: (i) basic, recording
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administrative identity and provenance (e.g., GlobalId, DataSource, Name); (ii) tempo-
ral, capturing lifecycle aspects (e.g., UpdateDate, OriginalDate, NumericDuration); and
(iii) spatial, describing geolocation and geometry (e.g., AbsoluteSpatialPosition, Area-
Code, Dimension, SpatialSemanticDescription). Extended attributes supplement these
categories when domain-specific precision is needed—for example, lane traffic volume in
highway monitoring.

Relations in SMOF fall into eight macro-categories—Hierarchy, Part–Whole, Depen-
dency, Functional, Spatial, Temporal, Sense, and Synonym—to maximize expressiveness
while minimizing redundancy. Universal relations (e.g., isPartOf, adjacentTo, depend-
sOn) provide the backbone of inter-entity connectivity; domain-specific extensions (e.g.,
regulatedByPlan in planning, monitoredBySensor in emergency management) add finer
granularity when required. In practice, universal relations can be aligned to domain-specific
ones (e.g., hasIdentity ↔ hasCitizenID).

The same universal attribute or relation may carry different semantics, scopes, or
value domains across contexts. For example, Status may denote typical congestion in
transportation, whereas in building management it may indicate maintenance state. We
therefore use a context-sensitive mechanism: define Status uniformly at the universal layer,
then refine it into OperationalStatus, BuildingUsageStatus, and similar variants within
specific domains, avoiding over-specification of the universal layer.

This dual-tier design yields a systematic model: universal components ensure cross-
domain consistency, while extensions adapt to specific urban services. Combining a stable
semantic core with scenario-driven expansion achieves conceptual generality and practical
specificity, supporting reasoning and querying over heterogeneous urban data.

3.5. Ontology Modeling and Mapping

With the hierarchical classes, universal attributes, and universal relations in place,
we instantiated the SMOF in Protégé. Inside the editor, Classes represent the urban-
entity categories defined above, Object properties capture inter-entity relations, and Data
properties contain the attributes. Figure 3 depicts the resulting ontology structure.

The urban ecosystem already hosts a multitude of ontologies and heterogeneous data
sources. Aligning existing ontologies and data sources with SMOF and transforming data
into SMOF instances constitute a key focus of current research. Consider the concept
Sensor: it is defined in both ifcOWL and SOSA, but with different class names and storage
conventions; likewise, IFC data are usually held in STEP files, CityGML in XML, and IoT
feeds in JSON. Figure 4 sketches how typical urban ontologies map to the SMOF and how
multi-source data are lifted into ontology instances:

(1) Ontology-to-ontology alignment. This refers to the process of establishing map-
pings between classes, attributes, and relations across different ontologies so that their
semantics can interoperate consistently. Mapping rules can be written in the Semantic
Web Rule Language (SWRL), which combines description logic with rule syntax. As il-
lustrated in Figure 4, content from ifcOWL, SOSA, CityGML-RDF, and Time-OWL can all
be translated into the SMOF. Following the literature [33], we distinguish three mapping
types—direct, indirect, and attribute/relation, as summarized in Table 3.
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Figure 3. SMOF modeling results in Protégé. (a) Entity modeling results (classes); (b) Relation
modeling results (object properties); (c) Attribute modeling results (data properties).

(2) Data-to-ontology extraction (also referred to as knowledge lifting). Knowledge
lifting denotes the transformation of heterogeneous raw data into ontology-compliant
instances. On the data side, we usually use data extraction software or write code in Python
3.13.2 to achieve the parsing of heterogeneous data and convert it into instances of the
ontology. For IFC, the ifcopenshell library identifies IfcWall objects, retrieves direct at-
tributes such as GlobalId, and then follows links to IfcPropertySet to harvest non-geometric
attributes (IsExternal, Material, Thickness). The collected facts are recorded as instances of
smof:Wall. Analogous pipelines convert IoT JSON feeds, CityGML XML documents, or
relational database tables into the SMOF individuals.

Through this dual strategy of SWRL alignment and automated data lifting, SMOF can
reconcile diverse urban ontologies, ingest heterogeneous datasets, and furnish a coherent
knowledge base for smart city analytics.
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Figure 4. Mapping between SMOF, urban domain ontology and multi-source heterogeneous data.

Table 3. Examples of SWRL mapping rules.

Mapping Type SWRL Rule Example

Direct
ifcowl:IfcWindow(?x) → smof:Window(?x)

sosa:Observation(?x) → smof:Observation(?x)

Indirect

sosa:Sensor(?x) ∧ sosa:observes(?x,”AirQuality”ˆˆxsd:string)
→ smof:AirQualitySensor(?x)

timeowl:TimeInterval(?x) ∧ timeowl:hasStart(?x,?t1)
∧ timeowl:hasEnd(?x,?t2) ∧ swrlb:greaterThan(?t2,?t1)

→ smof:ValidInterval(?x)

Attribute/relation

ifcowl:IfcDoor(?x) ∧ ifcowl:Name_Pset_IfcDoor(?x,?n)
→ smof:Door(?x) ∧ smof:doorName(?x,?n)

citygml:Building(?b) ∧ citygml:contains(?b,?r)
∧ citygml:Room(?r) → smof:Building(?b)

∧ smof:containsSpace(?b,?r)

4. Evaluation and Validation
4.1. Answers to the Competency Questions

Once the ontology was built, we answered the competency questions (Section 3.2.1) by
means of OWL fragments. Using OWL ensures logical precision and provides a structured
semantic basis for each query. Detailed competency questions and their corresponding
illustrative OWL fragments are summarized in Table A1 in Appendix A, which captures
hierarchical structures, spatial and temporal semantics, cross-ontology alignments, core
relations with reasoning support, comprehensive attribute sets, and global identifiers that
enforce uniqueness across the entire knowledge base. The systematic answering serves
as a validation step, demonstrating that this ontology can not only ensure the description
of basic semantic information, but also is structurally well formed and conforms to the
fundamental requirements of an ontology.
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4.2. Evaluation and Comparison

To systematically evaluate the coverage and expressiveness of SMOF, we comple-
mented the competency question testing with a mixed evaluation protocol. This protocol
combines objective indicators and subjective judgments. Specifically, objective evaluation
was conducted using quantifiable indicators from OntoMetrics [55], while subjective evalu-
ation relied on expert scoring and the LLM as judge paradigm [56]. For benchmarking, we
compared SMOF against the three major ontologies introduced in the related work section:
CIMO, UKG, and KM4City. For baseline ontologies that are not publicly available, we
reconstructed their core schemas based on published literature to ensure fair comparison.

4.2.1. Objective Evaluation

In the quantitative evaluation, we selected three structural indicators widely used in
ontology engineering: Attribute Richness (AR), Inheritance Richness (IR), and Relationship
Richness (RR). These metrics, respectively, capture the average number of attributes per
class, the average number of subclasses per class, and the proportion of non-inheritance
relations relative to all relations. Their formal definitions are as follows:

AR =
|ATT|
|C| (4)

where |ATT| is the total number of attributes associated with classes and |C| is the total
number of classes.

IR =
∑Ci∈C

∣∣HC(C1, Ci)
∣∣

|C| (5)

where |H| denotes inheritance relations.

RR =
|P|

|H|+ |P| (6)

where |P| denotes non-inheritance relations (e.g., object properties, equivalence, or disjointness).
In practice, AR reflects the richness of attributes per entity, enabling more fine-grained

semantic description; IR indicates the depth of class hierarchies, supporting precise cat-
egorization; and RR captures the diversity of relations, offering more expressive links
for reasoning and integration. It should be noted, however, that higher values are not
inherently better—these indicators need to be interpreted in relation to the intended scope
and application scenarios of the ontology.

Table 4 reports the comparative results for SMOF and the three baseline ontologies.

Table 4. The evaluation results of the four ontologies in the indicators of AR, IR, and RR.

Ontology Attribute Richness Inheritance
Richness

Relationship
Richness

KM4City 0.421 1.190 0.165
UrbanKG 8.283 0.583 0.754

CIMO 1.850 0.986 0.131
SMOF 9.688 0.981 0.127

From these results, SMOF exhibits the highest attribute richness, with an average of
nearly ten attributes per class. This indicates that SMOF provides a highly detailed charac-
terization of entities at the schema level, allowing for fine-grained instantiation. In terms
of inheritance richness, SMOF achieves a value close to CIMO (0.986 vs. 0.981), reflecting
a well-structured hierarchy that balances breadth and depth. However, its relationship
richness is relatively low (0.127). This reflects SMOF’s context-sensitive modeling strategy:
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a small set of generic relations is defined and then specialized in domain contexts. This
design limits the diversity of explicitly declared relation types.

By contrast, KM4City, as a long-standing and large-scale urban ontology, shows higher
inheritance richness (1.190) but limited attribute and relationship richness due to its broad
and stable schema design. CIMO, grounded in BIM and GIS data, demonstrates moderate
values across the three indicators, reflecting its narrower scope. UrbanKG, constructed
from POI and street-view data, records a relatively high relationship richness (0.754) owing
to its dense web of non-inheritance links, but its inheritance structure remains shallow.

It is important to emphasize that these metrics evaluate only the formal richness and
distributional characteristics of ontology design, rather than the correctness or adequacy of
domain modeling. Consequently, while SMOF scores strongly in AR and IR, and adopts
a principled approach to RR, the actual expressive power of the ontology still requires
qualitative verification through complementary expert judgment and application-oriented
scenario modeling.

4.2.2. Subjective Evaluation

To complement the objective results, we conducted a subjective evaluation through
both LLM as judge and expert scoring. The LLM-based scoring primarily measured
conceptual completeness and coverage, while the expert evaluation targeted real-world
scenario fitness and clarity of expression. This dual-layer design ensures that both formal
conceptual quality and practical applicability are taken into account.

First, we employed the LLM as judge method to evaluate the overall conceptual cover-
age of SMOF. In this approach, LLMs were adopted because they combine broad coverage
of general knowledge with substantial domain understanding [57]. Such models can detect
whether a city ontology omits critical concepts, such as infrastructure types, transport net-
works, or public services. Unlike purely human scoring, they also apply consistent criteria
and logical rules, which reduces subjectivity. Recently, LLM as Judge has also emerged
as one of the most popular approaches for ontology evaluation, providing scalable and
relatively objective assessment capabilities [58]. Specifically, we selected four representative
LLMs (DeepSeek [59], GPT [60], Gemini [61] and Kimi [62]) as judges. The rationale for
choosing these models is threefold. First, they jointly cover internationally recognized
LLMs and those most widely adopted in our country, ensuring representativeness and
authority. Second, they include both reasoning-oriented and text-oriented models, thus
offering broader coverage. Third, all four models provide API access, which guarantees
reproducibility and practical feasibility.

We evaluated three dimensions that reflect the structural and applicative character-
istics of an ontology [63]. Concept completeness refers to the extent to which entities,
attributes, and relations comprehensively cover the core concepts of the urban domain,
thereby ensuring that the ontology does not omit essential knowledge. Concept consistency
captures the freedom from internal contradictions in class definitions, property constraints,
and relation logic, which is critical for maintaining logical validity and supporting reason-
ing tasks. Scalability denotes the ontology’s capacity to accommodate new domains or
entities without structural overhaul, reflecting its long-term adaptability and reusability in
evolving smart city applications.

To clarify the evaluation methodology, we standardized the entire process at three
stages. In the input stage, all ontologies were normalized into a JSON structure consisting of
Entities, Attributes, and Relations. This ensured consistent input. In the prompt stage, the
three evaluation dimensions were defined explicitly and rated on a five-point scale (1 = poor,
5 = excellent). The meaning of each score was described clearly in the prompt. In the output
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stage, every task was repeated twice and the average taken, reducing randomness and
inconsistency across models.

The evaluation results of LLM as judge are shown in Figure 5.

 

(a) (b) (c) 

  
(d) (e) 

Figure 5. Radar charts of LLM-as-judge results and average scores. (a) Evaluation results for the
CIMO model; (b) Evaluation results for the KM4City model; (c) Evaluation results for the SMOF
model; (d) Evaluation results for the UKG model; (e) Comparison of average scores across all
models. The three evaluation dimensions are defined as follows: completeness (coverage of domain
concepts), consistency (absence of logical contradictions), and scalability (capacity to accommodate
new domains or entities).

As summarized in Figure 5, completeness, consistency, and scalability jointly reflect
domain coverage, logical validity, and adaptability. Averaging the three metrics across
all models yields SMOF = 4.375, markedly higher than CIMO = 3.875, UKG = 3.625, and
KM4City = 3.583. We report the mean score as a balanced indicator of overall ontology
quality, since completeness, consistency, and scalability are complementary dimensions.
While individual scores reveal specific strengths and weaknesses, the average reflects the
ontology’s integrated conceptual soundness.

Although all four ontologies target the smart city domain, the score patterns reflect
their differing design emphases. The SMOF excels in both completeness (4.25) and consis-
tency (4.50); notably, Gemini Pro 2.5 awarded full marks on all three dimensions, indicating
strong approval of the SMOF’s layered entity taxonomy and its separation of universal
versus extended attributes.
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KM4City achieves the best completeness score (4.375) but fares worse in consistency
(3.25) and scalability (3.125). Gemini Pro 2.5 rated it only 2 points for the latter two aspects,
probably because KM4City’s very large size and many near-duplicate concepts lack clear
hierarchical documentation.

CIMO (3.875) and UKG (3.625) show balanced but lower performance. GPT-series
models frequently assigned scores ≤3, suggesting gaps in core entity definitions, attribute
linkage, and relation coverage. This weakness is consistent with their original intentions:
CIMO focuses on BIM/GIS/IoT interoperability within the CIM context, whereas UKG
concentrates on street-view and POI analytics. Divergent problem statements thus translate
into different strengths and weaknesses under the evaluation rubric.

The evaluation results of LLM as judge are shown in Figure 5. While this approach
offers scalable and relatively objective assessments, it is not without limitations. The results
may be influenced by model-specific biases and sensitivity to prompt phrasing, which can
affect consistency across tasks. Therefore, we treated LLM-based scoring as complementary
rather than definitive, and introduced an expert-based evaluation to provide qualitative
insights and cross-validate the findings.

Subsequently we carried out an expert-based evaluation to complement the LLM
study. Three specialists were invited: two experts in smart city applications and one in
knowledge graph engineering. One expert first drafted fourteen coarse-grained application
scenarios spanning five thematic domains: transport, buildings, urban infrastructure, urban
planning, and society. Representativeness was ensured by referencing typical domains
summarized in Wang et al.’s survey [34]. A second expert then attempted to model each
scenario with SMOF, CIMO, KM4City and UKG, using only the native classes, properties
and relations of each ontology and extending them only when absolutely necessary. Finally,
a third expert assessed the resulting models on two criteria. The first was ontology–scenario
fitness (ontology matching degree), meaning the extent to which the ontology provides
the required vocabulary (entities, attributes, relations) without extension. The second was
expression clarity, meaning the degree to which the chosen constructs convey the scenario
unambiguously and consistently.

Both criteria were rated on a five-point scale (1 = poor, 5 = excellent). Coarse-grained
scenarios were chosen intentionally so as not to penalize ontologies for lacking very
fine detail.

The heat map in Figure 6 summarizes the results. The SMOF achieved full marks for
ontology scenario fitness in nine of the fourteen scenarios, including building component
queries, charging station distribution, pipeline leak detection and forest fire early warning,
demonstrating its strong alignment with a broad spectrum of urban tasks. KM4City ranked
second, excelling in the two transport scenarios (traffic flow monitoring and bus ridership
counting), reflecting its transport-centric design. CIMO, built around BIM/GIS/IoT interop-
erability, handled building and planning situations well but fell short in social resource and
traffic contexts. UKG rarely scored the maximum, yet because it classifies a vast number of
POIs, it could satisfy most scenarios by extending only one or two classes.

For expression clarity shown in Figure 7, the SMOF again led the field, receiving perfect
scores in eight scenarios such as building energy accounting and protected tree statistics.
Its lowest score (3/5) occurred in the “community services for the elderly” scenario. In
such contexts, the existing universal attributes (e.g., ID, name, status) are insufficient unless
extended, since domain-specific properties like “number of elderly beds” or “average
resident age” only arise in these specialized settings. Given that the CIMO ontology had to
be reconstructed from the original publication and is consequently incomplete, its clarity
scores were predictably modest.



Smart Cities 2025, 8, 165 19 of 32

 

Figure 6. Ontology matching degree heatmap. The horizontal axis lists SMOF and baseline ontologies,
while the vertical axis represents different practical scenarios. Higher scores indicate stronger fitness
of an ontology to express knowledge in the corresponding scenario.

 

Figure 7. Expression clarity heatmap. The horizontal axis shows SMOF and baseline ontologies,
and the vertical axis lists different scenarios. Higher scores denote clearer and more unambiguous
expression of domain knowledge (clarity) in the corresponding scenario.
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Overall, the SMOF outperformed the three baseline ontologies on both metrics across
most scenarios, confirming that its cross-domain adaptability and semantic precision
translate into practical modeling advantages. The experiment also highlights the differing
strengths of the four ontologies: POI-oriented UKG and transport-rich KM4City are less
suited to building-centric queries, illustrating the functional diversity that still characterizes
urban ontological resources.

4.3. Practical Scenario Application

To ensure a comprehensive validation of SMOF, we employed two complementary
urban service scenarios that highlight distinct aspects of ontology application. The fire-
emergency case represents a high-stakes domain where timely warning and rapid decision-
making rely on the seamless integration of heterogeneous real-time data. It demonstrates
the ontology’s capability for multi-source data representation and query execution. In
contrast, the traffic-congestion case reflects a pervasive and socially impactful challenge in
urban management, chosen to showcase the ontology’s reasoning capacity for generating
new knowledge beyond directly observed data. The datasets also differ in accessibility: the
fire-emergency dataset, provided by Shenzhen Smart City Technology Development Co.,
Ltd. (Shenzhen, China) and the Shenzhen Spatial Digital Platform, cannot be publicly re-
leased due to contractual restrictions; meanwhile, the traffic-congestion dataset is available
on figshare to support transparent conceptual validation.

Ontology evaluation must ultimately be grounded in urban service scenarios that
stress heterogeneous data integration. Urban fire emergencies provide a representative
testbed: timely warning and effective management demand rapid decisions based on
sensor streams, building-information models, GIS layers, and relational data, yet linking
observations to geospatial context and affected populations remains challenging [64]. Using
SMOF as the semantic backbone, we carried out three steps: (i) formalized the knowledge
required for fire response, (ii) lifted data from disparate sources into ontology instances,
and (iii) executed graph queries over the resulting knowledge graph.

We extended SMOF with a fire-response module in Protégé (http://protege.stanford.
edu/, accessed on 1 October 2025), adding classes such as FireEngine while reusing SMOF
entities, attributes, and relations (Figure 8). Sensors are linked to their observations through
hasResult. When a temperature reading exceeds a predefined threshold, the ContainedIn
relation automatically triggers the association with the specific building component affected.
From there, the model retrieves the building’s address, locates nearby fire stations and hy-
drants, and notifies both office units and residents associated with the endangered location.

After modeling, we parsed IoT feeds, CityGML geometries, and relational tables and
lifted them into SMOF ontology instances, persisting the results in a graph database. This
knowledge lifting process, which extracts and semantically enriches multi-source heteroge-
neous data, forms a SMOF-based knowledge graph. The graph provides a unified, machine-
readable representation of entities, their attributes (literals), and inter-entity relations. The
knowledge graph supports user-defined SPARQL graph queries for relationship-centric
retrieval and analysis.

To illustrate, we implemented four SPARQL patterns that meet core fire-response
needs, as shown in Table 5. Temperature sensors with readings above 60 ◦C were selected
as a demonstrative case to provide a clear numeric threshold. Through alignment with
the SSN/SOSA framework, the same patterns can query other fire-relevant sensors (e.g.,
smoke or gas detectors) in real deployments. The patterns are executed directly against the
triple store hosting the SMOF-based graph; the engine matches graph patterns over RDF
triples and returns a binding table for entities satisfying the specified constraints.

http://protege.stanford.edu/
http://protege.stanford.edu/
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Figure 8. Knowledge representation for fire emergency scenarios. Rectangles represent classes
involved in knowledge modeling, and lines indicate relationships among entities. The types of
relationships are described in the dashed box.

Table 5. SPARQL query in fire warning and response scenarios.

Objective SPARQL Query

Find sensors whose temperature reading
exceeds 60 ◦C

SELECT ?sensor
WHERE {

?sensor a smof:Sensor_Equipment;
smof:hasResult ?observation.

?observation a smof:Observation;
smof:measure “◦C”;
smof:value ?value.

FILTER (?value > 60)
}

Identify the affected structural element
and its parent building

SELECT ?structuralElement ?building
WHERE {

?sensor a smof:Sensor_Equipment.
?sensor smof:ContainedIn ?structuralElement.

?structuralElement a ?structSubClass.
?structSubClass rdfs:subClassOf smof:StructuralElements.

?structuralElement smof:isPartOf ?building.
?building a ?bldgSubClass.

?bldgSubClass rdfs:subClassOf smof:BuildingTypologies.
}

Retrieve populations and companies
located in the damaged building

SELECT ?populationName ?legalEntityName
WHERE {

?building a ?bldgSubClass.
?bldgSubClass rdfs:subClassOf smof:BuildingTypologies.

?population a smof:Population;
smof:works_in ?building;

smof:Name ?populationName.
?legalEntity a smof:legalEntities;

smof:located_in ?building;
smof:Name ?legalEntityName.

}
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Table 5. Cont.

Objective SPARQL Query

List fire protection equipment, fire
stations and fire truck names within

1 km of the building

SELECT ?fireProtectionEquipment ?firestation ?fireTruckName
WHERE {

?building a ?bldgSubClass.
?bldgSubClass rdfs:subClassOf smof:BuildingTypologies.

?building smof:AbsoluteSpatialPosition ?buildingPos.
# equipment within 1 km

?fireEquipment a smof:FireProtectionEquipment;
smof:AbsoluteSpatialPosition ?fireEqPos.

FILTER (geof:distance(?buildingPos, ?fireEqPos) <= 1000)
# optional: fire station within 1 km

OPTIONAL {
?firestation a smof:Firestation;

smof:AbsoluteSpatialPosition ?firestationPos.
FILTER (geof:distance(?buildingPos, ?firestationPos) <= 1000)

?firestation smof:ownedBy ?fireTruck.
?fireTruck a smof:FireTruck;
smof:Name ?fireTruckName.

}
}

We deployed the solution as a semantic web application on the Shenzhen Spatial
Digital Platform using Java and the Apache Jena stack (Figure 9). The interface integrates
BIM/GIS baselines with live sensor streams to support sensor search, real-time inspection,
and impact-area analysis, powered by the ontology-backed knowledge graph.

 

Figure 9. Fire warning and response interface display. Under “Overall interface display”: The left
side is the emergency-related function panel, the middle shows scene visualization, and the right
side displays specific functions.

Traffic congestion is a pervasive urban challenge with direct impacts on mobility,
energy use, and public well-being [65]. To test transferability and reasoning capability, we
include a compact, lightweight conceptual traffic example.

Within existing SMOF modules (no new extensions), we model Roads, Residen-
tial_Zones, Populations, Sensor_Equipment, Observations, and TrafficControlDevices
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(Figure 10). On this basis, we define three inferred classes: CongestedRoad, Affected-
Population, and NeedSignalAdjustment. These are derived by rules rather than asserted
a priori.

 

Figure 10. Knowledge representation for traffic congestion scenarios. Rectangles represent classes
involved in knowledge modeling, and lines indicate relationships among entities. The types of
relationships are described in the dashed box.

SWRL extends OWL with Horn-like rules (antecedent ⇒ consequent) that combine
class/property predicates with built-ins to infer new facts from asserted data [33,66]. Using
SWRL we encode three rules that (i) classify congestion from speed/occupancy thresholds,
(ii) link congested roads to affected populations via spatial containment, and (iii) flag
devices requiring signal retiming (as shown in Table 6).

Table 6. SWRL Knowledge Reasoning in Traffic Congestion Scenarios.

Rule ID Purpose SWRL Rule Results

1
Identify congested road
segments from sensor

observations

smof:Sensor_Equipment(?s) ˆ
smof:ContainedIn(?s, ?r) ˆ

smof:Road(?r) ˆ
smof:hasResult(?s, ?o1) ˆ
smof:Observation(?o1) ˆ

smof:measure(?o1,
“vehicleCount”ˆˆxsd:string) ˆ

smof:value(?o1, ?c) ˆ
swrlb:greaterThan(?c, 100) ˆ

smof:hasResult(?s, ?o2) ˆ
smof:Observation(?o2) ˆ

smof:measure(?o2,
“avgSpeed”ˆˆxsd:string) ˆ

smof:value(?o2, ?v) ˆ
swrlb:lessThan(?v, 20)

-> smof:Congested_Road(?r)

smof:Congested_Road
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Table 6. Cont.

Rule ID Purpose SWRL Rule Results

2
Propagate road congestion

to human impact via
spatial context

smof:Congested_Road(?r) ˆ
smof:adjacentTo(?r, ?z) ˆ
smof:Resident_zone(?z) ˆ

smof:Population(?p) ˆ
smof:located_in(?p, ?z)

-> smof:Affected_Population(?p)

smof:Affected_Population

3
Recommend operational

adjustment for
dependent devices

smof:Congested_Road(?r) ˆ
smof:Traffic_Control_Device(?d) ˆ

smof:Dependency(?d, ?r)
-> smof:Need_Signal_Adjustment(?d)

smof:Need_Signal_Adjustment

The modeling and reasoning process was implemented in Protégé. Classes, object
properties, and data properties were defined according to the SMOF structure, and individ-
uals were created to represent roads, sensors, observations, resident zones, and devices. The
SWRL rules were encoded in the SWRLTab, and reasoning was performed with the Pellet
reasoner. The system successfully inferred congested roads, identified affected populations,
and flagged relevant control devices for adjustment. As summarized in Figure 11, the
results confirm that SMOF can support not only semantic retrieval of heterogeneous urban
data but also knowledge driven inference that enriches decision making.

 

Figure 11. The reasoning process and results in the Protégé.

Collectively, the results confirm that semantic modeling atop SMOF enables both cross-
source querying of heterogeneous urban data and prescriptive reasoning. This bridges data
integration and intelligent urban governance.
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5. Discussion
This study was guided by three questions—RQ1 (how to achieve semantic integra-

tion of multi-source heterogeneous urban data), RQ2 (how to construct an ontology that
systematically encompasses cross-domain urban management objects), and RQ3 (how to
validate such a framework in real scenarios)—together with three corresponding hypothe-
ses (H1–H3). The findings confirm all three hypotheses. For RQ1/H1, alignment with
authoritative standards, competency questions, and explicit modeling principles jointly re-
duced semantic fragmentation and representational inconsistency. Authoritative standards
provided canonical definitions of classes, attributes, and relations; the modeling principles
regulate scope, granularity, naming, and classification so that outcomes remain faithful to
requirements while interoperable with external sources; and CQs translated requirements
into testable queries that the ontology must satisfy after construction, ensuring that mod-
eling outcomes remained consistent with the defined requirements. This mechanism is
also reflected in the metrics: SMOF showed the highest AR and consistency scores and
balanced IR/RR values (Figures 5–7), evidencing reduced semantic gaps and more coherent
representation than the baselines. For RQ2/H2, the combination of a layered taxonomy and
a dual-tier attribute–relation design enabled cross-domain modeling. Universal attributes
and relations formed a semantic core, capturing the ‘greatest common denominator’ across
diverse urban contexts. Extended attributes and relations preserved flexibility, enabling
domain-specific details without compromising the core. Context-sensitive specialization
further ensured that universal elements remained reusable across various domains. For
RQ3/H3, effectiveness and applicability were established through a mixed evaluation
protocol—combining structural indicators, LLM as judges, and expert scoring—together
with two empirical applications (fire emergency and traffic reasoning). These jointly tested
formal soundness, conceptual coverage, scenario fitness, and operational practicality.

The comparative experiments highlight SMOF’s advantages in both structure and
applicability. In the quantitative evaluation, SMOF achieved the highest attribute richness
(9.688), indicating a detailed schema with rich descriptive capacity, and maintained an
inheritance richness of 0.98, comparable to CIMO’s 0.99 but with broader coverage. In the
LLM as judge evaluation, SMOF obtained mean scores of 4.25 for completeness, 4.50 for
consistency, and 4.38 for scalability, surpassing KM4City, UrbanKG, and CIMO. Expert
assessments corroborated these findings, showing that SMOF achieved scenario fitness
scores of 5/5 in nine out of fourteen representative applications, while other ontologies
required more extensions. Moreover, two empirical studies reinforced the framework’s
utility: the fire emergency case demonstrated its ability to integrate sensors, buildings,
and stations for real-time heterogeneous data query support, while the traffic congestion
case illustrated its reasoning capacity to infer congestion states, affected populations, and
signal adjustments.

Ontology evaluation, however, remains a recognized challenge. No universally ac-
cepted framework currently exists for measuring expressiveness, and each method carries
limitations. Quantitative indicators are objective but insufficient for capturing knowledge
representation capacity. LLM-based evaluation provides scalability and domain breadth,
but its outputs can be unstable. Expert judgment is grounded in domain knowledge yet
is inevitably subjective and resource-intensive. Nevertheless, this study combines four
approaches: quantitative metrics, LLM-based evaluation, expert scoring, and empirical
validation, thereby providing a comprehensive evaluation protocol. This multi-layered
strategy strengthens the credibility of the findings despite inherent limitations. Future
studies will extend SMOF to additional urban service scenarios to further verify its knowl-
edge representation capacity, and will involve a larger, more diverse group of experts with
complementary evaluation methods to ensure more accurate assessments.
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Relative to our 2024 preprint version [11], this work represents substantial progress.
The SMOF has evolved from a preliminary conceptual design into a refined, layered frame-
work with extensive semantic coverage. Evaluation has expanded from single scenario
validation to a multi-dimensional protocol integrating quantitative, qualitative, and em-
pirical perspectives. The ontology itself has been enriched with universal and extended
attributes, refined relations, and broader mappings, thereby enhancing its expressiveness
and extensibility. These advances transform SMOF from an initial idea into a robust and
mature framework for smart city knowledge integration.

6. Conclusions
This study proposed the SMOF, a hierarchical, standards-driven ontology designed to

unify heterogeneous urban data. The framework integrates five core entity modules, eleven
major entity categories, and a dual-tier relation scheme, ensuring both conceptual generality
and domain adaptability. Comparative evaluations indicated that SMOF exhibits strong
structural soundness, rich conceptual representation, and robust knowledge expressiveness
compared with baseline ontologies. Empirical validations in fire emergency management
and traffic congestion further confirmed its ability to integrate multi-source data, enable
semantic reasoning, and generate actionable insights for urban governance. These results
collectively confirm the three hypotheses and provide positive answers to the guiding
research questions.

Despite these contributions, several limitations remain. First, the empirical validation
is restricted to two scenarios—fire emergency and traffic congestion—which, although
representative, do not fully reflect the diversity of smart city services such as land-use
planning, environmental monitoring, or social management. Second, ontology construction
for specific scenarios is still labor-intensive and requires extensive expert involvement,
which hinders rapid deployment across new domains. Third, the multi-faceted evaluation
protocol, while comprehensive, also has shortcomings: quantitative metrics mainly capture
structural properties, LLM as judge results may be affected by model bias and prompt
sensitivity, and expert-based scoring is limited by the small sample size.

These limitations directly inform our future research agenda. To reduce manual effort,
we plan to integrate LLMs with retrieval-augmented generation (RAG) to support semi-
automated ontology construction and scenario adaptation [67,68]. To address the static-data
constraint, we will extend SMOF to incorporate dynamic data streams, enabling real-time
reasoning and anomaly detection (e.g., sudden traffic or infrastructure changes). To broaden
applicability, we aim to validate SMOF in additional domains such as natural resource
management and land-use planning. Finally, to enhance the robustness of evaluation,
we will expand expert participation and explore hybrid validation methods that combine
human judgment with automated assessment.

7. Patents
An invention patent application derived from this work has been submitted: Applica-

tion Number 2025108046798, filed on 17 June 2025, entitled “A Method, System, Terminal,
and Storage Medium for Constructing a Knowledge Graph of Heterogeneous Data from
Multiple Urban Departments”.
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Appendix A
Table A1 presents the detailed competency questions and corresponding Owl format

answers used to validate SMOF’s coverage, consistency, and interoperability.

Table A1. Competency questions and illustrative OWL fragments.

Competency Question Owl Format Answers

CQ1

# Hierarchy (subClassOf)
smof:Building_components rdfs:subClassOf

smof:Building_infrastructure.
# Intrinsic information (data property)

smof:hasName a owl:DatatypeProperty;
rdfs:domain:Entity;

rdfs:range xsd:string.
# Inter-entity relationship (object property)

smof:adjacentTo a owl:ObjectProperty;
rdfs:domain smof:SpatialEntity;
rdfs:range smof:SpatialEntity.

CQ2

# Top-level classes:SMOF
smof:SMOF a owl:Class.

smof:Building_infrastructure a owl:Class;
rdfs:subClassOf smof:SMOF.

smof:Events a owl:Class;
rdfs:subClassOf smof:SMOF.
smof:Geometry a owl:Class;
rdfs:subClassOf smof:SMOF.

smof:Nature_and_Geographic_Space a owl:Class;
rdfs:subClassOf smof:SMOF.
smof:Pipelines a owl:Class;

rdfs:subClassOf smof:SMOF.
smof:Population_and_Social_Organizations a owl:Class;

rdfs:subClassOf smof:SMOF.
smof:Special_Topic_Data a owl:Class;

rdfs:subClassOf smof:SMOF.
smof:Time a owl:Class;

rdfs:subClassOf smof:SMOF.
smof:Traffic a owl:Class;

rdfs:subClassOf smof:SMOF.
smof:Urban_Management_Components a owl:Class;

rdfs:subClassOf smof:SMOF.

https://figshare.com/s/2875e770d9907435b1fb
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Table A1. Cont.

Competency Question Owl Format Answers

CQ3

# Spatial-attribute super-class
smof:spatial_attributes a owl:Class.
# Address (semantic description)

smof:Spatial_semantic_description a
owl:DatatypeProperty;

rdfs:subPropertyOf smof:spatial_attributes;
rdfs:domain smof:SpatialEntity;

rdfs:range xsd:string.
# Absolute position (lat-lon)

smof:AbsoluteSpatialPosition a owl:DatatypeProperty;
rdfs:subPropertyOf smof:spatial_attributes;

rdfs:domain smof:SpatialEntity;
rdfs:range xsd:string.

# Topological relations
spatial:topological a owl:Class.

smof:adjacentTo a owl:ObjectProperty;
rdfs:subPropertyOf spatial:topological;

rdfs:domain smof:SpatialEntity;
rdfs:range smof:SpatialEntity.

smof:connectsTo a owl:ObjectProperty;
rdfs:subPropertyOf spatial:topological;

rdfs:domain SpatialEntity;
rdfs:range SpatialEntity.

smof:ContainedIn a owl:ObjectProperty;
rdfs:subPropertyOf spatial:topological;

rdfs:domain SpatialEntity;
rdfs:range SpatialEntity.

smof:overlapsWith a owl:ObjectProperty;
rdfs:subPropertyOf spatial:topological;

rdfs:domain SpatialEntity;
rdfs:range SpatialEntity.

smof:Separation a owl:ObjectProperty;
rdfs:subPropertyOf spatial:topological;

rdfs:domain smof:SpatialEntity;
rdfs:range smof:SpatialEntity.

CQ4

# Alignment with KM4City
smof:Administration a owl:Class;

owl:equivalentClass km4c:Administration.
smof:LocalPublicTransport a owl:Class;

owl:equivalentClass km4c:Localpublictransport.
smof:Sensors a owl:Class;

owl:equivalentClass km4c:Sensors.
# Alignment with UrbanKG

smof:POIs a owl:Class;
owl:equivalentClass ukg:POIs.

smof:Users a owl:Class;
owl:equivalentClass ukg:Users.

smof:Satellite_Images a owl:Class;
owl:equivalentClass ukg:Satellite images.

smof:Street_View_Images a owl:Class;
owl:equivalentClass ukg:Street view images.
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Table A1. Cont.

Competency Question Owl Format Answers

CQ5

# Alignment with CityGML
smof:Geometry a owl:Class;

owl:equivalentClass citygml:Geometry.
smof:Building_Geometry a owl:Class;
owl:equivalentClass citygml:Building.

CQ6

# Alignment with SOSA
smof:Sensor a owl:Class;

owl:equivalentClass sosa:Sensor.
smof:Observes a owl:ObjectProperty;

owl:equivalentProperty sosa:observes.

CQ7

# Dependency relations
smof:Dependency a owl:Class.

smof:Association a owl:ObjectProperty;
rdfs:subPropertyOf smof:Dependency;

rdfs:domain smof:Entity;
rdfs:range smof:Entity.

smof:Depended_on a owl:ObjectProperty;
rdfs:subPropertyOf smof:Dependency;

rdfs:domain smof:Entity;
rdfs:range smof:Entity.
# Whole–part relations

smof:Part-Whole a owl:Class.
smof:isPartOf a owl:ObjectProperty;

rdfs:subPropertyOf smof:Part-Whole;
rdfs:domain smof:Entity;
rdfs:range smof:Entity.

CQ8

# Transitive whole–part reasoning
smof:isPartOf a owl:TransitiveProperty.
# Transitive containment:containedIn

smof:ContainedIn a owl:TransitiveProperty.
# Class-hierarchy reasoning

smof:Residential_Building a owl:Class;
rdfs:subClassOf smof:Building_infrastructure.

CQ9

# Fundamental attribute set
smof:Fundamental_Attributes a owl:Class.

# Typical data properties
smof:Data_Source a owl:DatatypeProperty;

rdfs:subPropertyOf smof:Fundamental_Attributes;
rdfs:domain smof:Entity;

rdfs:range xsd:string.
smof:Description a owl:DatatypeProperty;

rdfs:subPropertyOf smof:Fundamental_Attributes;
rdfs:domain smof:Entity;

rdfs:range xsd:string.
smof:Name a owl:DatatypeProperty;

rdfs:subPropertyOf smof:Fundamental_Attributes;
rdfs:domain smof:Entity;

rdfs:range xsd:string.
smof:Status a owl:DatatypeProperty;

rdfs:subPropertyOf smof:Fundamental_Attributes;
rdfs:domain smof:Entity;

rdfs:range xsd:string.
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Table A1. Cont.

Competency Question Owl Format Answers

CQ10

# Globally unique identifier
smof:hasGlobalID a owl:DatatypeProperty;

rdfs:domain smof:Entity;
rdfs:range xsd:string;

owl:functionalProperty “true”ˆˆxsd:boolean.
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