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Abstract: This research paper proposes an innovative approach to urban waste management using
intelligent methods of classification, clustering, and forecasting. The application of this approach
allows for more efficient waste management and contributes to the sustainable development of the
urban environment. The aim of this research is to develop an intelligent method for urban waste
management, which includes clustering of waste sources, accurate forecasting of waste volumes,
and evaluation of forecast results. To achieve this goal, a real dataset with city characteristics and
waste data was used. On account of the war in Ukraine, the authors faced the problem of obtaining
open data on waste in Ukraine, so it was decided to use data from another city (Singapore). The
results show the high efficiency of the developed method. Comparison of the obtained results with
the results of the nearest similar works shows that the main feature of this study is the high accuracy
of waste-volume forecasting using the XGBoost model, which reached a level of up to 98%.

Keywords: urban waste management; sustainable environment; smart city; intelligent method;
classification; clustering; forecasting

1. Introduction

Nowadays, smart cities play a key role in sustainable development and improving
the quality of citizens’ lives. The smart management of various aspects of the urban
environment, including waste management, is an extremely important task. The growing
volume of waste, which has a negative impact on the environment and resources, requires
the development of effective and innovative approaches to waste management.

According to World Bank estimates [1], the global level of waste generation is approxi-
mately 1.2 billion tons per year, and this value is expected to increase to 2.2 billion tons per
year by the end of 2025. In addition, the war in Ukraine [2] has led to the accumulation of
significant amounts of “military” waste as well as pharmaceutical and construction waste
in the destroyed cities from destroyed infra-structure and other materials. This situation
requires significant efforts to reorganize/reorient the existing waste collection and disposal
mechanisms, which have been inefficient and unable to ensure an adequate level of waste
management during the crisis.

To ensure the optimal use of resources and reduce the negative impact on the environ-
ment, it is necessary to improve methods and approaches to waste management. Regarding
the waste management task, this investigation aimed to develop an intelligent method
of urban waste management, including waste sources clustering, accurate forecasting of
waste volumes, and evaluation of forecast results. Additionally, the possibilities of apply-
ing clustering methods to group waste sources were investigated, which allows for the
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development of more targeted resource management plans. A key part of the research is
the use of an Ensemble learning model to accurately predict waste volumes, taking into
account various variations in clusters and city attributes.

This work combines a conceptual approach with a practical analysis, using a real
dataset to validate and verify the results proposed method. The authors aimed to contribute
to improving the rational use of resources and reducing the negative waste impact on the
environment by providing specific recommendations for effective waste management in
urban environments.

Also, the proposed method can be applied in the concept of smart cities and IoT
proposed by A. Camero A. Kirimtat, S. Talari et al. [3,4], namely in the processing layer and
business layer.

Therefore, the aim of the work was to develop a method for urban waste management
using intelligent methods of classification, clustering, and forecasting. This approach
contributes to more efficient waste management and supports the sustainable development
of urban environments.

This article has the following structure. The Literature Review section presents an
analysis of research in this area, while the Materials and Methods section describes an
intelligent method for managing city waste volumes. Next, the Implementation section
provides an example of the implementation of the developed method and the results of
experimental studies. In the Discussion section, the results are discussed in comparison
to the closest analogs, and important aspects of the accuracy of the forecasts and the
approaches used are given. Finally, the Conclusions section summarizes the results of the
entire study.

2. Literature Review

The problem of urban waste management is a global challenge that manifests itself
in different ways in different regions in the world. A study in Benin City, Nigeria [5],
showed the low awareness level of residents about improper waste disposal and the
impact on greenhouse gas emissions. The authors called for the integration of regional
government services such as infrastructure, urban planning, and development into waste
management policies.

Gutberlet, J. [6] focused on the field of waste in urbanized agglomerations, especially
in the Global South. This work showed the role of informal waste pickers in waste collection
and recycling and their unrecognized contribution to reducing the carbon footprint of cities,
resource recovery, and improving environmental conditions. The study emphasized the
need to recognize and organizing those initiatives into community networks for sustain-
ability and reduce the negative impact of cities on climate and environmental change.

Raab, K.; Tolotti, G.; and Wagner, R. [7] conducted a study in Guatemala and focused
on waste management behavior in suburbs. The study examined the critical events, deci-
sions, and emotions associated with the discarding of household items by poor consumers.
It was found that religion, social norms, and interpersonal relationships significantly influ-
ence consumers’ waste management behavior, playing a key role in controlling resource
management in suburbs.

Gardiner, R. et al. showed in their work [8] the relationship between economic growth
and waste generation in the E.U. It revealed a two-way causal relationship between these
elements, emphasizing that traditional economic policies are not enough to reduce waste
production and pointing to the need to introduce environmental innovations.

Kebaili, F. K. et al. [9] studied the impact of various factors on household waste
management in Algeria. The use of GIS and principal component analysis showed that
the distribution of waste depends on the geographical and socio-demographic regional
characteristics.

Lee-Geiller, S. and Kütting, G. [10] compared the approaches used in New York and
Seoul for waste management, revealing the difference in the roles of different actors and the
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effectiveness of recycling. This study expanded the understanding of waste management
by integrating the concept of environmental stewardship.

Iqbal, A. et al. [11] reviewed the use of life cycle assessment (LCA) in MSW manage-
ment, highlighting best practices and approaches related to data quality and methodologies.
Their work focused on the integration of different waste treatment and disposal technolo-
gies and showed the importance of sensitive analysis for the reliability of results.

Also, Lu, D. and Iqbal, A. et al. [12] considered the management of medical waste
during the COVID-19 pandemic. This paper presented a model integrating LCA and data
envelopment analysis (DEA) to evaluate the effectiveness of medical waste management,
where better treatment and disposal strategies were applied.

Iqbal, A. and Zan, F. et al. [13] in their work analyzed the integrated MSW management
system of Hong Kong using LCA to assess the impact of different waste treatment scenarios
on global warming and energy consumption. As a result, the importance of integrating
different treatment methods to optimize MSW management was shown.

The above studies [5–13] point out the complexity of the problem of waste management
in cities and the variety of the approaches to solving this problem. The authors in these
papers emphasize that intelligent approaches that include data analysis, environmental
innovation, and the integration of different sectors of society can greatly improve waste
management. The use of advanced technologies such as GIS and an understanding of social
and economic interactions can lead to more efficient and sustainable solutions to urban
waste management.

Qiang Zhang and Xujuan Zhang et al. [14] proposed improving the accuracy of waste
sorting using deep learning and intelligent classification based on computer vision/mobile
terminals. Linda Andeobu [15] focused on resource recovery (reuse, recycling, and energy
recovery from waste) using artificial intelligence in different waste management sectors
(generation, sorting, collection, transport routing, treatment, disposal, and planning).

Kunsen Lin et al. [16] presented a comprehensive survey of deep learning and its
application in municipal solid waste management. In this research, the authors compared
technologies and their algorithms, such as ANN, CNN, RNN/LSTM, attention, and GAN,
in terms of collection, transportation, final disposal, recovery, and predicting the amount
and composition of waste.

Raimir Holanda and Aniello Castiglione et al. [17,18] focused in their research on
solutions based on low-power wide-area network (LPWAN) and blockchain technolo-
gies that were developed to provide the necessary data to improve the efficiency of solid
waste collection. J. Hidalgo-Crespo and Ninghui Li [19,20] proposed the use of a deep
learning methodology that can recognize typical waste during transportation on a con-
veyor belt in waste collection systems based on convolutional neural networks (CNN).
Soumyabrata Saha et al. [21] proposed an Internet of Things (IoT) architecture for a smart
waste management system during COVID-19.

Gue, I. H. V. and Lopez, N. S. [22] proposed a rule-based machine learning model to
assess the impact of city and country characteristics on waste management. The model
was built on data from 100 cities in 41 countries, and it achieved a binary classification
ac-curacy of 89–91%.

Zhang, C. [23] proposed the use of a XGBoost machine learning method to predict the
generation of municipal solid waste (MSW) in China from 2020 to 2060 under five different
shared socioeconomic pathways (SSP) scenarios. The results of the study showed that the
generation of MSW in China will double or even triple by 2060.

Kutty, A. et al. in their work [24] proposed a new two-stage machine learning model
to assess the sustainability and comfort of life in smart cities. The model combines multi-
dimensional metric-distance analysis with machine learning methods. It showed that the
gradient boosting machine is the best classification and predictive model for assessing the
sustainability, livability, and overall performance of smart cities.

Izquierdo-Horna, L. et al. [25] proposed a machine learning method to identify the
city sectors prone to solid waste accumulation. The model was built on the 10 basic
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social indicators (age, education, income, etc.) and showed that the most important social
indicators that help identify these sectors are monthly income, consumption patterns, age,
and household population density.

El Ouadi, J. et al. [26] showed that the SVM algorithm is the best demand-forecasting
algorithm among the BR, LR, ANN, RF, KNN, and CART algorithms. It also gives the best
results for data I [27] and II [28].

Table 1 shows the results of a generalized analysis of known methods and solutions
according to the following structure: authors, description of research, and the main re-
sults obtained.

Table 1. Results of a generalized analysis of known methods and solutions.

Authors Description Results

Qiang Zhang et al. [14]

Improving the accuracy of waste
sorting using deep learning

methods. A model for classifying
waste images based on deep

learning was proposed. A
self-supervision module was
added to the residual block

network model. Tested on the
TrashNet dataset.

Waste image classification
accuracy: 95.87%.

Kunsen Lin et al. [16]

An overview of the application of
deep learning methods in

municipal solid waste
management and recovery.

Different algorithms and their
applications were considered.

CNNs are widely used for
waste sorting (89.61%), the

next most popular are
ANNs (6.49%), areLSTMs

(2.56%), and GANs (1.34%).

Ninghui Li et al. [20]

Using deep learning to detect and
classify waste. CNN and

Graph-LSTM were used to
recognize waste on a belt

conveyor.

System accuracy on real
objects: 97.5%.

Gue et al. [22]

Use of interpreted machine
learning models to link city

attributes and waste management
system performance.

A rule-based machine learning
model for city attributes and

waste management performance
was developed.

Classification accuracy:
89–91%.

Zhang et al. [23]

Forecasting the volume of
municipal solid waste in China

using machine learning
(XGBoost).

Increase in municipal solid
waste in China, volume

forecast for 2060.

Kutty et al. [24]
Assessing the sustainability and
livability of cities using machine

learning methods.

A model was developed to
assess the sustainability and
suitability of different cities.

Izquierdo-Horna et al. [25]
Using machine learning to

identify areas with solid waste
accumulation in cities.

The RF algorithm detects
classes with waste

accumulation. Accuracy:
63–64%.

El Ouadi et al. [26]
Application of machine learning
to divide cities into sectors in the

context of freight logistics.

The SVM algorithm showed
the best result, about 95%.



Smart Cities 2024, 7 82

Compared to the well-known solutions and methods in the field of urban waste man-
agement presented in Table 1, this research proposes a new intelligent approach to urban
waste management. The proposed method includes waste classification and clustering,
simulation of waste-volume forecasts using different models, and evaluation. That ap-
proach contributes to optimal waste management and improvement of the environmental
situation in the city relative to the closest analogs [22,23,25,26]. The work brings scientific
novelty by providing an integrated approach to waste management based on intelligent
methods and expands knowledge about optimal waste management strategies to improve
the environment and community life.

3. Proposed Method

The method uses the classification of waste by type and clustering of waste generation
locations to predict future waste volumes. The steps of the method and its structure in the
form of an algorithm (Figure 1) and described below:

Step 1. Classification of waste [16,29,30] (Figure 1, Block 1): Using data [31] on the compo-
sition and quantity of waste, it is classified by type. Various parameters can be used
to classify waste, such as composition, quantity, size, shape, etc. However, for a more
accurate classification, machine learning methods can be used [32–35]. To classify
waste, it necessary (Figure 1, Blocks 2,3) to have sufficient data about, for example, its
composition, and other parameters that impact its classification. After model training,
it can be used to classify new kinds waste.

Step 2. Clustering (Figure 1, Block 4), according to A.E. Ezugwu and Ahmad A. [36,37], of
waste generation locations: Using data on the place and time of waste generation, the
clustering of waste generation sites is performed using clustering algorithms such as
K-Means, agglomerative clustering, DBSCAN, birch, OPTICS, and spectral clustering.

K-Means, agglomerative clustering, DBSCAN, birch, OPTICS, and spectral clustering:
These clustering algorithms group data based on the distances between their variables X1,
..., Xn.

Description of the algorithms:

• K-Means (KM) [38,39] minimizes the squares sum of distances between points (xi) and

their cluster centers
(
cj
)

: ∑
(∣∣∣∣xi– cj

∣∣∣∣2);

• Agglomerative clustering (AC) [40] uses a hierarchical approach, combining the clos-
est clusters by different distance metrics: single linkage, complete linkage, average
linkage, etc.;

• DBSCAN [40] groups points based on density (minPts) and radius (eps): if the distance
between xi and xj is less than eps, and the number of points in the neighborhood of xi
is greater than minPts, xi and xj belong to the same cluster;

• Birch [40] is based on a CF-tree that stores cluster statistics (sum, number, and squares
sum of points) for efficient clustering;

• OPTICS [41] is similar to DBSCAN but uses reachability and density order to define
clusters, which allows distinguishing between clusters with different densities;

• Spectral clustering [42] uses the eigenvectors of the Laplace matrix of the adjacency
graph to separate clusters that are related but not globally similar.

After clustering waste generation sites, the resulting clusters can be used to predict
future waste volumes.

Step 3. Forecasting (Figure 1, Block 5) modeling [43–45]:Different forecasting models, such
as ARIMA, DNN, XGBoost, are used for each cluster to predict the amount of waste
in the future.

For each waste cluster, waste-volume forecasts are modeled for a certain period in
the future.
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For this purpose, various machine learning methods can be used, such as autoregres-
sive integrated mean moving average (ARIMA), deep neural networks (DNN), gradient
boosting over decision trees (XGBoost), and others.

A separate prediction model is used for each waste cluster since each cluster may have
its own unique characteristics such as the time of waste generation and its composition
and quantity.

For example, waste generated in some area of the city at night may have a different
forecast than waste generated in the same area during the day.

Thus, ARIMA, DNN, and XGBoost are forecasting models that can be used to create
waste-volume forecasts for different clusters.

Models’ description:
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3.1. ARIMA [46] (p, d, q)

An autoregressive, integrated, moving average model that uses autoregressive com-
ponents (p), integration order (d), and moving average components (q) to predict time
series values.

The ARIMA model has the following form:

y′t = c + Φ1 × y′(t − 1) + . . . + Φp × y′(t − p)− θ1 × ε(t − 1)− . . . − θq × εt−q + εt, (1)

where y’t is the difference between the values of the time series with lag d, and εt is white
noise (model error).

3.2. DNN (Deep Neural Networks) [47]

Deep neural networks use a structure with multiple layers of neurons to approxi-
mate nonlinear functions. The networks are trained using gradient descent algorithms to
minimize the loss function.

y = f (W, X, b) = fk(Wk× f(k−1)(Wk−1×...× f1(W1∗ X+b1)
...+bk−1)

+bk)
, (2)

where f is the activation function, W is the weighting matrix, X is the input data, b is the
shift vector, and k is the layer number.

3.3. XGBoost [48]

Gradient boosting over decision trees improves prediction results by combining multi-
ple weak models (decision trees) into a single strong model using gradient descent.

The XGBoost model has the following form:

y = fm(X) = f(m−1)(X) + η × Tm(X), (3)

where fm(X) is an ensemble of decision trees at the mth step; Tm(X) is an additional decision
tree to be optimized.

The resulting forecasts of waste volume can be used to plan the optimal waste col-
lection, transportation, and disposal system for the city. Also, these forecasts can help
solve problems with excessive waste accumulation in some places, which can lead to
environmental pollution and other problems.

Step 4. Evaluation of results (Figure 1, Block 6): The forecast results for each cluster are
evaluated using metrics such as mean absolute error (MAE) and mean squared error
(MSE) to determine the accuracy of the model [49].

Evaluation of the results allows us to determine how accurately the model predicts
waste volumes and draw conclusions about its effectiveness and applicability for city
waste management.

Step 5. Using the best model (Figure 1, Block 7), we can make a forecast for future years for
each best cluster separately for each “energy saved” value. We evaluate the accuracy
(Figure 1, Blocks 8–9) of the forecasts using MSE and compare them with the results
obtained during data clustering.

This method can be used to forecast the amount of waste in the city, which will ensure
effective waste management and improve the environment. The forecasting results can be
used to develop waste collection and recycling strategies, optimize waste collection routes,
plan production, and allocate resources for waste processing.
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4. Results

In the context of this study, which focuses on waste management issues in Ukraine,
our team faced limitations in collecting primary data due to the war in the country. This
situation forced us to focus on open-source data analysis; therefore, we used information
from Singapore that was available and met our research needs.

The approach was implemented using data from the Kaggle portal [31]. This dataset
contains annual data on the amount of waste generated and recycled in Singapore from
2003 to 2020. The dataset is divided into two parts: data from 2003 to 2017 and data from
2018 to 2020. Each record includes information on the type of waste (e.g., paper, glass,
metal, and plastic), the amount of waste generated, and waste recycled. This dataset was
created to study the effectiveness of Singapore’s waste management program and calculate
the energy savings from recycling. The data were provided by the National Environment
Agency (NEA) in Singapore and Green-tumble.

If we take into account the data on waste management in Singapore for the period
from 2003 to 2020, the pa-212 parameter “Waste Generated” was the highest in 2013 at
7.85 million tons and the lowest in 213 2003, when 4.75 million tons of waste were generated.
The parameter “Waste Recycled” was also the highest in 2013 at 4.82 million tons and the
lowest in 2003, when 2.22 million tons 215 of waste were recycled. Both parameters
decreased in the following years.

The dataset contains information on different types of waste and the number of times
they appear. The most common types of waste are glass, paper/cardboard, textiles/leather,
plastic, post-harvest waste, construction waste, food, wood, recycled metal, etc. There are
also less-common types of waste, such as ceramic, rubber, ash, and other waste. Table 2
shows the current values of the recycling rate by waste type. As can be seen from the
results from Table 2, non-ferrous metal (94.3%) and ferrous metal (90.1%) have the highest
recycling rates, which indicates that these materials are effectively recycled. The lowest
percentage of recycling is in the case of plastics (8.7%), which may be due to the recycling
complexity of this material and its widespread use in various forms. The values for glass
and paper are not as high as for non-ferrous metal and ferrous metal, but they are still
relatively high at 16.7% and 49.8%, respectively.

Table 2. Percentage of waste recycling [31].

Waste_Type Recycling_Rate

Ferrous metal 0.900714
Glass 0.166667

Non-ferrous metal 0.942857
Paper 0.498333
Plastic 0.086667

The diagram (Figure 2) is a square scatter plot that displays the amount of energy
saved in kWh per metric ton for each waste type [31]. Some materials produce more energy
in kWh per metric ton, so the total amount of saved energy is scattered across the entire
area of the diagram. The chart shows that the total energy saved from paper and plastic
recycling has decreased significantly over the past few years due to government initiatives
to control waste generation. The highest value of the “total energy saved” was for paper
in 2011 and amounted to 3.13 billion tons, with total waste recycled tons = 765,000 tons,
and the lowest value was recorded in 2020 and amounted to 1.77 billion tons, with total
waste recycled tons = 432,000 tons. The highest value for the “total waste recycled” tons
for ferrous metal was achieved in 2016 and amounted to 1,351,500 tons, with a total saved
energy of 867.6 million tons, and the lowest value was recorded in 2007 and amounted
to 668,000 tons, with a total saved energy of 428.8 million tons. Data before 2007 are not
available. The lowest value of total waste recycled tons was recorded for glass.
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Next, we analyzed how much electricity was saved per year from waste recycling
in 2016–2020. The data are measured in gigawatt-hours (GWh). Energy savings from
waste recycling grew until 2018 but then declined in 2019 and 2020. The largest amount of
energy was saved in 2018, namely 5828.76 GWh, and the smallest amount was saved in
2020, namely 3598.42 GWh. These data can be useful for identifying trends in secondary
resources use and assessing the effectiveness of waste recycling programs.

The Pearson correlation value is 0.94, which indicates a strong positive linear relation-
ship between the amount of waste generated and waste recycled. This means that as the
amount of waste generated increases, the amount of waste recycled also increases.

To identify similar characteristics of different material groups in terms of waste and
energy saving, the next clustering methods used KM, AC, DBSCAN, birch, OPTICS, and
spectral clustering.

Using the KElbowVisualizer tool [38] (Figure 3), we found the most optimal value of
the cluster number for clustering data in the KM model. In this particular case, the number
of clusters that best fits the data is four. Therefore, four clusters were used for all types of
clustering to unify the results.
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A detailed analysis is given in Figure 4 of the clustering of waste by type and degree;
the recycling values show that KM, AC, and OPTICS methods have a similar distribution of
clusters, while other methods (birch, DBSCAN, and spectral clustering) differ. This result
may indicate that KM, AC, and OPTICS methods can be effective for clustering waste by
type and degree of recycling, as they give similar results. On the other side, birch, DBSCAN,
and spectral clustering may be less effective because they differ from the other methods.
However, the solution to a particular waste-clustering problem depends on many factors,
including the size and composition of the data, the clustering purpose, and the selected
parameters of the clustering methods. Therefore, more research and analysis are needed to
determine which method is best for waste clustering.

For effective waste management, it is necessary to understand which groups (clusters)
of waste can be considered together. Therefore, the waste-quantity values for each cluster
were predicted using machine learning methods such as ARIMA, DNN, and XGBoost.
Evaluation of different models for all types of clustering can help in selecting the best
model for predicting waste quantities and in better understanding which waste groups can
be combined for more efficient waste management.

Therefore, we can predict the amount of recycled waste by year and cluster class using
the ARIMA approach. To achieve this, the data were divided into training and test sets
by year (train ≤ 2015, test > 2016), then we calculated unique cluster class labels, trained
the ARIMA model on the training set for each cluster class label, and then performed
forecasting for the testing set and compared the predicted and actual values of the amount
of waste (Figure 5).

We also calculated the MAE and MSE metrics for each cluster class label (Table 3).
These results represent the MAE and MSE metrics for several clusters that were analyzed.
Each column of the table corresponds to a separate clustering method (KM, AC, DBSCAN,
birch, OPTICS, and spectral), and each row corresponds to a separate cluster. For each
cluster, the MAE and MSE values for each clustering method were determined. MAE
represents the mean of the absolute difference between the predicted and actual values,
while MSE represents the mean of the difference squared between the predicted and
actual values.
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Table 3. MAE and MSE metrics for multiple clusters using the ARIMA approach.

Cluster MAE_KM MSE_KM MAE_AC MSE_AC MAE_DBSCAN MSE_DBSCAN

0 88,026.97 1.15 × 1010 2,789,141 9.57 × 1012 880,265.1 2.07 × 1012

1 184,962.7 4.01 × 1010 88,026.97 1.15 × 1010 460,953 2.59 × 1011

2 480,856.5 3.04 × 1011 480,856.5 3.04 × 1011 1,040,098 2.17 × 1012

3 2,210,423 6.7 × 1012 208,962.4 4.98 × 1010 309,976.9 2.18 × 1011

Cluster MAE_Birch MSE_Birch MAE_OPTICS MSE_OPTICS MAE_Spectral MSE_Spectral

0 950,825.9 1.78 × 1012 825,342.1 1.46 × 1012 2,508,444 6.92 × 1012

1 382,085.7 2.52 × 1011 482,378.7 3.17 × 1011 957,179.1 1.78 × 1012

2 483,847.3 2.76 × 1011 54,969.14 4.84 × 109 485,186.4 2.77 × 1011

3 2,467,320 6.75 × 1012 228,094.7 8.71 × 1010 221,838.9 7.93 × 1010
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Thus, these metrics help to determine how accurate the predictions are for each
clustering method and each individual cluster. One of the most interesting results is that
for cluster 3, in which the values of MAE and MSE obtained using the AC algorithm are
significantly different from the corresponding values obtained using the other algorithms.
This may indicate that the AC algorithm is not optimal for this particular cluster or that the
data included in cluster 3 are not sufficiently homogeneous. It can also be noted that for
clusters 0 and 2, the highest metric values were obtained using the DBSCAN algorithm.
This may indicate that these clusters contain areas of uncertain density, which is a good
reflection of the capabilities of the DBSCAN algorithm.

Based on the results (Figure 5), the following conclusions can be drawn: The clus-
ter_KM and cluster_AC models had stable predictions in clusters 1 and 3 and 0 and 3,
respectively, which indicates their effectiveness in these clusters. In cluster 3, the clus-
ter_Birch model had unstable predictions, showing a reverse trend, which may indicate
that this model is ineffective in this cluster. The cluster_Spectral model also had unstable
forecasts with a reverse trend in cluster 0, which may indicate that this model is ineffec-
tive in this cluster. The cluster_OPTICS model also had unstable forecasts with a reverse
trend in cluster 2, which may indicate that this model is ineffective in this cluster. The
cluster_DBSCAN model did not produce normal results at all, which may indicate that it is
not able to work well with this dataset.

Next, we built a neural network to predict (Figure 6) waste production in each cluster
using normalized data from the training and test datasets. The model has three layers: two
with 32 and 16 neurons with ReLU activation [50] and one with 1 neuron. Quality metrics
were calculated (Table 4), such as MAE and MSE, and graphs of predicted and actual values
for each cluster are displayed.

Table 4. MAE and MSE metrics for multiple clusters using DNN approach.

Cluster MAE_KM MSE_KM MAE_AC MSE_AC MAE_DBSCAN MSE_DBSCAN

0 295,809.4 1.56 × 1011 6,659,999 4.5 × 1013 804,137.2 9.07 × 1011

1 7,464,499 5.58 × 1013 296,076.6 1.57 × 1011 1,038,752 4.72 × 1012

2 1,175,435 1.44 × 1012 1,175,427 1.44 × 1012 1,740,194 1.06 × 1013

3 6,659,996 4.5 × 1013 7,464,499 5.58 × 1013 437,984.4 3.31 × 1011

Cluster MAE_Birch MSE_Birch MAE_OPTICS MSE_OPTICS MAE_Spectral MSE_Spectral

0 1,648,788 8.99 × 1012 1,081,495 4.83 × 1012 376,712 2.04 × 1011

1 622,368.5 5.88 × 1011 1,624,832 9.69 × 1012 1,648,786 8.99 × 1012

2 966,808.8 4.38 × 1012 248,666.3 6.9 × 1010 966,818.8 4.38 × 1012

3 294,831.3 1.12 × 1011 706,327.3 5.71 × 1011 587,280.1 5.64 × 1011

Based on the results, we can conclude that the DNN method is not the most effective
for this task of predicting the amount of recycled waste. The values of MAE and MSE
(Table 4) for each type of clustering and each cluster are quite large, which indicates a
high level of forecasting error. Also, the diagram (Figure 6) shows that the data were not
predicted. This may be due to the fact that there were not enough data to train the model,
or the DNN method is not optimal for this task.

Next, we built the XGBoost model for each cluster of each clustering type, which made
predictions on the test dataset and calculates quality metrics (MAE and MSE) (Table 5). The
graphs show a comparison of predictions and actual waste values by year for each cluster.

Table 5 shows that the MAE and MSE values differed significantly for different cluster-
ing methods and for different clusters within each method. The model quality metrics vary
significantly between clusters and clustering types. For example, for cluster 3 of the KM
clustering type, there are very large metric values:

- MAE—708,051;
- MSE—8.83075 × 1011;
- RMSE—939,720.9474.
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This may indicate poor model quality for this cluster. At the same time, for cluster 0 of
the OPTICS clustering type, there are very low metric values:

- MAE—17,512.4694;
- MSE—1,160,221,158.

This may indicate the good fit of the model for this cluster.
In general, it can be concluded that the forecasting was accurate for most clusters, as

the graphs (Figure 7) of the predicted values quite accurately repeat the graphs of the actual
values of the recycled waste amount by year. However, some deviations were visible for
KM cluster 3 and OPTICS cluster 3, which may indicate a lack of forecasting accuracy for
these clusters. In general, the chart demonstrates the effectiveness of the XGBoost approach
in predicting the amount of recycled waste by year for different cluster types.
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The research shows that the best results in predicting the amount of recycled waste
can be obtained using the ARIMA, DNN, and XGBoost models, but their effectiveness
depends on the specific cluster and clustering method. In particular, the K-Means method
shows the best results in terms of MAE and MSE metrics for all three models on clusters
with numbers 0 and 1. The diagram of the predicted values of the amount of recycled
waste by year shows the effectiveness of the XGBoost approach in predicting for different
types of clusters, although there were some deviations for some clusters, such as KM, AC,
and OPTICS. DBSCAN, birch, and spectral clustering showed good prediction accuracy.
Therefore, for city waste management, it is recommended to use DBSCAN, birch, and
spectral clustering for clustering and XGBoost for data prediction. Therefore, forecasting
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energy savings for the next three years can be determined by the XGBoost method for
cluster types DBSCAN, birch, and spectral clustering (Figure 8).

Table 5. MAE and MSE metrics for multiple clusters using the XGBoost approach.

Cluster MAE_KM MSE_KM MAE_AC MSE_AC MAE_DBSCAN MSE_DBSCAN

0 7791.988 2.58 × 108 315,950.5 1.51 × 1011 217,556.1 1.46 × 1011

1 31,274.75 1.02 × 109 7791.988 2.58 × 108 29,536.66 3.69 × 109

2 31,683.96 2.04 × 109 31,683.96 2.04 × 109 43,658.28 6.86 × 109

3 708,051 8.83 × 1011 31,274.63 1.02 × 109 21,710.09 3.18 × 109

Cluster MAE_Birch MSE_Birch MAE_OPTICS MSE_OPTICS MAE_Spectral MSE_Spectral

0 36,854.49 5.21 × 109 17,512.47 1.16 × 109 60,089.5 1.04 × 1010

1 36,116.84 5.15 × 109 206,123.7 2.24 × 1011 42,911.9 5.95 × 109

2 28,470.26 3.51 × 109 29,513.58 1.37 × 109 28,951.16 3.53 × 109

3 46,568.81 4.49 × 109 258,016.7 1.53 × 1011 13,827.25 4.79 × 108
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From the MSE results for predicting energy-saved values for each of the three types
of clusters (DBSCAN, birch, and spectral clustering), we can conclude that the prediction
for the “crude oil saved” column has a significantly lower error than the “energy saved”
column. In addition, clustering with the birch algorithm allows for more accurate forecasts
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for both columns compared to the other algorithms. Overall, the results show that the
XGBoost method is effective in predicting energy-savings values for the next three years,
and clustering can help improve the quality of such predictions.

The obtained results can be used for effective waste management in cities. In partic-
ular, the predicted values of the amount of waste recycled can be used to plan resource
requirements such as the employees and vehicles needed for waste processing.

The results of clustering can also be used to allocate resources to different areas of the
city. For example, areas that require more resources for waste processing can be prioritized
for resource allocation. In general, the results can be used to optimize waste recycling
processes, which will help improve the environmental situation in the city and reduce
waste management costs.

Table 6 compares the results of the current research with the closest analogs in terms
of the forecast accuracy and approaches used.

Table 6. Comparison of the study with analogs.

Authors Forecast Accuracy Approaches Used

Gue et al. [22] 89–91% A machine learning model based
on rough sets

Zhang et al. [23] ~95% (XGBoost) Machine learning methods and
common socioeconomic paths

Izquierdo-Horna et al. [25] 63–64% (RF) Machine learning approach based
on social metrics

El Ouadi et al. [26–28] ~95% (SVM)
Machine learning for city

separation in the context of
logistics

Proposed method ~98% (XGBoost)
Machine learning methods:

clustering, XGBoost, and
forecasting methods

In addition, we applied an integrated approach to waste clustering based on DBSCAN,
birch, and spectral clustering methods to improve the quality of forecasts and the efficiency
of waste management. The proposed approach demonstrates the use of a variety of
forecasting and clustering methods to achieve high accuracy in urban waste management
and thus makes an innovative contribution to this field of research.

Therefore, it is important to emphasize that the main difference between the proposed
research and previous works, such as that of El Ouadi [26], Asri, H. [39], and Tokuda,
E.K. [40], is the use of the XGBoost model for waste-volume forecasting. This model
provides high forecast accuracy, reaching up to 98%. In addition, we applied various
clustering methods, such as DBSCAN, birch, and spectral clustering, to improve the quality
of the forecasts and waste management efficiency. This approach demonstrates the value
of using a variety of methods in achieving high accuracy in urban waste management,
making an innovative contribution to this research area.

5. Discussion

Considering ref. [11], life cycle assessments of solid waste management from different
countries emphasizes the importance of data quality and sensitivity analysis for the reliabil-
ity of results. The proposed method in this work uses advanced clustering and prediction
techniques, but given the importance of the data, it may face similar limitations in accuracy
if the data are not sufficiently accurate or complete.

Also, ref. [12] about medical waste management during the COVID-19 pandemic
points to the need to integrate different waste treatment technologies. The proposed
method also includes the integration of different methods, but it focuses on municipal
waste, which may require different strategies in different crisis situations.
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Hong Kong’s integrated municipal solid waste management [13] demonstrates the
importance of integrating technologies and life cycle analysis. This reinforces the impor-
tance of this study for integrating technologies and using LCA to achieve effective waste
management.

In addition to that, comparing the results of the proposed work with similar works [26,32,39,40]
shows that the authors’ proposed approach to urban waste management has proven to be
competitive in terms of forecast accuracy. Using the XGBoost model, we achieved high
accuracy in predicting the amount of recycled waste compared to the other models’ results.
The clustering method, in particular the birch algorithm, made a significant contribution to
improving the accuracy of the results, which allowed us to reduce the forecasting errors for
different types of clusters.

It is worth noting that the results of this research also demonstrate progress in the use of
machine learning for waste management. Similar to works [32,39,40], we used various city
attributes and socioeconomic indicators to improve the accuracy of the forecast. However,
those authors’ approach additionally included waste classification, which contributed to a
more complex analysis and improved management efficiency.

Compared to the work [32], where a machine learning method was used to identify
city sectors with waste accumulation, our approach also proved to be more accurate, which
proves its ability to classify and predict waste volumes in more detail.

Overall, this research proved to be innovative due to its comprehensive approach
to urban waste management, including waste classification, clustering methods, and the
XGBoost model for forecasting. The research results have the potential to improve waste
management efficiency and contribute to the improvement of the environmental situation
in cities.

6. Conclusions

An intelligent method of urban waste management was developed, including waste
classification, clustering of waste sources, waste-volume modeling, forecasting using vari-
ous models, and the evaluation of the forecast results.

This research analyzed a dataset from the Kaggle portal, which contains annual data
on the amount of waste generated and recycled in Singapore from 2003 to 2020. Using
various clustering and forecasting methods, results were obtained that can be used for
effective waste management in the city.

The best results in predicting the amount of recycled waste were obtained using the
XGBoost model. The XGBoost model performed well in predicting the amount of recycled
waste for different clustering methods such as DBSCAN, birch, and spectral clustering:

- Cluster 0: best MAE 36,854.49 (birch);
- Cluster 1: best MAE 7791.988 (agglomerative clustering);
- Cluster 2: best MAE 28,470.26 (birch);
- Cluster 3: best MAE 13,827.25 (spectral clustering).

Based on the MSE results for predicting energy saved and crude oil saved for the
three types of clusters (DBSCAN, birch, and spectral clustering), we can conclude that the
prediction for the “crude oil saved” column has a smaller error. Clustering using the birch
algorithm allows for more accurate forecasts for both columns. The results show that the
XGBoost method can be effective in predicting energy-savings values for the next three
years, and clustering can help improve the quality of such predictions.

The achieved results will be useful for waste management in Ukraine in the post-war
period. The proposed research has several limitations that should be recognized. One of
the main limitations is the difficulty in collecting data due to the ongoing war in Ukraine.
This situation forced us to use data from open sources, particularly from Singapore, to
conduct the study. While this alternative provided valuable insights, it may not fully reflect
the unique challenges and dynamics of waste management in different urban contexts,
especially those affected by war. Therefore, the conclusions and generalizations drawn
in this study should be considered with these specific contextual limitations in mind.
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The integration of several advanced methods, such as XGBoost and different clustering
techniques, while contributing to accuracy, also increases the complexity of the model. This
complexity can pose challenges in terms of computational resources and require specialized
expertise for effective implementation and maintenance.

In general, the use of intelligent management methods for urban waste is in line with
the smart city concept and the Internet of Things, and can significantly improve the quality
of residents’ lives, the sustainability of urban evolution, and environmental sustainability
in a global context.

Future research could focus on improving forecasting models, investigating the impact
of various factors on waste recycling efficiency, and developing new approaches to waste
management. In general, the obtained results can be used to optimize waste recycling
processes, which will help improve the environmental situation in the city and reduce
waste management costs.
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