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Abstract: This paper investigates the ability of autonomous driving systems to predict outcomes by
considering human factors like gender, age, and driving experience, particularly in the context of
safety-critical events. The primary objective is to equip autonomous vehicles with the capacity to
make plausible deductions, handle conflicting data, and adjust their responses in real-time during
safety-critical situations. A foundational dataset, which encompasses various driving scenarios
such as lane changes, merging, and navigating complex intersections, is employed to enable vehi-
cles to exhibit appropriate behavior and make sound decisions in critical safety events. The deep
learning model incorporates personalized cognitive agents for each driver, considering their distinct
preferences, characteristics, and requirements. This personalized approach aims to enhance the
safety and efficiency of autonomous driving, contributing to the ongoing development of intelligent
transportation systems. The efforts made contribute to advancements in safety, efficiency, and overall
performance within autonomous driving systems. To describe the causal relationship between exter-
nal factors like weather conditions and human factors, and safety-critical driver behaviors, various
data mining techniques can be applied. One commonly used method is regression analysis. Addi-
tionally, correlation analysis is employed to reveal relationships between different factors, helping to
identify the strength and direction of their impact on safety-critical driver behavior.

Keywords: car following; decision making; driving behavior; naturalistic driving studies; safety-critical
events; cognitive vehicles

1. Introduction

Despite the increasing prevalence of vehicle automation, the persistently high number
of car crashes remains a concern. Safety-critical events in human-driven scenarios have
become more intricate and partially uncontrollable due to unforeseen circumstances. In-
vestigating human driving behavior is imperative to establish traffic baselines for mixed
traffic, encompassing traditional, automated, and autonomous vehicles (AVs). Various
factors, such as weather conditions affecting visibility in longitudinal car-following (CF)
behavior [1,2], influence human driving behavior [3].

Car-following behavior, illustrating how a following vehicle responds to the lead
vehicle in the same lane, is a crucial aspect. Existing car-following models often make
assumptions about homogeneous drivers, neglecting significant heterogeneity in driving
experience, gender, character, emotions, and sociological, psychological, and physiological
traits. Failing to account for this heterogeneity hampers a comprehensive understanding of
car-following behavior, limiting model accuracy and applicability. In the development of
more realistic car-following models for mixed traffic, acknowledging the diversity among
drivers is crucial. By including individual variations such as risk-taking tendencies, re-
action times, decision-making processes, and driving styles, the modeling of real-world
driving complexities can be improved. Simplifying drivers into a few categories overlooks
the richness and variety of their characteristics, prompting the need for a more compre-
hensive approach to capture nuances within different driver profiles. To address these
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limitations, models should effectively incorporate both external heterogeneity among dif-
ferent drivers and internal heterogeneity within a single driver. The proposed model relies
on personalized cognitive agents, assigning each driver a unique cognitive agent capable
of representing their profile by accessing local information and learning characteristics.
These agents process individual user preferences, characteristics, and needs, with the goal
of providing tailored and customized experiences in operating a cognitive vehicle. This
approach considers the distinct requirements and individual preferences of autonomous
vehicle occupants while gaining a better understanding of the driving behavior of sur-
rounding vehicles in mixed traffic scenarios [3]. The subsequent sections of this paper are
organized as follows: Section 2 provides an overview of related research; Section 3 details
the methodology; and Sections 4 and 5 present a performance evaluation and the study’s
conclusions.

2. Related Research

The literature encompasses various driving models [3,4], with many attempting to
simulate a real driver’s road tracking performance by making assumptions about inputs
and outputs. These models aim to capture the decision-making processes and behaviors of
drivers, including responses to changes in the road and traffic induced by external factors.
A cognitive vehicle, equipped with onboard sensors to observe the driving behavior of
surrounding vehicles [5], plays a role in recognizing driving maneuvers. It is acknowl-
edged that driving behavior models involve a level of uncertainty due to their reliance
on assumptions and approximations of real-world driver behavior. Additionally, they are
influenced by the inherent uncertainties associated with onboard sensor measurements
and subsequent feature extraction that characterize the surrounding objects [6]. This un-
certainty can significantly impact the performance of control systems designed based on
these models. A viable approach to tackle this issue is the development of models capable
of predicting and managing uncertainties inherent in driving scenarios.

This includes modeling the driving behaviors of human drivers and automated or
autonomous vehicles, and external and other factors that can affect driving performance.
Driving behaviors are the main cause of road accidents and one of the main sources of
insurance claims [7]. Wang and Lu [8] found that the differences in driving behavior
between males and females have remained unchanged or have increased in some aspects.
The differences involved traffic accidents and offenses, with driving times, attitudes, educa-
tion, and other background factors controlled for. Furthermore, all drivers are involved
in traffic accidents and fatalities; however, younger drivers have the highest rate of acci-
dents. Hiang and Ming [9] investigated the relationship of age and gender to speeding.
Younger drivers exhibit the highest accident rates, as highlighted in [10]; they are notably
over-represented in traffic accidents and fatalities and are more prone than older drivers
to be at fault in the accidents that involve them. Furthermore, it is well-documented that
men and women tend to display distinct driving behaviors. The literature consistently evi-
dences higher crash rates among male drivers than among their female counterparts [11,12].
These disparities in driving patterns and accident rates among age and gender groups
underscore the importance of tailoring safety measures and interventions to enhance road
safety for all. The objective of this study was to explore the relationships between age
and gender and speeding behavior. The findings revealed that, on average, young and
male drivers tended to maintain higher speeds than their older and female counterparts
before entering a roundabout and upon exiting it. This insight sheds light on the distinct
driving patterns associated with different age and gender groups, underscoring the need
for targeted interventions to address speeding behaviors and enhance road safety. In [13],
the primary objective was to examine the factors influencing aggressive driving behavior,
with a particular focus on age, driving experience, and additional covariates. To achieve
this, regression analysis was employed to assess how age and driving experience, as well
as their potential interactions with other covariates, contributed to the manifestation of
aggressive driving behavior. This comprehensive analysis aimed to provide valuable in-
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sights into the complex interplay of variables affecting driver behavior and aggression
on the road. Driving behaviors, as discussed in [14], constitute a primary contributor to
road accidents and represent a significant source of insurance claims. The results show
that young and male drivers, on average, travel at a higher velocity than older and female
drivers before entering a roundabout and accelerate to a higher velocity upon exiting.
Lee et al. [15] investigated the relationship between crash severity and the age and gender
of the at-fault driver, the socio-economic characteristics of the surrounding environment,
and road conditions. They adopted the logit regression model, using age as a continuous
variable to investigate how age has an impact on accident severity and to uncover situations
where age has little effect. Shahverdy et al. [16] introduced a deep learning method for
analyzing driver behavior focusing on driving signals, including acceleration and speed, to
recognize five types of driving styles: normal, aggressive, distracted, drowsy, and drunk.
Liu et al. [17] examined factors that influence aggressive driving behavior, such as human
factors, personality traits, and demographic characteristics. Regression analysis was used
to explore the impacts of age and driving experience and their interactions with other vari-
ables in relation to aggressive driving behaviors. Aggressive driving behavior is influenced
by a combination of human factors, including age, driving experience, personality traits,
and demographic characteristics. The analysis revealed a negative correlation between
age and aggressive driving behaviors; namely, as individuals grow older, they tend, on
average, to engage in fewer aggressive driving behaviors. The study also found a positive
correlation between the personality trait of neuroticism and aggressive driving behaviors;
that is, individuals with higher levels of neuroticism, characterized by emotional instability
and heightened negative emotions, are more likely to exhibit aggressive driving tendencies.
Significant associations were identified among age, driving experience, and depression.
This suggests that older, more experienced drivers may be less prone to depression, po-
tentially reducing their likelihood of engaging in aggressive driving behaviors. In the
scenario of car-following models, artificial intelligence tools are utilized as effective tools
to depict different aspects and behaviors of drivers. Previous studies have introduced
a novel non-monotonic logic-based approach for car-following in Autonomous Vehicles
(AVs) [18,19]. This approach involves the creation of a reasoning system that incorporates
non-monotonic inference mechanisms specifically designed to handle uncertainties and ex-
ceptions within car-following scenarios. The experimental results of this approach illustrate
an improved adaptability and decision-making performance when compared to traditional
rule-based systems. Researchers implemented an adaptive car-following system using
non-monotonic logic to enhance reasoning and decision-making capabilities. This system
integrates context-dependent rules and non-monotonic inference mechanisms, effectively
managing exceptions and conflicting information during car-following. Simulation results
demonstrate heightened safety and efficiency across various traffic scenarios.

This study explores the integration of non-monotonic logic into car-following algo-
rithms, as illustrated in Figure 1. It proposes an architecture that combines rule-based
reasoning with non-monotonic inference mechanisms to address uncertainties and modify
the behavior of AVs during car-following. The experimental evaluations reveal improved
performance and adaptability, particularly under dynamic traffic conditions.

The paper offers a comprehensive overview of the challenges and opportunities
associated with applying non-monotonic reasoning to car-following by AVs. It critically
examines the limitations of traditional rule-based systems and underscores the benefits of
non-monotonic logic in managing uncertainties, conflicting data, and context-dependent
reasoning. Additionally, the paper identifies potential avenues for future research and
explores other applications of non-monotonic reasoning within the realm of autonomous
driving.
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Figure 1. Personalized cognitive agent reasoning.

3. Methodology
3.1. The CNN Reasoning Approach

Reasoning and decision-making tasks benefit from the application of Convolutional
Neural Network (CNN) reasoning, as demonstrated in recent studies [19]. The conventional
CNN architecture typically comprises multiple convolutional layers succeeded by fully
connected layers. These layers operate collaboratively to learn hierarchical representations
of input data, allowing the network to discern intricate patterns and features. To enhance
reasoning capabilities, CNNs can be extended or combined with additional components.

This extension often involves the incorporation of supplementary layers, such as
Recurrent Neural Networks (RNNs) or attention mechanisms. These additions help the
network capture temporal or spatial dependencies, facilitating sequential reasoning [20].
Additionally, CNNs are adept at visual reasoning tasks, where the model is trained to
reason about relationships between objects. Through the learning process, the model
extracts meaningful features from input data and utilizes them to infer relationships and
draw logical deductions. In the case of AVs, these features are likely derived from various
sources of information, such as sensor data, video feeds, and other data related to a driver’s
behavior and the surrounding environment. The goal of feature extraction is to transform
raw data into a format that the model can work with effectively. These extracted features
can include elements like a vehicle’s speed, position, and orientation, road conditions,
weather conditions, and more. Here, a hybrid approach is proposed, which combines
multiple techniques to create more accurate and robust driver models, such as the one
illustrated in Figure 1. A hybrid model uses deep learning to find causal relationships
between a statistical model and human factors such as age, gender, experience, and driving
behavior, collected through feature extraction, to predict a driver’s speed and acceleration,
but also incorporates rule-based logic to handle unexpected situations, as illustrated in
Figure 2. One of the challenges in modeling driver behavior is dealing with unexpected
or uncommon situations on the road. To do this, rule-based logic is incorporated into the
model. These rules act as a safety net and provide the model with guidelines on how
to react in situations that may not be well represented in the training data. This hybrid
approach combines the strengths of different techniques to create a comprehensive driver
model. It uses deep learning to understand causal relationships, statistical modeling for
making predictions, and rule-based logic for handling unexpected scenarios, ultimately
improving the accuracy and robustness of the model’s predictions and inferences related to
driver behavior.
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3.2. Data Collection

The dataset used in this research is based on naturalistic driving data taken from the
L3Pilot database [21]. The data consists of performance indicators for four driving scenarios:
free driving, following a lead vehicle, driving in traffic jams, and changing lanes. The data used
for training the deep learning algorithm involves cleaning and formatting the data, selecting
relevant features, and splitting the dataset into training, validation, and testing sets. The
piloting operations were extensive and involved a significant amount of data collection and
processing, with a focus on both motorway and urban environments. L3Piloting operations
were conducted at 14 pilot sites across 7 European countries, involving more than 750 test
subjects and testing 70 vehicles. The focus was on collecting motorway data, resulting in
2267 h of such data, with 1808 h deemed suitable for upload to the Common Data Environment
(CDB). Some data was excluded either because it fell outside the Operational Design Domain
(ODD) of the piloted Automated Driving Function (ADF) or due to issues with data quality.
Specifically for Urban ADF, 1120 h were spent driving within urban environments, including
130 h dedicated to baseline data collection. The delivered dataset from these urban operations
comprised 638 h of data, which were subsequently used for data evaluation.

3.3. Algorithm Description

Our approach is a hybrid algorithm, outlined in Figure 3, consisting of two distinct
phases. By employing deep learning techniques to analyze extensive datasets of human
and vehicle behavior, one can uncover intricate patterns and causal relationships that may
be challenging to detect using conventional statistical methods.

Statistical tools are then applied to assess the performance of the prediction scheme.
The model predicting a driver’s behavior during car-following operates in terms of certainty
and uncertainty. Certainty in car-following increases when the driver is familiar with the
situation, and the leading vehicle maintains a consistent speed, appropriate acceleration
and deceleration, and adherence to traffic rules. Conversely, uncertainty arises when
the leading vehicle executes erratic or unexpected actions, such as sudden braking, lane
changes without signaling, and unforeseen accelerations. Lack of information or incomplete
information about road conditions, traffic situations, or the intentions of the leading vehicle
can also contribute to uncertainty.

Drivers commonly rely on signals and visual cues from the leading vehicle to com-
prehend its intentions. When these cues are unclear or inconsistent, predicting the leading
vehicle’s next move becomes challenging for the following driver. Addressing these sources
of uncertainty is crucial for enhancing road safety and optimizing traffic flow.
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3.4. Feature Extraction

One strategy involves leveraging deep learning models to extract features from data
as described in Table 1. Subsequently, these features serve as input for various machine
learning schemes, including nearest neighbor, random forest, naïve Bayesian network
(NBN), decision table schemes, and others. The extraction of features based on naturalistic
driving data holds pivotal significance for analyzing driving behavior, especially in the
context of safety-critical events. While human driving behavior can be identified, its control
is challenging. Human drivers are influenced not only by external factors, which can be
estimated and predicted, but also by internal factors affecting cognition that are challenging
to distinguish or control. In contrast, for Autonomous Vehicles (AVs), both internal and
external factors are predictable, as depicted in Figure 4.

The trained CNN can construct a driver profile based on time headway. CNN classifies
driver behaviors into three groups: normal, inattentive, and aggressive. To evaluate and
validate the quality of the data-clustering results, we used the silhouette, a statistical
technique [22] for graphically representing how well each object has been classified. For
each driver, we calculated a silhouette score using the following formula:

Si =
bi − ai

max(ai, bi)
(1)
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where ai, is the average distance from the ith point to the other points in the same cluster
as i, and bi is the minimum average distance from the ith point to points in a different
cluster, minimized over all clusters. The silhouette value is an internal criterion used for
interpretating and validating consistency within a cluster of data; it measures how similar
each point is to points in its cluster when compared to points in other clusters. Furthermore,
we assigned a score rating the degree of a driver’s aggressiveness.

Table 1. Summary of the main notation.

Notation Description Symbol

Min_ax Minimum longitudinal acceleration min(ax)
Max_ax Maximum longitudinal acceleration max(ax)
SD_ax StDEV of longitudinal acceleration sd(ax)
SD_ay StDEV of lateral acceleration sd(ay)
Mean_v Mean speed m(v)
SD_v Standard deviation of speed sd(v)
Max_abs_ay Maximum absolute lateral acceleration max(|ay|)
Max_v Max speed max(v)
Mean_pos_in_line Mean position in lane sd(Pos in lane)
Mean_THW Mean time headway m(THW)

Figure 4. Identification of driving behavior.

3.5. Reasoning-Based Non-Monotonic Logic

To address the constraints associated with monotonic logic, we advocate for the adop-
tion of non-monotonic logic as a promising strategy to augment the reasoning capabilities of
Autonomous Vehicles (AVs) during car-following scenarios. By integrating non-monotonic
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logic into AVs, they can engage in plausible inferences, manage conflicting data, and dy-
namically adapt their behavior to ensure safe and efficient car-following. The personalized
cognitive agent alerts the autonomous control system based on the causal relationship
between human factors and driver behavior related to time headway.

Non-monotonic logic offers flexible and adaptive reasoning, accommodating excep-
tions and context-specific information. Integrating non-monotonic logic into AVs empowers
them to make plausible inferences, handle conflicting, uncertain, and incomplete data, and
dynamically adapt their behavior for safe and efficient car-following.

The agent uses logical statements and facts to represent knowledge, which can come
from various sources, including data, research, expert knowledge, and previous interactions
with the driver, as illustrated in Figure 5. Logical statements are used to express the
relationships among different variables or conditions, enabling the agent to make logical
deductions based on the information provided. Facts are typically specific data points or
pieces of information about the driver, the driver’s current state, the environment, and the
vehicle. The agent uses the rules it formulated, the logical statements available, and facts to
infer new information. In this context, inference refers to the process of drawing logical
conclusions or making predictions based on the rules and the knowledge provided. The
agent’s role is to reason and deduce how a driver’s human factors may lead to specific
driving behaviors; for instance, it might infer that a tired driver is more likely to exhibit
slower reaction times.
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4. Discussion and Analysis

This section discusses the modeling of causal dependencies between human factors
and driving behavior during car-following with the aim of keeping a time headway (THW)
(the time distance between a leading and a following vehicle). The data provide evidence
on the heterogeneity of human driving profiles as the mean of the THW ranges from near
0 s to 5 s, and the minimum of THW ranges from near 0 s to more than 3 s. Based on these
preliminary findings, we propose the definitions of three profiles:

(i) ‘aggressive’: a shorter car time headway, (0–2 s);
(ii) ‘inattentive’: a longer reaction time (2–3 s);
(iii) ‘normal’ for intermediate values of reaction time and car time headway (longer

than 3 s), i.e., maintaining adaptive cruise control, which is expressed in terms of
adaptive relative distance [m] and constant relative speed [m/s].

The definitions of the two non-normal driver profiles (aggressive inattentive) are
formalized below.

# Aggressive driver profile: A driver i is considered to be aggressive with respect to a
threshold t*, for the time headway THW if

THW(i) :=
1
T

T

∑
t

THW(i, t) < t∗, (2)

where the time, T, (in seconds) = relative distance (m)/relative speed (m/s).

# Inattentive driver profile (a driver with a long reaction time): A driver i is considered
to be inattentive (with a long reaction time) with respect to a threshold t̃ on the time
headway THW if

minTHW(i) := min
t

THW(i, t) > t̃ (3)

# Normal driver profile: Drivers whose profiles are neither aggressive or inattentive are
called normal. They have intermediate values for reaction time headway (e.g., <1 s).

The Combination of Human Factors and Driving Behaviors

Driving behavior is influenced by various human factors, such as age, gender, and
experience. It is essential to recognize that individual differences play a significant role
in driving behavior, and not all individuals within a particular age group or gender will
exhibit the same patterns. Young drivers (teenagers and early 20s) often exhibit riskier
behavior due to their lack of experience and judgment. They may be more prone to
speeding, distracted driving, and taking risks on the road. Middle-aged drivers (30s
to 50s) have more experience and better judgment, leading to safer driving practices
compared to younger drivers. However, physical changes associated with aging may start
to emerge, affecting driving abilities. Some studies [3] have suggested that males tend
to engage in riskier driving behaviors, such as speeding and aggressive driving. On the
other hand, females may exhibit more cautious driving patterns and are often associated
with fewer traffic violations. Inexperienced drivers are more likely to make errors and
have difficulty handling challenging situations on the road. Lack of familiarity with road
rules and traffic patterns can contribute to higher accident rates among new drivers. To
provide a mathematical description of the correlations between driving behavior and
human factors (age, gender, experience), we can use statistical methods such as regression
analysis. Regression analysis allows us to model the relationship between a dependent
variable (e.g., driving behavior) and one or more independent variables (e.g., age, gender,
experience) in a quantitative manner. We can then use multiple linear regression to create a
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model that predicts driving behavior based on age, gender, and experience. Mathematically,
the multiple linear regression model can be written as:

Driving_Behavior = β0 + β1 × Age + β2 × Gender + β3 × Experience + ε (4)

where, β0, β1, β2, and β3 are the coefficients of the model. ε is the error term. It is based on
a dataset with observations for different drivers, and the dependent variable representing
safe driving behavior.

Driving_Behavior(accident) = 1.08 + 0.04 × Age + 0.087 × Gender (5)

One of the significant factors that can lead to car-following accidents is not maintaining
an appropriate time headway (THW). Time headway refers to the time interval between the
front of one vehicle and the front of the vehicle immediately in front of it. If a driver fails to
maintain a sufficient time headway, it reduces their ability to react to sudden changes in
the speed or behavior of the lead vehicle. This lack of reaction time can result in rear-end
collisions or other accidents, especially when the lead vehicle suddenly decelerates or stops.
Time headway can be influenced by various factors, including speed, road conditions,
weather, driver attentiveness, and reaction time. Tailgating, which is driving too closely
behind the vehicle in front, is a common behavior associated with inadequate time headway
and is a major risk factor for accidents. To mitigate the risk of car-following accidents related
to time headway, drivers should maintain a safe following distance that allows enough
time to react to any changes in traffic conditions. A mathematical formula for calculating
the value of Mean_THW is based on the given variables. The formula for Mean_THW is
a linear combination of various variables, each multiplied by a corresponding coefficient:
Max_ax represents a measurement related to acceleration in the x-axis direction of a vehicle;
Mean_LongDist_LeadVeh (LD_LV) represents a measurement related to the mean of the
longitudinal distance between the vehicle and the leading vehicle (vehicle directly in front);
Mean_v_LeadVeh (v_LV) represents a measurement related to the mean of the velocity of
the leading vehicle.

Mean_THW = 2.3952 + 0.0611 × Max_ax + 0.0988 × LD_LV + 0.0129 × v_LV (6)

Driving behaviors such as time headway, speed, and acceleration, depend on human
factors such as age, gender, and experience of external factors such as weather conditions.
This paper focuses on human factors. The probability of an accident is expressed as follows:

Time Headway = w0 × Gender + w1 × Age + w2 × Experience+ε (7)

The weight of each human factor is calculated in terms of naturalistic driving.

w0 = Pr(male) = 0.799

w1 = Pr(18 < age < 29) = 0.352

w2 = Pr(exp erience < 15) = 0.409

The personalized cognitive agent can estimate the likelihood of an accident based on
minimization of the weights. The type of minimization objective function is referred to
as a loss function, or cost function. Neural network learning algorithms are formulated
with the use of a loss function. The goal is always to minimize errors in prediction L by
minimizing the number of misclassifications with respect to all the training instances in a
data set D containing feature–label pairs.

MinimizeW L = ∑
(X,y)∈D

(y − y)2 = ∑
(X,y)∈D

(y − sign
{

W.X
}
)

2 (8)
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The cost function is a distinctive type of function designed to minimize error and
bring the predicted output as close to the expected output as possible. It employs two
parameters for error calculation: the estimated output of the CNN model, often referred
to as the prediction; and the actual output. Among various machine learning tasks, the
mean squared error (MSE) serves as a prevalent loss function, especially in regression
problems. Depending on the nature of the specific problem and its requirements, other
loss functions like the root mean square error (RMSE) and the mean absolute error (MAE)
are also commonly employed. Table 2 compares various machine learning schemes based
on statistical measurements of error. The nearest neighbor and random forest algorithms
provide better classification performance than others, namely, the zeroR, NBN, and DT.
Furthermore, these two schemes outperform the others for accuracy, as can be seen in
their higher rating in the comparison graphs in Figure 6. TP stands for true positive,
FP (false positive), MCC (Matthews Correlation Coefficient), ROC (Receiver Operating
Characteristic) Curve, and PRC (Precision-Recall Curve)

Table 2. Statistical measurement of error.

NN NBN zeroR J48 RF DT

MAE 0.1687 0.186 0.200 0.182 0.169 0.190

RMSE 0.290 0.306 0.316 0.301 0.292 0.307

RAE 84.033 93.07 93.07 90.676 84.288 95.049

RRSE 91.663 96.83 96.83 95.241 92.274 96.950
MAE: Mean absolute error; RMSE: Root mean square error; RAE: Relative absolute error; RRSE: Root relative
square error. RF: Random forest; DT: Decision Table; NN: Neural Network.
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Figure 6. Comparisons of ML schemes.

The nearest neighbor scheme is a classification algorithm that assigns a data point to
the class most common among its k-nearest neighbors in the training dataset. The random
forest scheme is an ensemble learning method that combines multiple decision trees to
make predictions. It is known for its ability to handle high-dimensional data and capture
complex relationships in the data.

5. Simulation Results

The intricate connection between human factors and driver behavior concerning time
headway is multifaceted and shaped by diverse elements. Human factors exert a substantial
influence on how drivers perceive, understand, and react to the necessity of maintaining
appropriate time headway. Figure 7 shows graphic samples of mean time headway values
for aggressive, inattentive, and normal drivers.
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Figure 7. Driver profiles.

Aggressive drivers tend to tailgate and keep shorter time headways. Experienced
drivers typically grasp the importance of lane discipline and are adept at staying within
their assigned lane, maintaining a steady and centered position. Inexperienced drivers may
lack a comprehensive understanding of lane discipline, heightening the risk of accidents.
They might find the acceleration of a vehicle exhilarating, especially if they are new to
driving or unfamiliar with the sensation of speed. Additionally, they may experience
nervousness or anxiety during acceleration, particularly in situations where they are still
mastering the smooth control of the vehicle’s speed and acceleration.

Young drivers between 20 and 24 years of age are statistically more likely to be involved
in car accidents than older drivers, as illustrated in Figure 8. Several factors contribute to this
increased risk, such as lack of experience, distracted driving, and night-time driving. Figure 9
shows evidence that more females than males are involved in car accidents. Males are more
likely to engage in risky driving behaviors, such as speeding, aggressive driving, not wearing
a seat belt, and driving under the influence of alcohol or drugs, all of which increase the
likelihood of an accident. Car accidents can vary in terms of their types and causes. Figure 10
shows several types of accidents plotted against age groups. One common type is “rear-end
collisions”, where one vehicle collides with the rear of a preceding vehicle. These are typically
associated with cars traveling in the same directions; they occur most often in traffic jams and
during lane-changing maneuvers involving adjacent cars.
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6. Conclusions

In conclusion, the incorporation of non-monotonic logic in Autonomous Vehicles (AVs)
for car following represents a promising avenue for enhancing safety, adaptability, and
decision making in dynamic traffic environments. Traditional rule-based systems and
monotonic logic often struggle with exceptions, conflicting data, and context-dependent
reasoning prevalent in car-following scenarios. Non-monotonic logic empowers AVs to
overcome these limitations, fostering more robust and intelligent behavior. They can
navigate uncertainties, adapt to changing conditions, and make plausible inferences based
on incomplete or uncertain information.

The integration of non-monotonic logic also facilitates the modeling of non-monotonic
dependencies in driver behavior, enabling AVs to respond effectively to unexpected actions,
variable speeds, and context-specific behaviors exhibited by human drivers. This con-
tributes to the improvement of safety, efficiency, and overall performance in autonomous
driving systems. Additionally, safety can be further enhanced through the utilization of AI
characteristics, including sensor fusion, perception, decision making, predictive analytics,
and continuous learning. AI enables vehicles to perceive their environment, make informed
decisions, and monitor performance in real-time.

The combined use of non-monotonic logic and AI characteristics provides a compre-
hensive approach to developing safe cognitive AVs. However, ongoing research is essential
to address the challenges associated with integrating these functionalities in AVs. These
challenges encompass interpreting and handling complex scenarios, validating and verify-
ing non-monotonic reasoning, and developing robust and reliable AI algorithms. Future
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work aims to integrate features describing human factors and vehicle behavior to formulate
cognitive hypotheses within a hierarchical cognitive Bayesian network, building upon the
approach in [7] for recognizing vehicle behaviors such as car following, lane following, and
lane changing. Addressing these challenges will contribute to further improvements in the
safety, reliability, and acceptance of Avs on our roads.
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