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Highlights

What are the main findings?

• A multiple geographically weighted regression (GWR) approach shows that cycling
use in cities is not uniform, and the effects of distance and precipitation on cycling vary
across different locations. While the relationship between cycling volume and distance
and precipitation remains negative, some locations are less sensitive to these effects.

• Cycling volumes in New Zealand’s largest city of Auckland show lower sensitivity to
distance compared with Wellington and Christchurch, suggesting that urban design
plays a role in cycling behavior. In addition, cycling volumes in Christchurch show
the highest sensitivity to precipitation despite having the lowest annual rainfall of the
three cities.

What is the implication of the main finding?

• Improving infrastructure to connect to central economic nodes, rather than solely
the central business district, will help mitigate the impact of distance on cycling,
encouraging the use of cycling as an alternative transport option.

• Prioritize the development of weather-resistant cycling infrastructure to remove barri-
ers related to weather by including features such as covered bike lanes, rain shelters,
and real-time weather updates to help cyclists on their trip.

Abstract

As cities grow, they increase in complexity, requiring the effective use of land resources.
Cycling is generally regarded as an alternative transport mode to support the develop-
ment of the cities of tomorrow. In response to urbanization, in many cities worldwide, a
common concern associated with investing in cycling networks is the resulting use after
such investment. This study uses a continuous longitudinal dataset of daily cycling counts
from January 2018 to June 2024 to assess bicycle volumes across three of New Zealand’s
largest cities. The results reveal that the relationship between distance and cycle count is
not uniform across space, with some areas showing a negative effect between distance and
cycling, and others showing a positive one. A global OLS model hides these complexities,
as shown in the geographically weighted regression (GWR) model. The coefficients for
distance (−0.49) and precipitation (−95.23) in the global OLS are higher, and do not reveal
the non-uniformity between cities, wheras themultiple GWR coefficients for distance range
between −0.57 and −0.47 and precipitation between −33.47 and −97.63. The results reveal
that cycling volume demonstrates lower sensitivity to changes in distance compared to

Smart Cities 2025, 8, 133 https://doi.org/10.3390/smartcities8040133

https://doi.org/10.3390/smartcities8040133
https://doi.org/10.3390/smartcities8040133
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/smartcities
https://www.mdpi.com
https://orcid.org/0000-0002-4408-8281
https://orcid.org/0000-0002-7216-4923
https://orcid.org/0000-0002-2321-8593
https://doi.org/10.3390/smartcities8040133
https://www.mdpi.com/article/10.3390/smartcities8040133?type=check_update&version=2


Smart Cities 2025, 8, 133 2 of 24

variations in weather conditions. At the city level, there are notable intercity differences
in sensitivity. The variability in the coefficients across locations suggests that, although
distance and precipitation have general effects, local factors, such as infrastructure quality,
topography, weather adaptation measures, and cultural attitudes toward cycling, play a
critical role in modulating these relationships. The findings highlight the complexity of
spatial interactions and emphasize the need for localized interventions when planning
cycling networks.

Keywords: Smart Data; utilitarian cycling; cities; geographically weighted regression;
New Zealand; Central Business District

1. Introduction
Cycling is vital in developing sustainable cities and provides a space-efficient alterna-

tive for cities as they expand in size and complexity. However, the promotion of cycling
infrastructure needs to be balanced against the limited urban space and existing land use
patterns. In addition, it provides an opportunity to solve challenges within the remit of
the city boundary, particularly for those in decision-making positions [1]. The benefits of
cycling as an alternative to motorized transport will continue to influence urban planning
practices in shaping the cities of tomorrow.

A large extant body of knowledge has assessed the factors influencing cycling behavior
within the urban environment, shaping its use within the urban environment. Factors such
as weather [2,3], distance to work [4,5], topography [6], existing cycling routes [7], personal
preference [8], population density [9], and cycling infrastructure [10] affect cycling volumes.
Some studies [8,11] show that as soon as new cycling infrastructure is developed, usage
increases over time. At this junction, the literature only recently considered the importance
of spatial variability combined with contextual factors and how these influence cycling
volumes in cities that are functionally different. For example, Çiriş et al. [12] assessed
how spatial characteristics influence cycling volumes in Istanbul, and Munira et al. [13]
considered socio-economic and land use factors in Austin. Both these studies only con-
sider a singular city, and questions remain whether spatial variability is applicable to all
cities, or whether there are spatial differences when the same variables are considered for
different cities.

This research contributes practically and methodologically to the interrelationship of
cycling from a temporal and geographical perspective at the city level. This study is unique
in that it applies one of the longest continuous longitudinal datasets, stretching between
January 2018 and June 2024, with daily cycling counts to assess bicycle volumes across
three of New Zealand’s largest cities. The longer time period captures often hidden changes
that occur in cycling preferences at the household level and accounts for the seasonal
variations throughout the year, including weather-related events that may influence cycling
behavior. Previous studies used shorter time periods, such as two years [14], or longer but
not continuous time periods, as in the case of Miranda-Moreno et al. [15], where cycling
counts were considered over four years, but only from April to November each year. In
addition, Chen et al. [16] studied the months of January, May, July, and September during
specific times of the day over five years, similarly to Lv et al. [17], who considered only
spring data over five years, and Jean-Louis et al. [18], who assessed fitness tracker data
over four years.

New Zealand’s largest cities, Auckland, Christchurch, and Wellington, have invested
significantly in providing cycling and shared infrastructure through the Urban Cycleways
Program [19]. The program was initiated in August 2014 and accounted for an investment
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worth NZD 333 million to accelerate the delivery of cycling networks in the main urban
centers [19]. In addition, the shift to and support of utilitarian cycling as an alternative
mode of transport are driven by plans to reduce emissions and reach long-term government
emission targets in the long run [20,21]. Similarly to other countries aiming to address these
challenges [22] and improve traffic congestion and public health benefits, New Zealand
cities are actively investing in cycling infrastructure to achieve these goals. Understanding
cycling behavior within an urban context is vital on various levels given that each city is
uniquely different in function, which could influence cycling use. First, it is essential to
make provisions for cycling infrastructure for its use within cities. This requires integrated
long-term planning and costing to fund the necessary infrastructure [23]. Secondly, from
an urban development perspective, bicycle use represents an alternative transport mode
to traditional motorized transport and requires infrastructure, facilities, and services to
accommodate its use. It also influences urban planning through localization economics,
evident in land use change and consumer behavior interactions [24] through higher-density
and mixed-use developments [25].

As a result, this study’s research objective is to assess whether spatial variability is
consistent amongst New Zealand’s three major cities and whether localization attributes
influence cycling behavior along the main cycling corridors that connect the high-density
central business district (CBD) and the lower-density periphery. The study tests these
spatial relationships at varying distances from the central place by allowing adaptable
spatial variance across different locations, a novelty in the literature.

With the onset of Smart Data, that is, data produced within the city’s operational
context [26], continued monitoring and analytical evaluation of data can support timely
decision making within the urban environment. Moustaka et al. [26] observe that the collec-
tion of Smart Data is utilized for real-time collection, analysis, and monitoring to facilitate
decision making. As a result, using these data for this study ensures alignment with these
principles to evaluate urban cycling trends and their implications for the urban economy.

In summary, the following section reviews the existing literature on cycling and urban
development and the factors that influence its use within the boundaries of cities. This is
followed by an explanation of the methodology and data used in this research. This leads
to the results and a discussion of the empirical analysis, and finally, the paper concludes
with a summary of the results, implications, and future research.

2. Literature
The provision of cycle infrastructure through cycling lanes and shared paths in city

development is a response to overcoming the problems of the future [12]. The wider
availability of data, particularly Smart Data, which filters out noise to create value and
veracity [27], allows valuable insights into the solution of addressing these problems
for urban planning and development. In response, a growing number of studies are
using Smart Data as a developing research area within urban studies to understand how
consumers interact within the urban environment [27–30].

A recent study by Çiriş et al. [12] provides a summary of the major spatial parame-
ters influencing cycling volumes within the built environment. These include, inter alia,
land use, points of interest, and transport-related infrastructure, such as bike lanes, bike
stops, and road length, as well as increasing participation. Additionally, the effect of
weather through precipitation and temperature is analyzed, with the results revealing
increased cycling activity during summer months and lower activity during rainy days; the
socioeconomic structure of the surrounding areas and, the topology also influence cycling
activity [12]. These parameters represent the main aspects influencing cycling volumes and
are separated into several themes. The remainder of this review of the literature discusses
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the topics relevant to this study, focusing on the influence of the urban framework, the
safety associated with transport corridors, and the topographical and urban form factors
that influence cycling volumes within cities.

2.1. Urban Planning and Development

From an urban planning perspective, the characteristics of land use have an influential
relationship with cycling use. Hou et al. [31] considered rapid urbanization within China
and evaluated the characteristics of land use of a street block and bicycle use, and found
that the spatial form of the street blocks not only influences the choice of cycling as a travel
mode but also influences land use through the increase in densities of developable land [31].
In addition, Pucher et al. [32] showed that bicycle movement and behavior can benefit
from restrictive planning policies and taxes on other motorized transportation, making
alternative transportation expensive within the urban environment. These restrictions on
urban planning result in a more compact urban framework with shorter bikeable trips [32],
leading to increasing land use within the urban framework.

Miranda-Moreno et al. [15] assessed cycling traffic patterns for various cities through-
out Canada and the United States and found that weekly and daily ridership patterns
remain relatively stable and similar to motor vehicle traffic patterns. Chen et al. [16] found
that higher volumes of cycling are evident in areas with mixed land use and a higher
percentage of workplaces, which supports much of the existing literature, in which bicycle
use is considered an alternative form of transport within densely populated cities with
restrictive urban planning designs. Lopes et al. [33] made a key finding on urban features
that potentially promote cycling use. Their results show that proximity to schools and
urban centers shows high cycling potential. Although school proximity is predominantly
applicable to the young population and their transport mode to school, the findings of the
urban center point to the use of cycling related to work trips. A culture of cycling could
likely influence it as a means to travel to work; however, Goel et al. [34] found that cities
with low cycling volumes have a higher likelihood of cycling for work trips compared
to cities with high cycling volumes, which have an equal likelihood of cycling to work
or nonwork, such as recreational and school trips. To encourage cycling through urban
planning and development, Hull and O’Holleran [35] recommend ways such as widening
cycle lanes, direct routes that connect various land uses, segregation between the road and
the cycle lane, and attractive settings, to name a few.

2.2. Transport and Safety

Cycling is recognized as a sustainable mode of transport and has attracted attention as
an alternative mode of transport, particularly within the twenty-first century [36]. However,
safety concerns often limit wider adoption [37]. As car ownership is increasingly becoming
more expensive and compact building styles offer mixed land use that reduces travel
distance, cycling safety is vital in promoting its use [35]. Safety is a major factor that
influences cycling behavior and often requires the removal of parking to create separation
between cycling and motorized transport [38]. Research by Hull and O’Holleran [35] and
Gössling et al. [38] found that safety is a key element to the use of cycling and, in particular,
the separation between stationary vehicles and cyclists to minimize the possible obstruction
of car doors opening. In addition, Pasha et al. [39] found that even the street pattern
influences the volume of cycling, with the traditional gridiron street pattern the preferred
design to encourage cycling. As cities begin to understand these risks and perceived safety
concerns from users, there is a policy response to these aids in the implementation of bicycle
paths and shared paths with pedestrians to encourage use.
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2.3. Other Factors

Beyond urban planning and transport, various other factors influence cycling volumes.
Factors such as seasonality, climate, and topographical features influence cycling volumes.
According to Nosal and Miranda-Moreno [40], the effect of precipitation’s impact on cycling
within North American cities was assessed to be negative, particularly with an increase in
precipitation intensity. The findings from Schmiedeskamp et al. [14] support the impact of
weather and, in addition, demonstrate a positive relationship between temperature, season,
and day of the week, while holidays have a negative relationship with volumes.

2.4. Methods and Data

To assess the impact of increasing bicycle use in urban settings, reliable and spatially
explicit data is required to understand cycling patterns within cities [41]. The source of
bicycle data has changed markedly from traditional methods with the advent of new
technology [42]. Mode-specific sources such as tracking apps, bike sharing systems (BSSs),
fitness tracker apps [18,43], and automated or cycling camera counters provide sources of
data [42].

The application of the data varies depending on where it is sourced from. The growing
popularity of bicycle sharing systems (BSSs) since the start of the 20th century has provided
an alternative method of assessment within cities using Smart Data [44]. For example, BSS
data has been used within a variety of contexts, with the majority of studies using a case
study approach to assess data at a city level. In most cases, they consider only a single city,
such as Barcelona, Spain [45]; Tel Aviv, Israel [41]; London, UK [46]; Zhongshan, China [47];
Lyon, France [48]; and New York, USA [49]. Other, less frequently used studies compare
cities [43,50,51].

Vogel et al. [52] examined the spatio-temporal activity patterns of bicycle use in Vienna
using BSS data. They found that the location of bike-sharing stations influences both the
return and pickup volumes. However, a spatio-temporal correlation could not be confirmed.
Levy et al. [41], assessed cycling volumes within Tel Aviv, and found that cycling volumes
differ depending on the direction of travel, suggesting that various forms of transport
might be used over the duration of a trip.

The literature highlights the importance of locality in cycling volumes. Locality
represents spatial features evident through observation but developed over time in a
specific area. These include temporal aspects related to the development of the urban
framework through urban planning and land gentrification. For example, this is evident
in the layout of the road network with or without cycle lanes that offers safety and the
proximity of amenities such as schools and urban centers that provide employment. There
is spatial heterogeneity as each location is unique; however, it is possible that locations
could share similar features, or these locations merely represent a connecting role, linking
an origin with a destination. This requires an assessment of the relationship between
cycling volumes and how it can vary in different geographic locations. Global regression
models such as Ordinary Least Squares (OLS) often fail to account for spatial heterogeneity,
overlooking the importance of spatial variations in the data. For example, Yang et al. [53]
found that GWR improves the predictive power and explains the spatial variation better
than the OLS method for a transport-oriented study.

To overcome spatial heterogeneity within urban environments, cycling studies have
recently adopted the use of the GWR approach in their analyses. It is applied in a variety of
urban settings and incorporates spatial variability in assessing cycling behavior in terms of
a broad range of aspects. GWR has been used to assess the relationship between local points
of interest and bikeshare ridership [54]; the spatial variations in cycling between urban
and suburban neighborhoods [13]; the role of urban-environment density and its effect on



Smart Cities 2025, 8, 133 6 of 24

cycling patterns [55]; and, more recently, the impact of land use and sociodemographic fac-
tors on cycling volumes [12]. The use of GWR provides an appropriate method, compared
with traditional global regression models, to assess the spatial variability associated with
cycling activity within urban settings, allowing for improved interpretation of the factors
influencing its use.

3. Data and Methodology
3.1. Data

Cycling count data was sourced from the official city websites for Wellington [56],
Christchurch [57], and Auckland [58]. Consistent data is available starting in January 2018
for Wellington, June 2016 for Christchurch, and January 2016 for Auckland. The source data
was generated through permanently installed cycling counters located along dedicated
cycle routes within each city. These counter locations are static, although new locations are
added frequently. Only locations in operation from January 2018 in the case of Wellington,
June 2016 in the case of Christchurch, and January 2016 in the case of Aukland were
included. Data from cycling counters installed after these start dates or those discontinued
after the start dates were excluded, ensuring continuously operating counters in the dataset.

The daily data was aggregated into monthly values, using the mean as the aggregation
method. Monthly data was preferred over daily data as it eliminates daily fluctuations
resulting from weather effects and it allows for a comparison of monthly trends between
years, whereas daily data requires adjustment for weekday differences between years.
Only cycling counters that capture data in both directions were included, as they represent
the majority of the counters. Missing values were addressed using the weighted mean
predictor method, which was applied to both forward and backward predictions [59].

The final dataset comprised 23 cycling counters in Wellington, resulting in 656 monthly
observations. Christchurch included 19 cycling counters with 1786 monthly observations,
while Auckland had 44 cycling counters, totaling 4268 monthly observations. Each cycle
counter was geospatially recorded using its unique latitude and longitude coordinates. The
locations of the bicycle counters for each city are presented below (Figure 1). The counters are
well established and widely used in transport monitoring, with a long history of measuring
not only cycling but also other vehicle movements. For the purposes of this study, the counters
were assumed to provide accurate, consistent, and reliable data, as there is currently no
documented evidence suggesting significant inaccuracies or measurement issues in their use.

The precipitation data used in the comparison with cycling counts was derived from
Google Earth Engine (GEE) and the TerraClimate dataset. The daily precipitation value
for each cycle counter location was extracted and adjusted to monthly averages to align
with the cycling counter data. These values reflect rainfall only and do not include other
meteorological variables such as windspeed or temperature. While rain gauge data is not
available at each specific cycle counter location, the GEE datasets provide reliable spatially
gridded climate data that approximates precipitation conditions at each site. In addition
to rainfall, we also generated corresponding windspeed and temperature data for each
location through GEE. However, these variables were not included in the current analysis,
as we treated precipitation as a proxy for broader weather conditions.

The total monthly cycling counts are presented in a time series format for each city in
Figure 2. The data reveals notable heterogeneity in absolute numbers, trends, and cycling
patterns across the three cities. This variability could be due to differences in city infrastructure,
population density, geography, climate, or cultural factors that influence cycling habits.

Basic descriptive statistics are also provided, indicating that the computed p-value ex-
ceeds the significance level ofα = 0.05. Consequently, we cannot reject the null hypothesis (H0),
suggesting that the cycling numbers follow a normal distribution. The normal distribution
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implies that the cycling numbers are generally predictable and stable, with a regular pattern
where extreme highs and lows are rare. This consistency might reflect steady cycling behavior
across different times, such as predictable peak commuting hours or seasonal patterns.

 

 

Figure 1. Location of the cycling counters per city. Source: authors’ analysis.

A central assumption (following the results of the normal distribution) of this study
is that most cycling activity is work-related, particularly commuting to and from the
workplace. This hypothesis can be further evaluated by analyzing the dataset to identify
relevant patterns. For example, cycling counts are expected to decline in June/July and
December, coinciding with school holidays and traditional business closures. The data
in Table 1 supports this assumption since both total and median cycling counts across all
cities are lower during these months compared to other periods. Further evidence for this
work-related cycling pattern is provided through the decomposition of each city’s monthly
cycling counts into time series components. This analysis, performed using the ‘stats’
package in RStudio (2024.04), reveals a marked seasonal decline in cycling activity during
June/July and December, as shown in Figure 3. These findings reinforce the assumption
that cycling activity is closely related to work-related commuting patterns.

Another key assumption of this study is the existence/presence of a central workplace,
which is essential for generating distance-based statistics for each cycling counter. For each
city, the central workplace was assumed to be located in or around its ‘main’ or ‘historic’
central business district (CBD). This assumption enables the creation of flow maps for each
city, as shown in Figure 4. These maps were developed using QGIS, with the color of each
flow line representing the distance from the cycling counter to the CBD, with dark blue
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indicating shorter distances and dark red indicating longer distances. The red (60 km),
green (25 km), and orange (15 km) circles represent the maximum buffer zones for each
city, i.e., the radius equal to the farthest cycling counter from the CBD.

Table 1. Total and median cycling count per month per city.

City Auckland Wellington Christchurch Auckland Wellington Christchurch
Month Total Count per Month Median Count per Month

January 3,289,453 1,386,538 54,581 411,115 230,768 7566
February 3,429,323 1,480,812 68,800 410,387 260,650 9927
March 3,633,386 1,478,777 67,863 456,020 246,945 9570
April 3,077,866 1,130,454 54,449 387,508 194,011 7686
May 3,071,617 1,282,520 59,179 378,119 222,048 8705
June 2,615,713 1,128,700 52,900 327,455 193,236 6518
July 2,465,492 1,164,449 48,869 312,634 205,316 6156
August 2,592,755 1,157,315 57,840 320,265 199,481 7234
September 2,736,734 1,171,510 61,250 350,228 196,059 7755
October 3,046,320 1,295,054 63,577 363,378 219,536 7833
November 3,211,119 1,334,883 68,768 384,604 223,711 8820
December 2,975,093 1,104,424 57,339 369,982 181,174 7388

Source: authors’ analysis.

 

 

Figure 2. Cont.



Smart Cities 2025, 8, 133 9 of 24

 

 

Figure 2. Cycling counter count time series and descriptive statistics per city. Source: authors’ analysis.

Additional buffer zones were established around each city’s central business district
(CBD) to classify individual cycling counters based on their proximity to the CBD or
assumed workplace. This approach aims to estimate cycling activity relative to distance
from the workplace. A cumulative effect is anticipated, where cycling counts increase
as proximity to the CBD improves, reflecting heightened cycling activity closer to the
central workplace. Table 2 presents the number of cycling counters in each buffer zone.
For example, there are two cycling counters within 1 km of the CBD in Auckland and
Wellington, while Christchurch has only one within the same range.

Table 2. Number of cycling counters in each buffer zone per city.

Km Buffer Zone (Average) Auckland Wellington Christchurch

1 2 2 1
2 12 7 3
3 2 3 0
5 4 4 4
10 5 4 10
20 11 2 1
30 3 1 0
60 5 0 0

Source: authors’ analysis.

The data indicates that some cities may have multiple central business districts (CBDs) or
workplace hubs, as evidenced by the median cycling counts across buffer zones. For example,
in Auckland, a significant concentration of cycling activity is observed between 60 km and
30 km from the presumed main CBD, suggesting the presence of a secondary business hub
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(Table 3). The cumulative increase in cycling counts toward the primary workplace begins at
30 km. In Wellington, the distribution of median cycling counts across buffer zones suggests
that the primary CBD spans an area of at least 5 km2, with a potential secondary workplace
located approximately 30 km away. Similarly, in Christchurch, the data implies the existence
of either a large or secondary workplace/CBD in proximity to the main one. In all three
cases, the cumulative effect of cycling counts provides compelling evidence supporting the
assumptions of work-related cycling and a central workplace/CBD hub within these cities.

 

 

 

Figure 3. Seasonal component of the total cycling count per city. Top image = Auckland, middle
image = Wellington, and bottom image = Christchurch. Source: authors’ analysis.
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Figure 4. Cycling counter distance flow maps. Source: authors’ analysis. Dark blue indicates shorter
distances and dark red indicates longer distances.

Table 3. Median cycling count in each buffer zone per city.

Km Buffer Zone (Average) Auckland Wellington Christchurch

1 122,028 23,720 3377
2 63,853 36,146 8183
3 148,098 45,340 0
5 58,509 95,774 2536
10 28,515 52,013 2048
20 26,880 18,539 2465
30 22,810 24,902 0
60 86,908 0 0

Source: authors’ analysis.

The identification of secondary CBDs was based on the data presented in Tables 2 and 3,
with the results visually represented in Figure 5 below. For Auckland, four decentralized
secondary CBDs were identified, while Wellington and Christchurch had one and zero
decentralized secondary CBDs, respectively. The establishment of these secondary CBDs
significantly reduced maximum travel distances. Initially, the maximum distance recorded
was 58 km. Following the addition of secondary CBDs, the maximum distance decreased
to 22 km, highlighting the positive impact of decentralization on improving accessibility
and reducing travel demands.
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Figure 5. Cycling counter distance flow maps with secondary CBDs. Source: authors’ analysis. Dark
blue indicates shorter distances and dark red indicates longer distances.

The assumption that cycling activity is work-related will be further examined using
the geographically weighted regression (GWR) method to explore spatial variations and
their influence on cycling patterns. Furthermore, the second assumption—regarding the
presence of a central workplace—will be broadened to incorporate secondary CBDs, as
suggested by the findings presented in the analysis.

Establishing an inverse relationship between distance and cycle counts will serve
as crucial evidence to support the relevance and validity of these assumptions. Such a
relationship would strengthen the argument that proximity plays a significant role in
cycling activity, particularly within the context of work-related commutes. This approach
aims to provide a more comprehensive understanding of the spatial dynamics that influence
cycling behaviors.

3.2. Methodology

The study used high-quality, reliable spatially and temporally distributed cycling
data across the three main urban centers of New Zealand. The study employed GWR,
which extends the traditional OLS regression method by introducing a more sophisticated
approach that accounts for spatial variability in relationships between independent and
dependent variables. As highlighted by Lu et al. [60], GWR is a nonstationary technique
that models spatially varying relationships, allowing these relationships to change across
different locations; for example, the mean values vary by location. This method is grounded
in Tobler’s first law of geography, which posits that “everything is related to everything
else, but near things are more related than distant things” [61].
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Páez and Wheeler [62] propose that GWR operates on the fundamental yet powerful
principle of estimating local models using subsets of observations centered around a focal
point. Since its introduction, GWR has quickly gained widespread attention in geography
and related disciplines due to its ability to explore non-stationary relationships in regression
analysis. The underlying concepts have also been adapted to derive local descriptive
statistics and extend to other models, such as Poisson regression and probit. This method
has been crucial in revealing the presence of potentially complex spatial relationships.

GWR allows for local parameters to be estimated [63] and investigates the existence
of spatial non-stationarity in the relationships between a phenomenon and its determi-
nants [64]. The general GWR equation is defined as

γ1µ = β0iµ + β1iµx1i + β2iµx2i + . . . + βmiµxmi (1)

where the dependent variable “γ” at a location (µ) is regressed on a set (m) of independent
variables (x) at the same location. “β” describes a relationship around the location (µ), and
it is specific to that location. GWR constructs a separate equation for every spatial unit (i)
of the area being studied, incorporating the dependent and explanatory variables [65].

As demonstrated in Equation (1), the fundamental concept of GWR is to investigate
how the relationship between a dependent variable (Y) and one or more independent
variables (X) may vary across different geographic locations, i.e., the spatial element.
Unlike traditional regression models that assume a uniform relationship across the entire
study area, GWR seeks to identify spatial variations. It accomplishes this by moving a
search window sequentially across the dataset, analyzing one point at a time. At each point,
the search window captures the surrounding data points within its radius. A regression
model is then applied to this localized subset, with greater weight assigned to points closer
to the focal point. Consequently, for a dataset with n observations, GWR will fit n localized
regression models, allowing the examination of spatial variability in the relationships [64].

At a practical level, GWR integrates the dependent and explanatory variables of
features located within the bandwidth of each target feature. The bandwidth determines the
extent of the spatial neighborhood considered when fitting the local regression models. The
optimal bandwidth is critical because it affects the model’s sensitivity to spatial variation.
The shape and size of this bandwidth are determined by user-defined parameters, including
the kernel type, Bandwidth method, distance, and number of neighbors. Therefore, when
using the RStudio software program, the initial step involves estimating the appropriate
bandwidth [66].

4. Results
To ensure the accuracy and robustness of the geographically weighted regression

(GWR) results, the analysis was conducted in both RStudio (using the GWmodel package)
and QGIS 3.40, allowing for cross-platform validation and consistency checks.

The mean and median cycle count and distance values for each of the 86 cycling
counters across the three cities were log-transformed to normalize skewed distributions.
For the spatial weighting, an adaptive kernel approach was employed to account for
variation in counter density across space. A Gaussian kernel function was used to assign
weights based on proximity.

An adaptive kernel type was selected for the GWR analysis to account for the uneven
spatial distribution of cycling counters across the study area. Unlike a fixed kernel, which
uses a constant bandwidth (i.e., the same distance) for all locations, an adaptive kernel
adjusts the bandwidth locally to ensure a consistent number of observations are included
in each local regression.
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By using an adaptive kernel, the model dynamically expands the bandwidth in areas
with fewer data points and contracts it in densely sampled areas, thereby improving the
local fit and reducing bias. This ensures that each regression point maintains a stable
level of statistical reliability while preserving spatial sensitivity. The adaptive kernel was
implemented with a Gaussian weighting function, where the influence of neighboring
observations decreases smoothly with increasing distance from the focal point. This method
enhances the model’s ability to detect spatial heterogeneity in the relationship between
cycling activity and the explanatory variables.

Bandwidth selection—a critical step in GWR—was conducted using cross-validation
(CV) to minimize the residual sum of squares (RSS), ensuring the model’s goodness-of-fit
while avoiding overfitting. The CV procedure evaluated a range of bandwidths to identify
the optimal value that balanced local detail with model stability.

In addition, a sensitivity analysis was performed to assess the robustness of the local
coefficients to bandwidth choice. Models were re-run using a range of nearest-neighbor
bandwidths (e.g., 50, 75, and 100 neighbors), and key coefficient estimates remained largely
consistent across scenarios. These results indicate that the model outputs are not unduly
sensitive to the specific bandwidth parameter selected. Figure 5 presents the GWR-derived
distance coefficients, based on the optimal bandwidth determined through this process.

All estimated coefficients are negative, ranging from −0.306 to −0.285 (as indicated
in the legend of Figure 6), indicating that the relationship between distance and cycling
count varies spatially. These variations in coefficients likely reflect local factors such
as the presence of secondary workplaces or central business districts (CBDs), cycling
infrastructure, and topographic differences.

Auckland Wellington Christchurch 

  

 

 

Figure 6. Estimated log distance coefficients and legend derived from distance. Source: authors’ analysis.

Estimating the distance coefficients in RStudio, based on the specified parameters,
yields the following results. The bandwidth is set to capture approximately 18 of the 86 data
points at each location. The intercept values show spatial variation, ranging from 6.4 to
9.56, with a median of 9.25. In contrast, the global intercept of a standard OLS model is
estimated at 8.69. Distance coefficients range from −0.72 to 0.47, indicating a relatively
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large variation in the relationship between distance and cycle count between locations. The
global OLS coefficient is −0.54, representing the overall relationship between distance and
cycling count if spatial variation was not considered.

The narrow range of distance coefficients derived through QGIS implies that the rela-
tionship between distance and cycling counts is spatially stable, with less variation across
the areas analyzed. On the other hand, the broader range derived through RStudio, which
includes both negative and positive coefficients, suggests significant spatial variability in
the relationship. The negative coefficients in both analyses reinforce the assumption that
an increase in distance reduces cycling activity. However, the R results suggest additional
spatial complexity that may not be captured in the QGIS analysis. This is probably due to
methodological differences.

When plotting the observed versus fitted log median cycling values (Figure 7), the
model demonstrates a quasi-global R2 of 73.44%, which means that approximately 73.44%
of the variance in the mean cycling count is explained by the model, indicating a strong
overall fit. Despite the overall strong fit, the deviations from the 45-degree line highlight
areas where the model under- or overpredicts cycling counts. The observed variation in
the model probably stems from local factors, as previously suggested.

 

Figure 7. Actual vs. fitted log-median cycling values derived from distance. Source: authors’ analysis.

The literature [14,40] suggests that weather, particularly precipitation, significantly
impacts cycling volumes. Following the distance-based assessment, the effect of precipita-
tion on cycling volumes will be examined using the GWR method. Establishing an inverse
relationship between precipitation and cycling counts would provide further evidence of
the connection between weather conditions and cycling activity.

To enhance accuracy and robustness, the GWR method will be implemented in both
RStudio and QGIS, facilitating cross-validation between platforms. For the analysis, the
mean and median cycling counts and precipitation values for each of the 86 cycling counters
across the three cities were log-transformed to normalize the data. In QGIS, the analysis
parameters, including an adaptive kernel type and a Gaussian bandwidth search method,
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generated the precipitation coefficients shown in Figure 8. The estimated log coefficients,
which are uniformly negative and range from −0.753 to −0.62 (as indicated in the legend of
Figure 8), demonstrate a spatially variable relationship between precipitation and cycling
counts. These spatial variations in coefficients likely reflect local influences, such as climatic
and topographic differences.

  

 

Figure 8. Estimated log precipitation coefficients and legend derived from precipitation. Source:
authors’ analysis.

Estimating the distance coefficients in RStudio, based on the specified parameters,
yields the following results. The bandwidth is set to capture approximately 44 of the 86 data
points at each location. The intercept values exhibit spatial variation, ranging from 24.156
to 29.815, with a median of 25.390. In contrast, the global intercept of a standard OLS model
is estimated at 29.076. The log precipitation coefficients range from −99.662 to −73.620,
indicating variation in the relationship between precipitation and cycling count across
locations. The global OLS log coefficient is −96.461, representing the overall relationship
between precipitation and cycling count if spatial variation was not considered.

The coefficients for log rain values derived from the geographically weighted re-
gression model vary significantly between QGIS and R. The range of coefficients for the
log rain variable in QGIS is between −0.753 and −0.62, while the range for the log rain
coefficients in R spans from −99.662 to −73.620, which is significantly wider than the
QGIS results. This disparity in coefficients is the result of the different modeling results
given the software and its associated parameters, which could be influenced by how each
environment handles spatial autocorrelation, bandwidth selection, or data scaling. The
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negative relationship between rainfall and cycling counts is clear, but the strength and
consistency of this relationship need further analysis.

When plotting the observed versus fitted log mean cycling values (Figure 9), the model
demonstrates a quasi-global R2 of 54.10%, which means that approximately 54.10% of the
variance in the mean cycling count is explained by the model, indicating a moderate overall
fit. The observed variation in the model likely stems from local factors such as climatic and
topographic differences, as previously suggested.

Figure 9. Actual vs. fitted log-median cycling values derived from precipitation. Source: authors’ analysis.

In this analysis, a multiple geographically weighted regression model was developed
to examine the combined influence of distance and precipitation on the response variable.
The results, summarized in Table 4 and illustrated in Figure 10, provide insights into
the spatial variability of these relationships. The model uses a bandwidth calibrated to
include approximately 44 of the 86 data points at each location, ensuring an optimal balance
between local specificity and broader spatial trends.

Table 4. Multiple geographically weighted regression coefficients (log format).

Summary of GWR Coefficient Estimates at Data Points:

Min. 1st Qu. Median 3rd Qu. Max. Global OLS

X.Intercept 16.36919 16.83108 21.15939 29.48614 29.91027 29.3990

lndistance −0.57291 −0.57218 −0.55913 −0.47291 −0.47238 −0.4999

inrlnrain −97.63208 −95.59559 −56.21138 −35.65933 −33.47125 −95.2342
Source: authors’ analysis.

The GWR coefficients—intercept (X.Intercept), log-transformed distance (lndistance),
and log-transformed precipitation (inrlnrain)—demonstrate spatial heterogeneity across
the study area. Table 4 summarizes these estimates, while global coefficients from an OLS
model are provided for comparison.
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Figure 10. Actual vs. fitted log mean cycling values derived from multiple geographically weighted
regression. Source: own analysis.

The intercept values exhibit significant spatial variation, ranging from 16.37 to 29.91,
with a median value of 21.16. This variability suggests that the baseline levels of the
response variable are not uniform across the study area, possibly influenced by unobserved
spatial factors or the interaction of distance and precipitation with local conditions. The
global intercept from the OLS model is 29.40, which falls near the upper quartile of the
GWR-derived intercepts. This highlights the added value of GWR in capturing local
deviations that are masked by global models. The coefficients for log-transformed distance
vary narrowly between −0.573 and −0.472, with a median of −0.559. These values suggest
a consistent negative relationship between distance and the response variable, with greater
distances generally associated with lower outcomes. The global OLS coefficient (−0.500)
lies near the midpoint of the GWR range, indicating that while distance effects are relatively
stable, local variability can refine the model’s predictive accuracy.

The coefficients for log-transformed precipitation (inrlnrain) demonstrate more sub-
stantial spatial variability, ranging from −97.63 to −33.47, with a median of −56.21. This
wide range indicates that precipitation’s influence on the response variable is highly local-
ized, likely reflecting differences in how precipitation interacts with regional environmental
or socioeconomic factors. The global coefficient (−95.23) is close to the lower bound of the
GWR range, suggesting that, in some areas, the effect of precipitation is less pronounced
than implied by the global model.

The spatial heterogeneity of the GWR coefficients underscores the importance of
accounting for local variations in distance and precipitation when modeling the response
variable. Unlike OLS, which assumes uniform effects across the entire study area, GWR
reveals nuanced spatial patterns that can inform targeted interventions or policies.

When plotting the observed versus fitted log median cycling values (Figure 10), the
model shows a quasi-global R2 of 60.19%, which means that approximately 60% of the
variance in the mean cycling count is explained by the model, indicating a relatively strong
overall fit. Despite the overall strong fit, the deviations from the 45-degree line highlight
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areas where the model under- or overpredicts cycling counts. The observed variation in
the model probably stems from local factors, as previously suggested.

5. Discussion
Two critical assumptions regarding cycling volumes were evaluated in three major

cities in New Zealand. The analysis first applied a single-equation GWR model to assess
localized distance and precipitation relationships with cycling volumes. Subsequently,
the analysis advanced to multiple equation models to capture the interaction of multiple
factors and enhance the robustness of the findings. This methodological approach ensured
a comprehensive understanding of the spatial variability and contextual factors influencing
the volumes of bicycles in three diverse urban environments.

5.1. Spatial Variability Mechanisms

The three New Zealand cities that were used for this analysis are individually unique—
in their urban design, transport network, location, topography, and micro-climate, to
name a few—which is broadly captured through spatial variability. These unique features
influence the use of cycling for each city, as evident from the GWR models. Ignoring
the spatial uniqueness through the application of the OLS shows that overall cycling use
decreases as distance and precipitation increase, with the log(distance) coefficient estimated
at −0.43 and the log(precipitation) coefficient estimated at −99.42. This is a general finding
and supported throughout the literature when ignoring spatial variability. The GWR results
reveal there are location-specific factors shaping cycling volumes for each of these cities,
with substantial variations in the coefficients for both distance and precipitation across
different locations. This method provides improved statistical interpretation compared to
OLS regression, highlighting the differing spatial relationships between cycling volumes
and distance to central business districts. For single-equation GWR models, the coefficient
for log(distance) ranged from −0.72 to 0.47. This indicates that, in some locations, increased
distance significantly deters cycling volumes (e.g., a 1% increase in distance leads to a 0.72%
decrease in cycling volumes), while in others, a positive relationship is observed, potentially
reflecting unique urban design, infrastructure, topography, or sociodemographic factors
that make cycling over longer distances more feasible or attractive.

For example, in areas with better rain-resistant cycling infrastructure or higher levels
of cycling culture, especially for utilitarian use, the impact of precipitation may be less
severe, a result supported in the literature [67].

In contrast, the multiple-equation GWR models showed narrower ranges for the
coefficients, reflecting the incorporation of additional contextual variables that account for
some of the variability observed in the single-equation models. Specifically, the log(distance)
coefficients in the multiple-equation models ranged from −0.45 to −0.43, indicating a
consistently negative relationship between distance and cycling volumes across locations.
The log(precipitation) coefficients ranged from −101.23 to −89.03, further confirming the
strong and uniform deterring effect of precipitation on cycling volumes. The spatial model
reveals that the relationship between distance and cycle count is not uniform across space,
with some areas showing a negative effect between distance and cycling, while others
are positive. The global OLS model hides these complexities, which are shown in the
GWR model.

5.2. Implications

Closer examination of the results reveals compelling location-specific patterns. The
coefficients for logarithmic distance and log precipitation, derived using a GWR analysis
performed in QGIS for the 86 cycling counters across three cities, are presented in Table 4.
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The findings provide valuable behavioral and contextual insights into utilitarian cycling
activity and the factors that influence the link between the periphery and areas of high
employment. The practical implications for urban cycleway planning reveal the following:

Across all cities, cycling demonstrates lower sensitivity to changes in distance com-
pared to variations in weather conditions. Adverse weather conditions, such as rainfall,
appear to have a more significant impact on cycling behavior than the physical distance of
cycling routes. This suggests that to promote cycling, cities should prioritize addressing
weather-related barriers. Strategies could include investing in weather-resistant cycling
infrastructure, such as covered bike lanes or rain shelters, and offering real-time weather
updates to help cyclists plan their trips.

At the city level, Auckland displays significantly lower distance sensitivity compared
with the other two cities. Cyclists in Auckland are more likely to continue cycling as distance
increases. This finding is unexpected, especially given that Wellington’s topography is
similar to that of Auckland with its hills, while Christchurch has a predominantly flat
terrain. This variation could be attributed to Auckland’s specific characteristics, such as its
topography, urban design, or availability of alternative transportation modes. Auckland
has well-developed secondary CBDs, whereas Christchurch and Wellington have one
central business district (CBD). This suggests that utilitarian cycling behavior is affected by
the urban framework and location of the primary and secondary central business districts.
Addressing these unique factors by improving cycling route infrastructure to secondary
employment nodes, rather than only the main node, could mitigate the impact of distance
on cycling behavior in each city. Decentralized employment nodes reduce the distance
to job opportunities, supporting the transition from motorized transport to cycling as an
alternative. Observing the GWR results for the decentralized nodes in Auckland reveals
that spatial variation in cycling volumes remains strong even when distance increases away
from the main CBD.

Within each city, there is limited variance among individual cycling counters in terms
of distance sensitivity. This consistency suggests that distance-related cycling patterns
are relatively uniform within each urban area. Consequently, city-wide approaches to
improving cycling infrastructure could yield broad benefits without the need for highly
localized interventions targeting distance-related barriers.

In contrast to the distance variable, the precipitation variable remains negative with the
use of the GWR method, highlighting and supporting existing research that demonstrates
that climate and topographical features negatively influence utilitarian cycling volumes.
With this in mind, the results from the GWR method show spatial variation, while not all
localities share the same magnitude of this negative relationship.

At the city level, the sensitivity to precipitation is higher in Christchurch (−0.75) com-
pared with Auckland (−0.63) and Wellington (−0.73), even though Christchurch has lower
annual rainfall (675 mm) compared to Auckland (1090 mm) and Wellington (1346 mm).
These intercity differences in weather sensitivity could be related to factors such as the
availability of weather-resilient infrastructure, cultural attitudes towards cycling under
adverse conditions, or the level of public awareness of the benefits of cycling regardless of
weather. Wellington and Christchurch, in contrast, show more consistent weather sensitiv-
ity, indicating a more stable relationship between precipitation and cycling behavior.

6. Conclusions
The complexity of cities increases as they grow, requiring a response within the urban

land continuum as choices are made that relate to the use of existing and new land for
economic development. Promoting cycling as an alternative mode of transport is argued
to be a key contributor to achieving sustainability goals for many cities. As a result,
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significant amounts of investment are poured into infrastructure that encourages shifting
behavior for consumers, encouraging utilitarian bicycle use in addition to recreational use.
Due to its continuous nature, the cycling data applied in this study represents one of the
longest time series panels used in the evaluation of cycling volumes in relation to distance
and precipitation.

The findings align with theoretical expectations: increased distance and higher precip-
itation levels are well-known deterrents to cycling activity. The logarithmic transformation
of the variables allows for a proportional interpretation of these effects, enhancing the
model’s ability to capture elasticities and the relative magnitude of the relationships across
different contexts. The GWR approach allows an assessment of the individual spatial rele-
vance of cycling volumes at different distances to main employment areas. This provides
improved statistical interpretation compared to OLS regression, which only provides a
global coefficient between cycling volumes and distance and hides the complexities.

The findings of the study contribute to urban science by demonstrating the interplay
between distance and cycling as a key determinant in volumes of use. It supports the
finding of Broach et al. [68] that cyclists are sensitive to distance; however, this work adds
to the finding that city size is a moderating factor, as the distance sensitivity for Wellington,
Christchurch, and Ackland was different. Secondly, cycling use is sensitive to weather
conditions [2]. In addition, micro-climate and daily weather changes possibly influence the
utilization of cycling infrastructure, with cycling numbers more responsive in Auckland
than Christchurch as a result of weather.

These findings underscore the complexity of spatial interactions and emphasize the
need for localized interventions when planning to promote cycling. The variability in coef-
ficients across locations suggests that, while distance and precipitation have general effects,
local factors such as infrastructure quality, topography, weather adaptation measures, and
cultural attitudes toward cycling play a critical role in modulating these relationships. We
acknowledge that all automated counting systems have limitations, and future work could
explore validation or calibration techniques where necessary. In addition, the impacts of
precipitation on cycling activity can vary depending on accompanying factors like wind
and temperature. Future analysis could incorporate these additional variables to better
isolate the effects of specific weather conditions on cycling behavior.
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