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Abstract: In the fast-moving world of information and communications technologies, one significant
issue in metropolitan cities is water scarcity and the need for an intelligent water distribution
system for sustainable water management. An IoT-based monitoring system can improve water
distribution system management and mitigate challenges in the distribution network networks such
as leakage, breakage, theft, overflow, dry running of pumps and so on. However, the increase in
the number of communication and sensing devices within smart cities has evoked challenges to
existing communication networks due to the increase in delay and energy consumption within the
network. The work presents different strategies for efficient delay and energy offloading in IoT-
integrated water distribution systems in smart cities. Different IoT-enabled communication network
topology diagrams are proposed, considering the different water network design parameters, land
cover patterns and wireless channels for communication. From these topologies and by considering
all the relevant communication parameters, the optimum communication network architecture to
continuously monitor a water distribution network in a metropolitan city in India is identified. As a
case study, an IoT design and analysis model is studied for a secondary metropolitan city in India.
The selected study area is in Kochi, India. Based on the site-specific model and land use and land
cover pattern, delay and energy modeling of the IoT-based water distribution system is discussed.
Algorithms for node categorisation and edge-to-fog allocation are discussed, and numerical analyses
of delay and energy models are included. An approximation of the delay and energy of the network
is calculated using these models. On the basis of these study results, and state transition diagrams,
the optimum placement of fog nodes linked with edge nodes and a cloud server could be carried
out. Also, by considering different scenarios, up to a 40% improvement in energy efficiency can be
achieved by incorporating a greater number of states in the state transition diagram. These strategies
could be utilized in implementing delay and energy-efficient IoT-enabled communication networks
for site-specific applications.

Keywords: delay minimization; energy minimization; Internet of Things (IoT); network architecture;
wireless communication

1. Introduction

Sufficient water for daily activities is vital for cities and societies. Water requirements
can be fulfilled only by the accurate delivery of adequate water at different locations within
an area from the central water distribution point [1]. This accurate delivery of water in
cities can be assured by the close surge monitoring of different parameters, such as water
flow, water pressure, water level and water quality at various locations [2].

A Water Distribution System (WDS) is a spatially organized networks that ensures
safe water access to the people/community, and consists of water resources, conveyance
systems, treatment plants, distribution networks, and consumers. Water intake to the
source and water withdrawal from the source are followed by the transmission systems,
which convey raw water from the collection unit to the treatment unit. Water treatment is
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carried out at water treatment plants (WTP). The next process consists of distributing the
treated water to consumers through pipe networks. These networks consist of pipes, valves,
appurtenances, pumps, storage structures and other supporting infrastructure. Wastewater
from consumers can be treated and recycled. The IoT-enabled smart management of water
distribution systems can ensure the delivery of water in equal quantities at all targeted
destinations, thus fulfilling the needs of all consumers within a location [3,4]. IoT-based
communication systems for cities can provide wireless connectivity to all the devices within
the network [5–7].

Even though IoT-based systems have the above capabilities, they also have significant
challenges, some of which are as follows. IoT systems deal with enormous amounts of data
in M2M and device-to-device communications [8]. The timely management of both edge,
fog, and cloud nodes without delay in communications can be challenging as network
resources are subject to various constraints [9–11]. Ensuring the interoperability of APIs
and web services, including the mini, micro, and macro communication management of
edge, fog, and cloud nodes, respectively, is a challenging task. Security concerns, such as
confidentiality/privacy, integrity, authenticity, non-repudiation, and authorization [12,13]
have to be achieved in the network for secure communications. Network reliability is
one of the critical requirements for IoT deployment with moderate-to-high-priority data.
Hence, heterogeneity in terms of data, design, and operation has to be ensured [14]. Low
latency and high accuracy are requirements in IoT-based water distribution systems for
smart cities [15,16].

IoT-enabled water distribution systems aim to provide smart communications between
different IoT modules deployed within water distribution networks in smart cities [17,18].
The sources of water networks in most cities in India are freshwater reservoirs, such as
lakes, ponds, and backwaters. Water is collected from reservoirs and distributed to the
lower levels, i.e., consumer points such as households, industries, and offices. Water
scarcity at specific locations is a significant concern in these networks due to the lack of
efficient water management [19]. IoT-enabled smart water systems can improve water
distribution management. However, to deploy an efficient system, a wireless propagation
model suitable for the location depending upon the terrain has to be found using the
land cover pattern [20]. In this work, the significant constraints that lead to inefficiency
in water management are addressed, and a solution is proposed by deploying different
sensor modules depending on the constraints. The deployed sensors are either active or
passive and are either directly or indirectly connected with water distribution entities, such
as pipes, pumps, and valves. Currently, all mobile communication networks within India
are 4G/5G, and this work utilizes these protocols for communication between the different
modules within the network. The IoT network in this work consists of three types of
nodes: edge, fog, and cloud. The sensors integrated with the communication module form
the edge devices. The unit responsible for intermediate data collection, processing, and
re-transmission are the fog devices, and the final data reception, processing, and control
take place within the cloud devices.

The IoT devices in water distribution systems are often constrained by limited power
resources, which must be addressed by energy-efficient offloading strategies that minimize
energy consumption for the deployed devices. Offloading data to cloud or edge servers
introduces network latency within the network, which can be addressed by developing
techniques to minimize delay in the network while maintaining reliable communication
depending upon the study area. A multi-layer heterogeneous IoT architecture for delay
and energy-efficient offloading strategies in an integrated water distribution system is to
be designed considering the above challenges [21]. The architecture should be designed
to optimize the use of resources while minimizing delay and energy use, thus improving
the overall efficiency of the water distribution system. Integrating IoT technologies into
water distribution systems in smart cities introduces challenges related to delay and energy
efficiency, demanding the design of a robust multi-layer heterogeneous IoT architecture.
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From the above research challenges, it is evident that the current state of water distribu-
tion systems lacks an optimized framework capable of efficiently managing heterogeneous
IoT devices, minimizing end-to-end delays, and ensuring energy-efficient offloading strate-
gies. Hence, the objective of this work is to design an IoT-based delay and energy-efficient
offloading framework for the current water distribution system by considering the research
mentioned above challenges.

To our knowledge, the design and analysis framework for any site-specific IoT-based
communication network for the optimized delay-efficient and energy-efficient offloading
strategies is not available in the literature. This modeling framework can be universally ap-
plicable for designing any site-specific communication network, which is novel in our work.

• Identified the different challenges of a WDN in a secondary metropolitan city and
designed communication network entities and topologies.

• Development of wireless propagation model for a specific study area depending
upon the land use land cover pattern, network reliability, channel, and commu-
nication parameters and assumed that external climatic factors do not affect the
communication network.

• Integrated delay and energy analysis for the designed wireless channel model for an
IoT-based communication architecture for WDN in secondary metropolitan cities.

• Node categorization and node allocation algorithm with integrated delay and energy-
efficient offloading for IoT-based communication architecture for WDN in secondary
metropolitan cities.

• Numerical analysis for the proposed algorithm incorporating the delay and energy-
efficient offloading scenarios are included.

This paper aims to frame IoT-integrated water distribution networks for smart cities.
The problems discussed in the paper focus on the strategies to overcome the delay and
energy problems in the communication network, thereby ensuring increased lifetime to
the different IoT nodes. The work discusses the data communication between different
edge devices to the cloud server. Section 2 discusses the current water distribution system
and the different design constraints in the water distribution network. Section 3 presents
the IoT-enabled distribution system. Section 4 presents the case study of IoT-Based Water
Distribution Network in the study area. Section 5 discusses the algorithms performed in
the communication architecture. Section 6 discusses the numerical analysis and discussions
about the delay and energy in the network. Finally, Section 8 concludes the work.

2. Design Considerations for an IoT-Enabled WDN

In India, even though there are adequate water resources for sustainable water distri-
bution, some places lack water, even for their primary necessities. Water from water sources
will be collected in large reservoirs, from where it is supplied through the distribution
network to consumer connections. Figure 1 shows the high-level water supply system.
WDN consists of 5 layers: consumers, consumer supply point, sub-reservoir, treatment
plant, and main water reservoir.

The water supply shortage is the lack of a proper reservoir distribution system. This
includes the aging of infrastructure, leakages, and poor water management of the network.
To mitigate these challenges, a smart IoT-based water distribution system for sustainable
water management is proposed. The IoT-based water distribution network can monitor,
control, and automate the WDN, enhancing water management for the community and the
water supply. The distribution system can be represented as a multi-layer heterogeneous
IoT architecture with multiple entities for this solution. Table 1 shows the different entities
considered in designing the network.
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Figure 1. The Generic Water Distribution Network.

Table 1. Water distribution entities.

Sl. No. Entity Parameter Functionality Issues Faced

1 Pipe

Flow, velocity,
redness

coefficient,
friction

Total water
consumption

Leakage/
breakage

2 Pressure, friction Pressure, friction

Indication of
minimum
required
pressure

Leakage/
breakage, theft

3 Valve Control Water control Control issues

4 Pump Pressure Control Pumping
pressure

Dry run or
overflow

5 Water tower or
storage structure Level Water storage Overflow or

leakage

Different design constraints must be considered for the efficient formulation of the
architecture. The different design constraints considered in deriving the multi-layer hetero-
geneous IoT architecture are as follows.

2.1. Water Supply-Consumption Imbalance

The water from the reservoirs is collected at the sub-reservoirs after treatment. Water
is distributed from the sub-reservoirs through the junctions to the consumer points. Even
though there is a proper hierarchical plan for efficient distribution, some areas need more
water for basic needs due to water leakage, illegal connections, water theft, etc. The supply-
consumption imbalance can be identified by placing flow sensors at each level. The flow
sensors are to be placed at level 1 and level 5 of the water distribution network. The
placement of flow monitoring sensors at each level with a controller is shown in Figure 2a.
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(a) (b)

(c) (d)

Figure 2. Sensors in Water Distribution Network for monitoring (a) Flow (b) Level (c) Quality
(d) Pressure.

2.2. Sub-Optimal Faults from the Operator Side

The operators currently do the water tank filling and operations like switching on
and off the pumps and valves. So, by mistake or for unavoidable reasons, sub-optimal
faults occur in the operation of tanks. Introducing a water level sensing system in the
network can avoid or control these faults. The sensor could detect the tank’s water level
and automatically turn the pump on and off upon filling the tank. The system could save
water and electricity, thus ensuring optimized energy consumption. The level sensors have
to be deployed in levels 1, 3, and 4 of the water distribution network. The placement of
level monitoring sensors at each level with a controller is shown in Figure 2b.

2.3. Water Quality Analysis

After treatment, the water from the reservoirs is stored in the tank and further dis-
tributed to the lower levels. Water quality is the primary concern to be considered, as it
could contribute to many health issues. As water is supplied from the primary source to
a community, the health effects of water intake with chemical contents can lead to long-
lasting problems for the community. So, water quality has to be analyzed before storing it
in the tanks using water quality sensors. The quality monitoring sensors must be deployed
in levels 1 and 5 of the water distribution network. The placement of quality monitoring
sensors at each level with a controller is shown in Figure 2c.

2.4. Pipe Line Water Theft Detection

Even though all the line connections and the water usage are manually monitored,
water theft is due to illegal connections. These illegal connections and water thefts can
affect the whole network. Due to this issue, some locations will need more water for their
amenities. This water theft can be detected by deploying pressure sensors at the junctions,
and the increased pressure in supply for the allotted connections will indicate water theft.
The pressure monitoring sensors must be deployed at all levels of the water distribution
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network. The placement of pressure monitoring sensors at each level with a controller is
shown in Figure 2d.

2.5. Automatic Fault Pipe Detection

One of the main reasons for the water supply-consumption imbalance is the fault in
the pipes. This fault can be detected by using crack detection sensors. Thus, maintaining
cracks in the pipes can resolve the water leakage within the pipes.

2.6. Automatic Billing System

Using the cumulative data from the flow sensor from each consumer point, the bill
details of the consumers can be calculated and updated for the users.

2.7. Optimised Water Distribution

The enhancement of all these sensors in the water distribution network will resolve
the presently sustaining issues and contribute to sustainable water distribution within
the network.

3. IoT-Enabled Water Distribution Network

In order to address the design constraints in the water distribution system, the different
sensors have to be deployed in respective locations where sensing is mandatory, and the
Smart IoT connects all these sensors-enabled networks. The network comprises sensors,
IoT gateway, cloud, analytics, and user interface. The sensors, like pressure, level, and flow
sensors, will provide analog or digital data and are connected to the IoT gateway module,
which transmits the collected data to the cloud via 4G connectivity. The data is further
analyzed and is available to the user interface.

The requirement is to transmit the pressure, flow, and level data collected by the sensor
units to the cloud. Assume there are ‘N’ random underground pipeline points deployed by
the flow and pressure sensors. The cloud or the monitoring point is located at a different
location, too far away from the sensors. These sensors will send the data to the monitoring
point with the gateway module. For the reliable and efficient transmission of the collected
data, a study of the different ways of transmission of the data from the sensor unit to the
control unit has been done. These details are described in detail in the below sections.

The lower level of the network consists of different sensor nodes like pressure moni-
toring sensor (PMS), level monitoring sensor (LMS), flow monitoring sensor (FMS) and
different quality monitoring sensors (QMS). The explanation about the various sensor
nodes is explained in detail below:

1. PMS: The pressure sensors are deployed underground beneath the pipe to continu-
ously monitor water pressure.

2. FMS: The flow sensors are also deployed underground beneath the pipe to continu-
ously monitor water pressure.

3. LMS: The level sensors are deployed in the water tanks in the main water collection
point to know the quantity of water available in the tank.

4. QMS: QMS consists of sensors for water quality monitoring. Various water quality
parameters such as pH, iron, fluoride, and calcium content in water can be monitored
by deploying the corresponding sensors in the locations or water outlets.

All these sensors are integrated with the microcontrollers, which transmit the data to
the gateway using 4G connectivity. The real-time monitoring and automation system of
the WDN mainly requires three types of nodes: edge node, fog node, and cloud. The edge
node performs the data acquisition and edge computing and forwards to the fog node,
which acts as the remote control station for this communication network. The fog node acts
as the repeater and network controller in the network. The fog node need not be in the
communication range of all the edge nodes. Hence, fog nodes have to forward the data to
the cloud. The fog nodes must be aligned on multiple levels for redundant communication.
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The high-level IoT architecture consists of different levels termed edge node, fog node,
and cloud server. The edge node comprises different sensor units integrated with the
microcontroller and communication module. The data aggregated from the sensor units is
transmitted to the higher levels called fog nodes. The application part of the hierarchy is
the cloud server. A detailed explanation of the different nodes is described in detail in the
sections below.

3.1. Edge Node

The data collected from the different sensors are computed and abstracted and are
transmitted to the next higher level - the fog node.

3.2. Fog Node

The data sent from the edge nodes after data abstraction are received by the multiple
fog nodes location-wise. The received data is abstracted and aggregated using multiple
computations and sent to the cloud server.

3.3. Cloud Server

The top layer of the IoT communication network is the cloud server. The cloud nodes
receive the data transmitted by the multiple fog nodes after fog computation. The cloud
server consists of a high-level visualization platform enabled to predict, analyze, and fault
detect the water network in the location. The cloud is enabled with behavioral modeling
and demand forecasting with the help of a machine learning framework.

This is the generic overview of the water distribution network. In order to attain an IoT
network for WDN, a proper communication channel with efficient data transmission has to
be made available between the transmitter and receiver. For that, within the study area, the
wireless propagation models have to be identified, and the strategies for reducing the delay
and energy of the network have to be identified. The practical aspects of designing an ideal
IoT-enabled communication network with minimized delay and energy considering the
location properties, including the wireless propagation model and challenges, are discussed
in the next section.

4. Case Study: Designing of IoT-Enabled Water Distribution Network in the Study Area

The design of an IoT-enabled WDN with minimized delay and energy has to be
initiated with a geographical understanding of the study area. Based on the geographical
model, the wireless communication model for the study area could be predicted, which
is highly necessary in designing the IoT network. The results of channel modeling can be
used to minimize the delay and energy of the network. A detailed explanation is given in
the below subsections.

4.1. Study Area

As per the 2011 census, Kochi Municipal Corporation caters to the needs of 677,381 citizens,
an area of 94.88 sq. km, and 74 wards. Over the years, the population growth rate has
tremendously increased due to the significant rate of urbanization [22]. Within the domains
of sustainability, a creative city is made of several defined characteristics, one of which is
the environment. This includes clean air, water, sanitation, green spaces, and recreational
areas. It is vital to upgrade and modernize the water supply system, promote rainwater
harvesting, minimize water use, reuse water as far as possible, and ensure that water
leakages are detected and repaired immediately. Kochi has already prepared a water policy.
It is the first initiative by a local self-government body in India [23]. The study area Kochi
is depicted in Figures 3 and 4.
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(a) (b)

Figure 3. Study area (a) India (b) Kochi.

Figure 4. Land cover classification of the study area.

The water supply distribution system in Kochi faces several challenges, such as
non-availability of 24/7 water supply, uneven and intermittent supply, lack of sewage
treatment plants, depleting groundwater quantity and quality, population growth, water
pollution, changing land use patterns, low multi-hazard resilience for water management,
and non-availability of climate based forecast models for water quantity and quality man-
agement [24]. Even though these are the generic WDN supply challenges, the predominant
problem with the Edakochi water distribution network is the age of the infrastructure.
Since the supply mains had been laid more than 40 years ago, and new constructions and
buildings upon the mains, the information on the larger pipes is mostly unknown. The lack
of pipe mains accessibility and data availability is due to urbanization, dense population,
and built-up areas.

A communication architecture for the IoT-enabled WDN will address all these chal-
lenges. Since in Kochi, most of the population depends on the pipeline water supply,
infrastructure is a high priority. Hence, any information on the supply network at any
point is critical. Therefore, the communication network has to be delay-tolerant. The WDN
branches were laid based on urbanization rather than optimized and expertise design and
planning. Hence, there are more interconnections and junctions in the Kochi WDN. Hence,
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the number of edge nodes is also high. Therefore, an optimized energy communication net-
work is required for the area. A delay and energy-efficient IoT-enabled water distribution
network controlling and monitoring system can rectify most of the challenges.

4.2. Site Specific Propagation Model Selection Criteria

In this section, we identify the communication model for the IoT-enabled water
distribution system for Kochi. Kochi is the suburban city of Kerala, which contains variable
land use patterns. The pattern contains vegetation and built-ups such as small and tall
buildings, metro rails, and roads. The success rate of the IoT communication system for
the WDN depends on the path loss model chosen for the area. Free-space loss, refraction,
diffraction, reflection, aperture medium coupling loss, and absorption are some causes
of path loss. Terrain contours, environment, propagation medium, the distance between
the transmitter and the receiver, and the height and location of antennas also influence
path loss.

The land cover of the study area was identified and analyzed in QGIS with the open-
source plugin Semi-Automatic Classification (SCP) [25]. It enables supervised land cover
classification of remote sensing images by downloading free image files from satellites such
as LANDSAT and Sentinel and performing prepossessing and post-processing function-
alities. Multi-spectral images are processed to produce the land cover classification. SCP
was performed on the images downloaded from LANDSAT for January 2021. Tonal and
textural variations due to altitude-dependent vegetation and contour information are used
for classification. The image was processed to classify the different features on the ground,
such as built-up, vegetation, and water. For supervised classification using the maximum
likelihood supervised classification (MLC) algorithm, training sets were selected in the
LANDSAT imagery with seven bands based on the collected sample points for respective
LULC classes. Training sites for LULC classification were selected based on knowledge
developed through extensive ground surveys and detailed field studies of the area. Figure 4
shows the LULC classification of the study area.

The built-up areas are a unique urban land use pattern covering the entire Kochi. It
consists of three different urban classes outlining different settlement geometries, densities,
and special urban zones such as trade fairs or industrial areas [26]. From the land cover
model, it is evident that the area consists of both vegetation, water, and built-up. As
Ernakulam comprises cities and villages, the propagation model should satisfy the criteria
for urban, suburban, and rural area propagation effects [27]. The types of propagation
models and their characteristics are shown in Table 2. The development of graphical
information systems, which index data of terrain, clutter, and land usage in an easily
accessible and manipulated form, giving better frequency and management [28]. The
propagation model characterizes how radio propagation affects the environment of the
receiver. The Fris transmission equation governs radio propagation between a transmitting
antenna and a receiving antenna [29],

Pr =
PtGtGrλ2

(4π)2d2L
(1)

where, Pt is transmitting power, Gt is the gain of transmitting antenna, Gr is the gain of the
receiving antenna, λ is the operating wavelength, d is the distance between transmitting
and receiving antennas and L is the transmission loss.

Free-space transmission loss (FSTL) [30,31],

FSTL =
(4πd)2

λ2 (2)

rearranging terms and putting FSTL in decibels (dB),

FSTL = 32.4 + 20 log10 fMHz + 20 log10 dkm (3)
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The FSTL is the primary line of sight propagation model, which depends only on
the distance. It is considered the best-case propagation model. It does not account for
multipath or ground clutter loss from foliage, buildings, clutter, and so on. Therefore, FSTL
will not be suitable for the study area as per the land cover classification (see Figure 4). The
next is the Hata-Okumura model, which has additional loss factors for different built-up
densities. It has three different equations for urban, suburban, and rural environments—the
model constraints on distance and frequency.

For Sub-urban environments [32]

LU = 69.55 + 26 log10 fMHz − 13.82 log10 hb − CH + (44.9 − 6.55 log10 hb) log10(d) (4)

where LU = Path loss in Urban areas (dB)
hb = Height of base station antenna (m)
hm = Height of mobile antenna (m)
f = Frequency of transmission (MHz)
CH = Antenna height correction factor (dB)
d = Distance between the base and mobile stations (km).

For small and medium-sized urban cities, the following equation can be used [33].

CH = (1.1 log10 fMHz − 0.7)hm − (1.56 log10( f )− 0.8) (5)

The study area belongs to this category. Hence, the Hata-Okumura model suits for
this application.The selected propagation path-loss model for the area is simulated in the
web application Radio Mobile Freeware by VE2DBE [34] for the Edakochi study area. The
simulator provided a propagation model for the area considering the transmission, channel,
and communication parameters, including losses and the land cover model for the area.
Figure 5 shows the link between the transmitter and receiver.

Figure 5. Propagation model.

The simulation parameter and results for the source (transmitter) and destination (re-
ceiver) are shown in Figure 6. Moreover, the coverage prediction cellular expert has several
types of advanced coverage prediction algorithms for modeling microwave point-to-point,
point-to-multipoint, fixed, and mobile radio systems based on ITU-R, ETSI, COST 231, and
IEEE standards and recommendations. The models can be calibrated using drive test data
and customized for specific terrain and land use types. The propagation models cover a dis-
tance range from several meters up to 150 km and frequencies from 20 kHz up to 100 GHz.
Cellular expert supports Line of Sight, Hata, COST 231 [35], Walfish-Ikegami [36], SUI type
models [37], and the ability to implement additional prediction models. Cellular expert has
the unique ability to use combined prediction models according to environmental conditions.
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Figure 6. Propagation model results.

Table 2. Propagation models and their parameters.

Model Name Frequency Application

HATA 2500 MHz The urban land, shrub, open land
COMSITE Up to 2000 MHz For vegetation cover

OKUMURA 150–1920 MHz An irregular terrain and environmental clutter
LEE 1–100 MHz Forest area

ICEPACK 1.5–30 MHz Through ionosphere
ASAPS 1–45 MHz Through ionosphere

4.3. Delay-Efficient Offloading in IoT-Enabled WDN

The IoT-enabled WDN has to be designed considering the propagation model within
the study area. Delay-efficient offloading within the network involves transferring the data
processing and computational tasks from the sensors to remote clouds to reduce processing
delays. These techniques could increase the efficiency of the network. Several aspects must
be considered while designing the network, such as task identification, offloading decision,
task offloading, computational offloading, and energy considerations to achieve efficient
service quality.

A successful transmission happens when the received SIR (Signal-to-interference ratio)
at the receiver node is larger than some specific SIR threshold θ. Otherwise, retransmission
will be conducted. Let η be the spectral efficiency of the wireless link of the edge device
ei and the fog device fi′ . Transmission power required from the edge node ei to fog node
fi′ through the link j is Pi 7→i′

t and the received power at the fog node i′ is Pj
r . The spectral

efficiency of the system η [38] is

η = log2

(
1 +

Pi 7→i′
t δ

Pi + B × Pn0

)
(6)
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where Pi is the interference power spectral density, Pn0 is the noise power spectral density,
and δ is the product of losses such as the Channel loss rate and the shadowing effect of the
wireless channel.

Dτ = Dprop + Dt + Dproc + Dq (7)

where Dτ is the total delay, Dprop is the propagation delay, Dt is the transmission delay,
Dproc is the processing delay, and Dq is the queuing delay.

• Dprop Equation (4) path-loss of the channel leads to the propagation delay. The path
loss between antennas increases as the path length increases [39].

• Dt the time taken to push the data bits/packets to the receiver. It depends on the
transmission channel Ci 7→i′

j to the ei to the fi′ , channel bandwidth B, bi size of the
data. The delay depends on the transmission rate TR, the message length M, and the
channel access delay dθ [40]

• Dproc is the processing delay depending on the characteristics parameters of the fi′

such as f i′
m fog memory, f i′

c f clock frequency altogether termed as fog processing

capacity f i′
pc

• Dq is negligible as the data in this water network is not higher. This will be our
enhanced future work.

Dτ = LU × α +
ci 7→i′

t
B

biTR M + f i′
pc (8)

where α is the constant delay parameter for the propagation delay.
From Equation (8), it is evident that the delay of the WDN communication network

depends on the propagation model, path loss, and various network and communication
parameters as described. A noisy propagation or path loss model can reduce the spectral
efficiency of the system, which in turn causes a delayed communication network. The
IoT-enabled WDN has to be designed considering the design constraints and propagation
models within the study area. For that, the delay has to be reduced within the network
for efficient communication. The delay minimization techniques are discussed in the
following subsection.

4.3.1. Delay Modelling

Consider a multilevel network as shown in Figure 1. After computation, the data from
the different edge nodes have to be transmitted to the cloud server. So, the data from the
various edge devices like FMS, LMS, QMS, and PMS has to be transmitted to the server
after the necessary computations. All the transmissions are continuous or event-triggered at
discrete intervals to optimize the system’s delay. Each sensor subsystem introduces a delay
in sensing, processing, and transmission. The sensor systems have to sense parameters
like pressure, water level, flow, etc., by using different types of sensors, and all of these
contribute to the sensing delay. The sensed data has to be converted to equivalent electrical
parameters after the computations, contributing to the processing delay. Transmission
delay involves the delay while transmitting the data. The delay in the network is given by

dcomp = dsens + dproc + dtrans (9)

where, dcomp is the total delay in the communication network, dsens is the sensing delay,
dproc is the processing delay and dtrans is the transmission delay of a single node.

Even after the data is transmitted, there is a delay contributed by the channel due to
the channel bandwidth and propagation effects. Thus, the delay in the channel will vary as
a function, α of bandwidth and propagation effects.

dchan = α(dband, dprop) (10)

where, dchan is the channel delay, dband is the delay due to bandwidth issues, and dprop is
the delay due to propagation effects.
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One of the reasons for the delay in the network is the presence of the number of edge
devices in the network. After processing the data, the edge devices directly send the data
to the cloud server. Let the total number of edge devices be Ne. The data transmitted from
the edge has to reach the cloud server. As the edge device transmits data after individual
processing, these come Ne times data processing and transmission. Then, the total capacity
of the cloud server can be given by the below equation:

Ccloud = Ne(dcomp + dchan) (11)

Ccloud = Ne(dsens + dproc + dtrans + α(dband, dprop)) (12)

Consider the transmission parameters of each edge node and channel parameters as
in Table 3.

Table 3. Parameters for data transmission.

Parameter Edge Node
Values

Channel
Values Fog Node Cloud Sever

Values

Operating Frequencies 2–8 GHz NA 2–8 GHz 2–8 GHz
Transmitting Power 2 mW NA 2 mW 2 mW

Antenna gain 2 dB NA 2 dB 10 dB
Height of the antenna 10 m NA 10 m 10 m

Number of available channels 11 13 13 13
Data rate 20 Mbps 20 Mbps 20 Mbps 50 Mbps

Signal Strength −27 dB NA −20 dB −15 dB
Bandwidth 5–20 MHz 5–20 MHz 5–20 MHz 100 MHz

The cloud server is also limited to a certain number of connections to ensure better
communication between the lower-level devices. The properties of the cloud server are also
described in Table 3. As the number of devices connected to the cloud servers increases,
congestion in the channel and buffer leads to data loss and network issues. When all the
edge nodes are directly sending the data after processing, as per Equation (12), there occurs
the chance of either link breakage or cloud server overload due to the reception of an
enormous amount of data. On introducing an intermediate node between the edge and
cloud, say fog node, there comes a level between the edge devices and cloud server for data
processing and transmission. The fog node could prevent link breakage and reduce the
delay in the network. So, introducing a fog node by including intermediate computations
can resolve these issues. The number of fog nodes required depends on the requirements
of edge nodes and cloud servers to achieve a congestion-free, non-lossy network. In the
considered scenario, the necessary parameters for the fog node are shown in Table 3.

Let the total number of fog devices be N f . Then, the total capacity of the cloud server
can be expressed in terms of fog node parameters using the Equations (13) and (14). So,
the intermediate fog node could reduce the computation time and ease the processing and
transmission delay, hence optimizing the complete communication network.

Ccloud = N f (dcomp + dchan) (13)

Ccloud = N f (dproc + dtrans + α(dband, dprop)) (14)

In order to optimize the network, a fixed number of edge nodes are connected to a
single fog node, which, after the computations, will transmit to the cloud server. Let the
number of edge nodes connected to a single fog node be Ne f . Then, the capacity of the
single fog node is given by Equations (15) and (16).

C f og = Ne f (dcomp + dchan) (15)

C f og = Ne f (dsens + dproc + dtrans + α(dband, dprop)) (16)
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Considering the channel is ideal when edge nodes are sending data directly to the
cloud server, having capacity Cc is dependent on the number of edge nodes Ne and the
data rate of each edge node De. Then the link will break if,

NeDe > Cc (17)

This is the limiting case when the edge nodes send data directly to the cloud server.
The link breakage can be prevented by introducing additional intermediate nodes between
the edge and cloud devices, the fog node. So, the number of fog nodes required depends
on the number of lower-level edge nodes and the data rate of the edge devices for a fixed
cloud server. The limiting case when multiple fog nodes are present can be expressed as

N f1 D f1 + N f2 D f2 + N f3 D f3 + ...... + N fn D fn > Cc (18)

where, N f1 , N f2 , ...N fn are the intermediate fog nodes, D f1 , D f2 ,...D fn are the data rates of
the intermediate nodes and Cc is the capacity of cloud server. Considering the delay within
the network, the proposed IoT-based wireless communication network and data packet
flow are discussed in the following subsection.

4.3.2. Packet Flow and Delay-Efficient Offloaded WDN Architecture

The IoT-enabled communication topology can be explained with the topology dia-
grams shown in Figure 7. The topology consists of three units—edge node, fog node, and
cloud server. The edge node consists of a sensor unit and a communication unit. It is to be
deployed at the data collection points near pipelines. There are multiple edge nodes. The
data sent by the edge nodes after edge computation is sent to the fog nodes. The fog nodes,
after fog computation, are sent to the cloud server. The cloud server is the monitoring
station or the user interface, which is located far away from the communication unit.

The architecture is integrated with all the edge systems, fog nodes, and the cloud
server in the Edakochi area. The major communication packets involved in the IoT-based
communication network are the data packets, control packets, and error packets. The data
flow diagram between the edge nodes and the cloud server is shown in Figure 8. The
data packet serves the data from the different edge units, which contribute the data from
PMS, FMS, LMS, and QMS. These sensors provide the digital signals corresponding to
the analog measured values, which are then transmitted to the fog nodes. The control
packet is for monitoring the efficiency of the packet transmission. The emergency alert
messages are sent as packets from the edge devices to the fog or cloud server as control
packets. The error packets are sent from the cloud/fog devices to the edge nodes, informing
the functional disabilities. These packets are event-triggered. Similarly, the packet flow
diagram between the edge and the cloud server by introducing an intermediate fog node is
shown in Figure 9.

The Packet Flow Diagram of the IoT-enabled communication network topology with
multiple fog nodes is shown in Figure 10. The main packets involved in the 3-layer
hierarchy network consisting of edge network, fog network, and cloud network are the
data packet, control packet, and error packet. The tabulation of the details of the different
packets as per Figure 10 is shown in Table 4.
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Figure 7. IoT-enabled Communication Network Topology.

Figure 8. IoT Communication Network Packet Flow Diagram between edge nodes and cloud server.

4.4. Energy Offloading for IoT-Enabled WDN

The path loss will increase the delay, and the delay in the network will, in turn, increase
the node operating time and increase the number of re-transmissions. The problems created
in the channels in the network will increase the packet loss, which leads to multiple re-
transmissions. In sub-urban areas, due to channel dynamics and an increase in the number
of obstructions, the transmitting power has to be increased in order to reduce delay, which
in turn increases the energy of the network. But the objective is to Offload the energy of
the network. These multiple re-transmissions will, in turn, increase the delay and energy.
From Equations (7) and (8), the delay in the network could be calculated. As energy is a
function of delay and time, from the equations of delay and by calculating the time, the
energy required for the network could be calculated.
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Figure 9. IoT Communication Network Packet Flow Diagram between edge node and cloud server
using fog node.

Figure 10. IoT Communication Network Packet Flow Diagram.
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Table 4. Details of the different packets.

Sl.
No.

Packet
Name Description Fields Inside

Packet Path Frequency Functionality Achieved

1 DPEL
Data Packet
from LMS of
edge node

Water level
value, Time

LMS Edge
node to
->Fog

1 min (after
the threshold)

To know the real time
water level of the tank. To
prevent the overflow

2 CPEL
Control Packet
from fog to LMS
of edge node

Control
messages for
sensor nodes
(Updates,
on/off/sleep)

Fog Server->
Level
Monitoring
system

Event
triggered

To ensure the proper
working of sensor nodes
Remote management.
Time synchronization.

3 EPEL
Error packet
from LMS of
edge node

Functional
disabilities of
sensor nodes

LMS Edge
node to
->Fog

Event
triggered

To detect the sensing
disability of sensors

4 DPEP
Data Packet
from PMS of
edge node

Pressure value,
Time

PMS Edge
node to
->Fog

1 min (after
the threshold)

To know the real time
water pressure in the
pipeline.

5 CPEP
Control Packet
from fog to PMS
of edge node

Control
messages for
sensor nodes
(Updates,
on/off/sleep)

Fog-> PMS Event
triggered

To ensure the proper
working of sensor nodes
Remote management.
Time synchronization.

6 EPEP
Error packet
from PMS of
edge node

Functional
disabilities of
sensor nodes

PMS Edge
node to
->Fog

Event
triggered

To detect the sensing dis-
ability of sensors

7 DPEF
Data Packet
from FMS of
edge node

Flow rate value,
Time

FMS Edge
node to
->Fog

1minutes
(after the
threshold)

To know the real time
water flow rate in the
pipeline.

8 CPEF
Control Packet
from fog to FMS
of edge node

Control
messages for
sensor nodes
(Updates,
on/off/sleep)

Fog Server->
FMS

Event
triggered

To ensure the proper
working of sensor nodes
Remote management.
Time synchronization.

9 EPEF
Error packet
from FMS of
edge node

Functional
disabilities of
sensor nodes

FMS Edge
node to
->Fog

Event
triggered

To detect the sensing
disability of sensors

10 DPEQ
Data Packet
from QMS of
edge node

Water Quality
values, Time

QMS Edge
node to
->Fog

1minutes
(after the
threshold)

To know the real time
water quality parameter
values in the pipeline.

11 CPEQ

Control Packet
from fog to
QMS of edge
node

Control
messages for
sensor nodes
(Updates,
on/off/sleep)

Fog-> QMS Event
triggered

To ensure the proper
working of sensor nodes
Remote management.
Time synchronization.

12 EPEQ
Error packet
from QMS of
edge node

Functional
disabilities of
sensor nodes

QMS Edge
node to
->Fog

Event
triggered

To detect the sensing
disability of sensors
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Table 4. Cont.

Sl.
No.

Packet
Name Description Fields Inside

Packet Path Frequency Functionality Achieved

13 DPFF
Data Packets from
Fog node Water flow

values, Time
FMS Fog node
-> Cloud

1minutes (after
the threshold)

To know the real time water
level values in the pipeline.

14 DPFP Data Packets from
Fog node

Water pressure
values, Time

PMS Fog node
to ->Cloud

1minutes (after
the threshold)

To know the real time water
level values in the pipeline.

15 DPFL
Data Packet from
Level Monitoring
system (LMS)

Water level
values, Time

LMS Fog node
to ->Cloud

1minutes (after
the threshold)

To know the real time water
level values in the pipeline.

16 DPFQ

Data Packet from
Quality
Monitoring
system (QMS)

Water Quality
values, Time

QMS Fog
node to
->Cloud

1minutes (after
the threshold)

To know the real time water
quality parameter values in
the pipeline.

17 EPFP Error packet from
Fog

Functional
disabilities of
sensor nodes

Fog to
->Cloud Event triggered To detect the sensing

disability of sensors

18 EPFF Error packet from
Fog

Functional
disabilities of
sensor nodes

Fog to
->Cloud Event triggered To detect the sensing

disability of sensors

19 EPFL Error packet from
Fog

Functional
disabilities of
sensor nodes

Fog to
->Cloud Event triggered To detect the sensing

disability of sensors

20 EPFQ Error packet from
Fog

Functional
disabilities of
sensor nodes

Fog to
->Cloud Event triggered To detect the sensing

disability of sensors

21 CPFP Control Packet
from Cloud

Control messages
for sensor nodes
(Updates,
on/off/sleep)

Cloud-> Fog Event triggered

To ensure the proper
working of sensor nodes
Remote management. Time
synchronization.

22 CPFF Control Packet
from Cloud

Control messages
for sensor nodes
(Updates,
on/off/sleep)

Cloud-> Fog Event triggered

To ensure the proper
working of sensor nodes
Remote management. Time
synchronization.

23 CPFL Control Packet
from Cloud

Control messages
for sensor nodes
(Updates,
on/off/sleep)

Cloud-> Fog Event triggered

To ensure the proper
working of sensor nodes
Remote management. Time
synchronization.

24 CPFQ Control Packet
from Cloud

Control messages
for sensor nodes
(Updates,
on/off/sleep)

Cloud-> Fog Event triggered

To ensure the proper
working of sensor nodes
Remote management. Time
synchronization.

The energy of the communication network can be defined as the power utilization as
a factor of time. When all the edge, fog, and cloud devices are powered, data transmission
happens at equal time intervals, depending on the power availability. Such operation of the
nodes will lead to a fast drain of the battery, so the energy usage has to be optimized. The
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energy usage can only be optimized by reducing the operating time without compromising
the required transmissions. Energy optimization can be achieved by optimizing the energy
consumption in the operation of the edge and fog devices by intelligently keeping the
various devices in different operational states. The edge and the fog node are set to
different states between the ON and OFF states like SLEEP/IDLE, ACTIVE, MONITOR,
COMPUTE, TRANSMIT, etc., to reduce the energy consumption of the nodes. The state
transition diagram of the complete nodes inter-connecting the edge, fog, and cloud is
shown in Figure 11. The operation of each state is defined below:

• ON : Operation state in which the IoT node is powered. It is the state with minimum
power consumption.

• OFF: Operation state in which the IoT node is not powered.
• SLEEP/IDLE: Operation state in which the IoT node is in a temporary OFF state,

even if the node is powered ON. The power consumption is the least in this state.
• SENSE: Operation state in which the IoT sensors are working - collecting the data

from different sensors.
• COMPUTE: Operation state in which the IoT computations and processing are taking

place after the sensor data collection.
• MEMORY: Operation state in which the IoT sensor collected data are processed and

stored in the memory unit.
• TRANSMIT: Operation state in which transmission is taking place. The radio is ON,

and the antennas are active.
• RECEIVE: Operation state in which reception is taking place. The radio is ON, and

the antennas are active.

Figure 11. State Transition Diagram.

The Offloading of the energy consumption of the different devices and thereby im-
proving the device lifetime by considering different use case scenarios for energy offloading
is discussed in the below sections.
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4.4.1. Operational Strategy 1

Consider the case when all the edge and fog devices are in ON state; the transmission
and reception are taking place every second. Then, let the power consumption at the state
be PON and the energy consumption be EON .

EON = PON × tSENSE (19)

ESENSE = PSENSE × tSENSE (20)

ECOMPUTE = PCOMPUTE × tCOMPUTE (21)

ETRANSMIT/RECEIVE = PTRANSMIT/RECEIVE × tTRANSMIT/RECEIVE (22)

Then, the total energy consumption of the edge and fog nodes when both are active
with the transmitting and receiving antennas always powered can be expressed as:

ETotalEdge = EON + ESENSE + ECOMPUTE + ETRANSMIT/RECEIVE (23)

ETotalFog = EON + ECOMPUTE + ETRANSMIT/RECEIVE (24)

4.4.2. Operational Strategy 2

In this case, two more states are introduced: SLEEP/IDLE and MEMORY state. Here,
the data collected by the sensors are processed and stored in the memory unit.

ESLEEP = PSLEEP × tSLEEP (25)

EMEMORY = PMEMORY × tMEMORY (26)

ETotalEdge = EON + ESLEEP + ESENSE + ECOMPUTE + EMEMORY + ETRANSMIT/RECEIVE (27)

ETotalFog = EON + ESLEEP + ECOMPUTE + EMEMORY + ETRANSMIT/RECEIVE (28)

5. Algorithms Performed in the Communication Architecture

This section explains the algorithms for the random node introduced into the commu-
nication network. Here considering two instances:

• To categorize the random node to edge, fog or miscellaneous category
• To allocate an edge node to a fog node for hierarchical communication

5.1. Node Categorizing Algorithm

The categorization of a random node to an edge node, fog node, or miscellaneous
node can depend on several factors, such as the workload and requirements, the computing
resources and capabilities available, and the network connectivity and latency of the
random node. The Node categorizing algorithm based on offloading is presented in
Algorithm 1.

Each of the candidate nodes has a unique identifier, and it has the capability to share
self-capabilities and workload. At the initialization process, the node performs the self-
discovery and computes its own properties such as processing power Ncpu, memory Nmem,
and storage capacity Nsc. The node also calculates its offloading requirement by task assess-
ment and proximity calculation. Furthermore, it compares the resources, node capabilities,
and offloading requirements with the baseline properties and identifies the category.

5.2. Node Allocation Algorithm

The allocation of an edge node to a fog node would depend on several factors, such as
the workload and requirements of the edge node, the computing resources and capabilities
of the available fog nodes, and the network connectivity and latency between the edge
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node and the candidate fog nodes. The Node categorizing algorithm based on offloading is
presented in Algorithm 2.

Algorithm 1 Node categorizing algorithm based on offloading
Input: CandidateNode CN- Random Node
Output: Categorize the random node into EdgeNode, FogNode or MiscellaneousNode

En, Fn, orMn

1: Initialization: Discovery process of capabilities and the tasks it intends to offload
2: Node capabilities Ncap: Processing power Ncpu, Memory Nmem, storage capacity Nsc
3: Network Communications Ncom: Bandwidth Nbw, Data rate Ndr, Latency Nlat
4: Energy efficiency Nee: Power source Nps, Battery life Nbat, Energy consumption Nsc
5: Location Nloc: Location of the node Nloc
6: Task Assessment Nta: Task complexity Ntacomp , Ncom
7: Proximity Nproxy: Signal Strength Nss, Network topology Nnt
8: for CN in All_Node: do
9: WHILE: Elat ≤ Flat

10: Compute: Ncap, Ncom, Nee Nloc, Nta and Nproxy
11: IF Ncap ≥ Ecap && Ncom ≥ Ecom && Nee ≥ Eee && Nloc ≥ Eloc && Nta ≥ Eta &&

Nproxy ≥ Eproxy
12: Then CN ⊂ En
13: ELSE IF Ncap ≥ Fcap && Ncom ≥ Fcom && Nee ≥ Fee && Nloc ≥ Floc && Nta ≥ Fta

&& Nproxy ≥ Fproxy
14: ELSE IF CN ⊂ Mn
15: end for
16: return Result En or Fn or Mn

Algorithm 2 Edge Node to Fog allocation algorithm
Input: EdgeNode Ei
Output: FogNode Fj

1: Initialize the network with ’N’ edge nodes E1, E2.., EN , and ’M’ fog nodes F1, F2.., FM number
of levels PL.

2: Input: CandidateEdgeNode CEN with Task (To f f )
3: Task Evaluation CEN- Resource requirement and latency sensitivity for the task.
4: Proximity Calculation: Calculate CENss , CENnt
5: Task-Fog Node Compatibility Assessment:
6: for CEN in FogNodes: do
7: To f f && CENnt && CENnt
8: Then: BestFogNode = Fj
9: return Fj

10: end for

6. Numerical Analysis and Discussions

The numeric analysis for the communication network with delay and energy Offload-
ing is discussed in the below subsections.

6.1. Delay-Efficient Offloading

The numerical validation of the delay Offloading model is as follows: Let the capacity
of the cloud server be 1 Gbps. Consider that ten edge nodes are connected to the cloud
server, each having a data rate of 100 Mbps/s. So, as per Equation (18),

NeDe = 10 × 100 MBps/s = 1000 MBps = 1 GBps (29)

So, the cloud server cannot accommodate further edge nodes as it has reached the
capacity of the server. In this case, we introduce fog nodes for further computations, which
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reduces the transmitting data content, saving the cloud capacity. Similarly, the capacity of
the cloud server using intermediate fog nodes for computations as per Equation (29) can
be validated as follows. Consider there are 15 edge nodes and three fog nodes. Five edge
nodes will send the data to each corresponding fog node, and after fog, computations are
sent to the cloud server as shown in Figure 12.

Figure 12. Diagram depicting Delay-efficient Offloading.

Let the data rate of the cloud server be 1.5 GBps, and there are three edge nodes having
data rate 500 MBps.

N f1 D f1 = 3 × 500 MBps/s = 1500 MBps = 1.5 GBps (30)

So if the limiting data rate or number of devices connected is crossed above the limit,
link breakage will occur. Hence, there arises the need to increase the capacity or optimize
the fog or edge devices in order to prevent link breakage.

Consider the example scenario shown in Figure 12. Assume that the delay gets
doubled with an increase in the number of nodes in the network. Let the delay be 260 µs,
100 µs, and 30 µs when the edge nodes are directly connected to the cloud server, edge
nodes are connected to the cloud server through a single fog node, and edge nodes are
connected to the cloud server through two fog nodes respectively. The delay within the
network is shown in Figure 13.

Figure 13. Delay Offloading within the Network demonstrated using an example scenario.

6.2. Energy-Efficient Offloading

Assume the total energy available is 10,000 mWh. Using the data of power consump-
tion and operating time for a day in different operational modes from Table 5, the energy
and lifetime of the different sensor units are calculated.

6.2.1. Strategy 1

A per Equation (24), ETotal of Edge Node for Scenario 1 = 0.5 × 24 + 4 × 18 + 2 × 18 +
12 × 18 = 336 mWh. No. of days the edge node will work in battery power s per Scenario 1
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= 10,000 /336 = 29.7 days. ETotal of Fog Node for Scenario 1 = 0.5 × 24 + 2 × 12 + 12 × 12 =
180 mWh. No. of days the fog node will work in battery power as per Scenario 1 = 10,000
/180 = 55.5 days.

Table 5. Power consumption and operating time for a day in different operational modes.

Operational
State

Scenario 1
Power

Consumption
(mW)

Edge
Operating

Time Scenario
1 (h)

Fog Operating
Time Scenario

1 (h)

Scenario 2
Power

Consumption
(mW)

Edge
Operating

Time Scenario
2 (h)

Fog Operating
Time Scenario

2 (h)

ON 0.5 24 24 0.5 24 24
SENSE 4 18 - 4 12 -

COMPUTE 2 18 12 2 10 8
TRANSMIT 12 18 12 12 4 3

SLEEP - - - 0.5 12 12
MEMORY - - - 1 8 8
RECEIVE 12 18 12 12 4 3

6.2.2. Strategy 2

A per Equation (28), ETotal of Edge Node for Scenario 2 = 0.5 × 24 + 4 × 12 + 2 × 10 + 12
× 4 + 0.5 × 12 + 1 × 8 + 12 × 4 = 190 mWh. No. of days the edge node will work in battery
power as per Scenario 2 = 10,000/190 = 52.6 days. ETotal of Fog Node for Scenario 2 = 0.5 ×
24 + 2 × 10 + 12 × 4 + 0.5 × 12 + 1 × 8 + 12 × 3 = 130 mWh. No. of days the fog node will
work in battery power as per Scenario 2 = 10,000 /130 = 76.9 days.

The energy will gradually decrease linearly with an increase in the number of days for
edge and fog nodes. The decrease for both edge and fog nodes is shown in Figures 14 and 15.
From this, it can be easily understood that the introduction of more operational states could
reduce power consumption and save more energy and lifetime.

Figure 14. Depleting energy of single edge node.

Consider the network where there are 15 edge devices connected to the cloud server
via three fog nodes.

The total energy of the network is given by the Equation (31)

ETotal = Eedge × Number o f edge devices + E f og × Number o f f og devices (31)

Calculating the total energy of the network as per scenario 1 will be 5580 mWh, and
scenario 2 will be 3240 mWh. Assuming that the network contains 18 nodes, each having a
battery capacity of 10,000 mWh. The depleting energy of the network for both scenarios is
shown in Figure 16. From the graph, we could clearly analyze the depletion in energy. The
battery capacity, as per scenario 1 could support only 33 days, whereas scenario 2, having
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more states, could provide battery backup up to 55 days. Thus the network implemented
as per scenario 2 could provide 40% more energy efficiency compared to scenario 1.

Figure 15. Depleting energy of single fog node.

Figure 16. Depleting energy of network.

7. Results and Discussions

The IoT-integrated water distribution system with optimization of delay and energy
based on the propagation model is discussed in the work. The work is initiated by identify-
ing the different research challenges within an existing WDN and has included different
sensor systems at different levels of the WDN. IoT communication entities such as edge,
fog and cloud nodes were introduced to each level to monitor the WDN. The following
procedures were introduced to implement a real-world communication model for this
site-specific IoT-integrated WDN system, which could be applicable to any site-specific
IoT-integrated communication model. The study area chosen is Kochi in India. The land
cover classification for the study area is developed using the MLC-supervised algorithm.
Three major categories have been derived from the supervised classification: water, veg-
etation, and built-up areas. Since our study area is a secondary metropolitan city, upon
analyzing the land cover classification and the propagation models, the propagation model
that fits the application is the Hata-Okumura model. The derived Hata-Okumura path loss
model for small and medium-sized urban areas as per Equation (4) is applied. This path
loss model depends upon the height of the transmitting and receiving antennas, gain of the
antennas, frequency of transmission, antenna correction factor and the distance between
the transmitting and receiving devices. The same scenario is modeled using the simulation
software ’Radio Mobile Freeware by VE2DBE’. The simulation results show successful
communication with 70% of reliability and 161.50 dB system gain enabling enough network
coverage and connectivity required for the specific application.

The delay-efficient for the IoT-enabled WDN is derived considering the wireless prop-
agation model based on the study area. The delay in the communication network depends
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on the propagation model, path loss and other network parameters. We derived the equa-
tion for the optimized number of edge, fog, and cloud nodes using operating frequencies,
transmitting power, antenna gain, antenna height, number of available channels, data rate,
signal strength and bandwidth. Furthermore, the IoT-enabled communication topology
as in Figure 7, proposes concerning the delay-efficient offloading for the study area. The
communication network serves the WDN for various challenges. Three types of communi-
cation packets are designed to address these challenges: data packets, control packets, and
error packets. The communication packet flow between different IoT entities in the area are
also defined in Figures 8–10. Various communication packets such as data packets, control
packets and error packets are defined based on the characteristics and communication
entities of the network.

In order to achieve efficient transmission, optimization of the delay and energy within
the propagation model has to be achieved. Energy-efficient offloading has been brought
in by considering the different operation states and comparing different scenarios to find
the best-suited scenario for the specific study area. Energy optimization involves the
transmission of signals starting from lower power and increasing the power untill it is
received at the cloud server. However, upon increasing the number of retransmissions,
the delay in receiving the data increases. So, optimization has to be bought in between
the ’delay and path loss’ and ’delay and energy’ for the efficient working of the complete
IoT-based system.

Considering all the parameters of the specific study area, path loss models, delay-
efficient and energy-efficient offloading, algorithms for node categorisation, and edge-
to-fog node allocation have been developed. The developed algorithms are analyzed
and numerically validated. The comparison results from the numeric models show that
the best operating scenario can be implemented. Based on these approximations, the
optimum placement of the fog nodes linked with the edge nodes and cloud server could be
achieved. The delay and energy-optimized high-level IoT-enabled communication network
architecture is shown in Figure 17. The same process discussed in this work can be utilized
in building the IoT-enabled communication network for any site.

Figure 17. IoT-enabled Communication Network Architecture.
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8. Conclusions

The paper discusses the requirement for an IoT-based water distribution system and
presents the delay and energy-efficient offloading strategies for the network in Smart Cities.
Considering the design constraints in designing the IoT-enabled WDN, the IoT-enabled
WDN is designed. As a case study of IoT-enabled WDN, the network in Kochi, Kerala,
India is considered. Within the selected study area, the land use, land cover, and wireless
propagation model within the area are analyzed. Based on the analysis results, the delay
and energy within the WDN are efficiently offloaded, considering multiple operational
scenarios. The different algorithms involved in the communication architecture, like the
node categorizing algorithm and node allocation algorithm, are explained in detail. The
numerical analysis of delay-efficient and energy-efficient offloading considering different
operational scenarios are also presented in detail. Finally, considering all the parameters,
the IoT-enabled communication network architecture for the WDN is designed.
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Abbreviations
The following abbreviations and symbols are used in this manuscript:

IoT Internet of Things
ICT Information and Communications Technology
M2M Machine-to-Machine
WDS Water Distribution System
WTP Water Treatment Pant
PMS pressure monitoring sensor
PMS Pressure monitoring Sensor
LMS Flow monitoring sensor
FMS Flow Monitoring Sensor
QMS Quality Monitoring Sensors
QGIS Quantum Geographic Information System
SCP Semi-Automatic Classification
MLC Maximum Likelihood Supervised Classification
LULC and Use Land Cover
FSTL Free-Space Transmission Loss
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Pr Received power
Pt Transmitted power
Gt Gain of transmitting antenna
Gr Gain of receiving antenna
λ wavelength
d Distance between transmitting and receiving antennas
L Transmission loss
dkm Distance on Kilometer
LU Path loss in Urban areas
hb Height of base station antenna (m)
hm Height of mobile antenna (m)
f Frequency of transmission (MHz)
CH Antenna height correction factor (dB)
η Spectral efficiency of the wireless link of the edge device
δ Product of losses in the wireless channel
ei Edge node
i′ Fog node
Pj

r Received power at the fog node
Pn0 Noise power spectral density

Pi 7→i′
t

Transmission power required from the edge node ei to fog node fi′

through the link j
Pj

r Received power at the fog node i′

θ SIR threshold
Dτ Total delay
Dprop Propagation delay
Dt Transmission delay
Dproc Processing delay
Dq Queuing delay
B Channel bandwidth
Ci 7→i′

j Transmission channel Ci 7→i′
j to the ei to the fi′

bi Size of the data
TR Transmission rate
M Message length
dθ The channel access delay
f i′
m Fog memory

f i′
c f Clock frequency

f i′
pc Fog processing capacity

α The constant delay parameter for the propagation delay
dcomp The total delay in the communication network of a single node
dsens The sensing delay of a single node
dproc The processing delay of a single node
dtrans The transmission delay of a single node
dchan The channel delay
dband the delay due to bandwidth issues
dprop the delay due to propagation effects
Ne the total number of edge devices
Ccloud The total capacity of the cloud server
N f The total number of fog devices
Cc cloud server capacity
De Data rate of each edge node
N f1

, N f2 , ...N fn The intermediate fog nodes
D f1

, D f2 ,...D fn The data rates of the intermediate nodes
ON The edge and fog devices are in ON state and the transmission and

reception are taking place every second
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PON The power consumption state
EON The energy consumption state
tSENSE Sensing time
ESENSE Sensing energy
PSENSE Sensing power
ECOMPUTE Computation energy
PCOMPUTE computation power
tCOMPUTE Computation time
ETRANSMIT/RECEIVE Transmit/Receive energy
PTRANSMIT/RECEIVE Transmit/Receive power
tTRANSMIT/RECEIVE Transmit/Receive time
ETotalEdge The total energy consumption of the edge
ETotalFog The total energy consumption of the fog
ESLEEP Sleep energy
PSLEEP Sleep power
tSLEEP Sleep time
EMEMORY Storage energy
PMEMORY Storage power
tMEMORY Storage time
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