
Citation: Bose, M.; Dutta, B.R.;

Shrivastava, N.; Sarangi, S.R. PC-ILP:

A Fast and Intuitive Method to Place

Electric Vehicle Charging Stations in

Smart Cities. Smart Cities 2023, 6,

3060–3092. https://doi.org/

10.3390/smartcities6060137

Academic Editors: Pierluigi Siano,

Surender Reddy Salkuti and Brian

Azzopardi

Received: 12 October 2023

Revised: 9 November 2023

Accepted: 10 November 2023

Published: 15 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

smart cities

Article

PC-ILP: A Fast and Intuitive Method to Place Electric Vehicle
Charging Stations in Smart Cities
Mehul Bose 1, Bivas Ranjan Dutta 1, Nivedita Shrivastava 2,* and Smruti R. Sarangi 1

1 Department of Computer Science and Engineering, Indian Institute of Technology Delhi,
New Delhi 110016, India; mehulbose09@gmail.com (M.B.); bivasdutta17@gmail.com (B.R.D.);
srsarangi@cse.iitd.ac.in (S.R.S.)

2 Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
* Correspondence: nivedita.shrivastava@ee.iitd.ac.in

Abstract: The widespread use of electric vehicles necessitates meticulous planning for the placement
of charging stations (CSs) in already crowded cities so that they can efficiently meet the charging
demand while adhering to various real-world constraints such as the total budget, queuing time,
electrical regulations, etc. Many classical and metaheuristic-based approaches provide good solutions,
but they are not intuitive, and they do not scale well for large cities and complex constraints. Many
classical solution techniques often require prohibitive amounts of memory and their solutions are
not easily explainable. We analyzed the layouts of the 50 most populous cities of the world and
observed that any city can be represented as a composition of five basic primitive shapes (stretched
to different extents). Based on this insight, we use results from classical topology to design a new
charging station placement algorithm. The first step is a topological clustering algorithm to partition
a large city into small clusters and then use precomputed solutions for each basic shape to arrive at a
solution for each cluster. These cluster-level solutions are very intuitive and explainable. Then, the
next step is to combine the small solutions to arrive at a full solution to the problem. Here, we use
a surrogate function and repair-based technique to fix any resultant constraint violations (after all
the solutions are combined). The third step is optional, where we show that the second step can be
extended to incorporate complex constraints and secondary objective functions. Along with creating
a full software suite, we perform an extensive evaluation of the top 50 cities and demonstrate that our
method is not only 30 times faster but its solution quality is also 36.62% better than the gold standard
in this area—an integer linear programming (ILP) approach with a practical timeout limit.

Keywords: topological data analysis; persistent homology; convolutional neural network; electric
vehicle charging station placement

1. Introduction

It is widely believed that in the next 10–20 years the sales of electric vehicles (EVs)
will overtake those of petrol- and diesel-based vehicles. A recent analysis indicated that the
number of EVs will increase by a factor of 60–70 and that EVs will account for 28% of the
global fleet by 2040 [1]. As a direct consequence of this, there will be a substantial increase
in the need for placing charging points in our already-crowded cities [1].

Efficiently placing charging stations in cities as part of infrastructure planning to make
them EV-friendly has been a very active area of research for at least the last 7 years, and as
of today, there is a rich body of literature in this area [1–12]. Charging station placement
is a specialization of the generic facility location problem that is known to be NP-hard.
Along with bespoke algorithms, there are many specialized approximation algorithms for
facility location that are tailored towards charging station placement [13–16]. This area is
still far from saturation because existing algorithms are still quite slow and many produce
non-intuitive solutions.

Smart Cities 2023, 6, 3060–3092. https://doi.org/10.3390/smartcities6060137 https://www.mdpi.com/journal/smartcities

https://doi.org/10.3390/smartcities6060137
https://doi.org/10.3390/smartcities6060137
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/smartcities
https://www.mdpi.com
https://orcid.org/0000-0001-8378-3634
https://orcid.org/0000-0002-1657-8523
https://doi.org/10.3390/smartcities6060137
https://www.mdpi.com/journal/smartcities
https://www.mdpi.com/article/10.3390/smartcities6060137?type=check_update&version=1

Smart Cities 2023, 6 3061

Skeptics may argue that town planning and construction are slow activities and take
months to years. As a result, charging station placement is not a very time-sensitive activity.
However, the academic consensus is different because it is often necessary to run these
algorithms hundreds of times with different kinds of objective functions, constraints, traffic
models, and demand maps [17]. With a small change in the city layout, all these simulations
need to be run again. Hence, the need for speed will always be there, subject to a minimum
bar on the quality of the solution. Moreover, with the rapid development of fast-charging
technologies such as extremely fast charging (XFC) [4,18–20], this problem has become even
more important. The short-term power requirement is very high and can bring down a
sub-grid unless the load is appropriately distributed across charging stations (CSs) [12,21].

Integer linear programming (ILP) [22] is the first approach that one would use to solve
such problems given that most variants have linear objective functions and constraints.
ILP-based methods are very easy to code, and are often used as the gold standard for
such problems because they produce optimal solutions. They are, however, very slow
and, thus, seldom considered for practical use [23]. Hence, a rich set of metaheuristics
has evolved to solve such problems quickly with an acceptable quality (with respect to
ILP). These approaches include methods that use particle swarm optimization [24], genetic
algorithms [5], ant colony optimization [15], chicken swarm optimization [14], gray wolf
optimization [25], and bee colony optimization [16]. Furthermore, there are approximation
algorithms as well as intuitive heuristics that are, in essence, smart greedy algorithms that
intelligently combine local and global information [8]. There is an accuracy–performance
trade-off, and different algorithms fall at different points. The standard objective for
designing new algorithms in this space is either to add new constraints/objective functions
or, given the same quality, minimize the execution time (increase the performance).

Sadly, this vast body of work scores low on intuitiveness. For instance, it is not
possible to logically argue with simple arguments as to why a given city layout leads to a
better-quality solution with a certain algorithm and another city does not. What features
of a city ensure that charging stations can be placed easily and efficiently? If we intend to
expand the city, what should the layout of the new satellite township be like? Given that
most algorithms are, in a certain sense, opaque, a more intuitive analysis of the solution
space is not possible. This sometimes causes some consternation to town planners because
they may not want to make all their decisions based on the output of an optimization
algorithm, which is a black box. It may lead to extremely unconventional city designs that
may inconvenience human beings in many other ways. It is not always possible to capture
everything in the objective function and constraints.

Aim of this paper. To summarize, there are three axes that characterize the solution
space: the quality of the solution, its intuitiveness, and the time it takes to compute the
solution. We can never compromise on the quality. However, given a quality bar we
would like to obtain a solution that is as intuitive and explainable as possible, and we
need to be able to quickly compute it. Additionally, it should be possible to make small
iterative changes when the layout of the city slightly changes without recomputing the
entire solution. Our approach PC-ILP provides all these features, which we claim is novel
(vis-a-vis known related work).

1.1. Salient Features of PC-ILP

We rely on a class of approaches that use a hierarchical decomposition framework [26–28].
The idea is to break a large problem into much smaller subproblems, solve them, and
combine them to form the final solution. Charging station placement problems are natural
fits because there is little interaction between regions that are far apart in a city—most
of the interaction is local (across adjoining sub-regions). Hence, a lot of constraints can
be split (one per sub-region). An astute reader may argue that it may be the case that
after combining the smaller solutions, some constraints may be violated when the global
solution is created. This is indeed possible, which is why the method of surrogate functions
is used [29,30]. Here, we solve a problem that is slightly different from the original, often a

Smart Cities 2023, 6 3062

simplified version with less constraints. For sub-regions, we solve a surrogate version of
the original optimization—this is a quick process. Then, we combine the solutions. Each
surrogate function comes with a repair method, which is a way to degrade the solution
such that all the constraints are satisfied. The penalty that is paid is a slightly worsened
quality [29].

We observe that the layouts of cities across the world are not very different from each
other—their basic structures are similar. For example, many American cities are defined
by mesh-like arrangements, particularly in the downtown areas of the city [31]. Many
European cities are designed like a star—all roads pointing to the center of the city. Many
Indian cities are designed as a set of concentric circles. We looked at the top 50 cities by
population and found that their sub-regions broadly align with one of a few basic sets of
patterns. A city is formed using these basic patterns that act as primitives—we shall refer
to them as basic shapes. For example, New Delhi’s main government area looks like a star,
the outer region is a set of concentric circles, and the satellite township of Noida looks like
a mesh. Our idea is that if we can compute partial solutions for these basic shapes, we can
combine them to solve the overall problem. This method is intuitive, easy to understand
and reason, scales incrementally, and is fast.

A brief overview of our approach follows. We first divide a large city into regions or a
cluster of candidate charging station points (CCSs). The CCSs are uniformly distributed
across the city—at the end, the charging stations will be placed in a small subset of these
CCSs. Instead of using standard clustering algorithms, we use a topology-based clustering
algorithm to divide a big city (or a large number of CCSs) into smaller and well-defined
clusters. We found that they provide more meaningful and intuitive results. They perceive
the world roughly in the same way as a human.

The mapping of these clusters to basic shapes (mesh, rings, star, etc.) is then performed
using a bespoke convolutional neural network (CNN) model [32]. To enhance the accuracy
of the CNN, we pre-process the CCS data using the medial axis transform (MAT) [33] and
we use persistence homology diagrams (PDs) [34] as features. These clusters act as smaller
subproblems. The identification of these basic shapes is a contribution in itself because
it gives us a unique insight into how cities are designed and what are the basic layout
elements.

We precompute a set of optimal solutions for each basic shape for different runtime
conditions. Given that there are only a few such basic shapes, a large database can be created
depending on our desired accuracy and storage resources. At runtime, the problem reduces
to reading the database for each shape and demand distribution and creating a global
solution out of the optimal local solutions. The end result may require the use of repair
functions to satisfy all constraints. There is scope here for making manual adjustments as
well. The key point to note is that experimentally we have observed that the quality of our
solutions is good, and we are always aware of the way the solution process is proceeding
and the expected quality of the solution.

1.2. List of Contributions

Needless to say, it is not possible to compare our work PC-ILP with all the work in this
area; we thus compare our solution with some of the latest work in this area that has shown
good speedups with respect to prior work. We compare with the fast metaheuristic [5]
JAYA and the smart greedy algorithm LGEG [8]. We consider them to be the state of the art
in this area. Our solution PC-ILP is 3.27 times faster than the LGEG approach, and the cost
of the solution (defined in Section 3) is 38.87% lower. PC-ILP is 200 times faster than JAYA
while generating a 5.09 times better solution.

To summarize, the main contributions of this paper are as follows. 1 A novel cluster-
ing technique to divide a city into basic shapes. 2 A way to classify (identify) the basic
shapes by designing a highly accurate deep learning model that takes into account the point
cloud diagram and the persistence homology diagram. 3 A novel approach to estimate
the similarity between two clusters and then adapt the precomputed solution of one cluster

Smart Cities 2023, 6 3063

to the other. 4 The design and implementation of a novel algorithm to find the optimal
placement of CSs for a city and its demand points (DPs) using topological data analysis. A
detailed analysis and evaluation of the proposed scheme vis-a-vis state-of-the-art solutions.
5 A fully featured tool that is integrated with OpenStreetMaps [35] to interactively conduct
all these analyses and run different charging station placement algorithms. 6 An extensive
experimental analysis of the impact of various basic topological shapes on the accuracy
and performance of the proposed solution for the top 50 most populous cities.

The rest of the paper is organized as follows. We provide the required background in
Section 2. We formulate and describe the problem statement in Section 3. Section 4 presents
an analytical and experimental characterization of the parameters and Section 5 describes
the proposed scheme. Section 6 presents the results and analysis. Section 7 presents the
related work, and we finally conclude in Section 8.

2. Background

In this section, we present the background of some mathematical techniques that we
use in the paper and the Simulation of Urban Mobility (SUMO) traffic simulator.

2.1. Mathematical Techniques
2.1.1. Clustering

Clustering is an extremely useful unsupervised machine learning technique for grouping
data based on its characteristics in order to understand its underlying structure. The k-means
clustering [36] algorithm is one of the most well-known clustering algorithms; it organizes
data into κ clusters, where κ is a user-defined variable. It assigns each data point to the closest
centroid of a cluster and modifies the centroids based on the mean of the data points.

In agglomerative clustering, each point is treated as its own cluster, and clusters are
merged iteratively. The number of clusters or a distance threshold can be specified for
deciding when the algorithm should terminate. In density-based clustering, data points
are clustered according to their spatial density. There are numerous such density-based
clustering algorithms such as DBSCAN (density-based spatial clustering of applications with
noise) [37] and OPTICS (ordering points to identify cluster structure) [38].

ToMATo (topological mode analysis tool) [39] is a popular state-of-the-art algorithm
that combines the density with persistent homology (which is discussed in more depth in
Section 2.1.3). Broadly speaking, the field of topology tries to group all geometrical shapes
that have a similar structure, for instance, a ring can be stretched and deformed to form a
coffee cup—both have a single hole. However, a ring is not the same as a number 8 (eight),
because the latter has two holes. We present a high-level comparison between different
clustering algorithms in Figure 1. Figure 1a shows the data points, while Figure 1b–d
show how the three algorithms perform: k-means clustering, agglomerative clustering, and
ToMATo.

(a) (b)
Figure 1. Cont.

Smart Cities 2023, 6 3064

(c) (d)
Figure 1. A high-level comparison of different types of clustering algorithms: (a) a point cloud repre-
sentation of the original data; (b) k-means clustering with 10 clusters; (c) agglomerative clustering
with 10 clusters; (d) topological clustering with a radius of 80 m (note the difference—it captures
the key shapes in a more intuitive manner). Clusters are formed by combining the density and
topological data within the given radius.

2.1.2. Medial Axis Transform (MAT)

MAT, often known as skeletonization or topological thinning, is a powerful mathemat-
ical technique to extract the central line representation or skeletal outline of an object [40]
(see Figure 2a). It has numerous applications in object tracking, path planning, and image
processing such as shape-based matching, shape recognition, feature extraction, and object
segmentation. The medial axis (skeleton) approximates the object’s shape [33] by passing
something conceptually similar to a regression line through the points such that we trace
out the shape of the object from the points. It is obtained by removing the redundant pixels
while preserving the basic connectivity to generate a set of curves and lines outlining the
object’s shape. In Figure 2b, the circular curve denotes the skeleton of the input image.

(a) (b)
Figure 2. MAT of an image: (a) a point cloud representation of points. The elliptical curve is the ideal
skeleton that we wish to achieve; (b) MAT of the points.

2.1.3. Topological Data Analysis (TDA) and Persistence Homology

This is a new field with many applications in computational geometry and data
analysis. It uses the topology and geometry of the data to obtain information about their
structure and perform qualitative and quantitative analyses [41]. TDA captures complex
topological structures within data that are represented as a point cloud. A point cloud
refers to a collection of distinct data points distributed in an n-dimensional space. The
concept of a persistent homology involves measuring topological features at multiple spatial
scales. This is achieved by studying the evolution of different topological features such
as the number of holes in the object representation (topological space) of the point cloud.
The Rips complex [42] and Cech complex [43] are two such well-known topological space
construction methods. Both these approaches consider neighborhoods of a given radius
around points and merge all the points within the neighborhood.

Smart Cities 2023, 6 3065

The persistence diagram (PD) provides a way to study a topological space by depicting
the birth and death of topological features, such as connected components or holes, as
we increase the radius. It provides a nice graphical view of the topological structure of a
dataset (represented as an n-dimensional point cloud). It is used for various purposes such
as feature selection, pattern recognition, and shape analysis [34]. It maintains a simplex
tree, which is a flexible and efficient data structure to represent and store filtered data.
Figure 3 demonstrates the creation of a PD for a given cluster using the Rips complex as the
topological space creation method [44]. Figure 3a is the point cloud representation of the
cluster, Figure 3b represents the Rips complex of the points in the cluster, and Figure 3c
is the final PD of the cluster. The x and y axes represent time units, where it is assumed
that the radius increases linearly with time. A point at (x1, y1) means that a specific feature
(hole or connected component) was visible for the first time (born) at time x1 and stopped
being visible (died) at time y1.

(a) (b)

Holes

(c)

Figure 3. Steps to generate the PD diagram of a point cloud: (a) a point cloud representation of
points; (b) Rips complex of the points; (c) PD of the points. The red points (crosses) denote the holes,
whereas the blue points (filled dots) denote the connected components.

2.2. Simulation of Urban Mobility (SUMO): Traffic Simulator

SUMO is an open-source, microscopic traffic simulation software widely used to
generate traffic distributions in an urban area [45]. It can simulate various transport-related
entities such as public transport, vehicles, and traffic control mechanisms. We can model
traffic, build networks, control traffic, conduct environmental analyses, and visualize real-
time simulated traffic data. It is widely used in academia and industry. It can easily be
integrated with other tools for various applications. Figure 4 represents the traffic simulated
on the map of a region in Berlin, Germany. The points shown in this figure depict the road
network of the city.

(a)

Nodes

(b)
Figure 4. Simulated traffic of a region in Berlin, Germany, using SUMO. The black circles indicate the
points on the road. (a) Points on the road network in 2D; (b) simulated traffic density for the points
in 3D.

Smart Cities 2023, 6 3066

2.3. JAYA Algorithm

The JAYA algorithm is a population-based metaheuristic algorithm recently proposed
by Rao et al. [46]. The algorithm combines the characteristics of evolutionary algorithms
and swarm intelligence. It is inspired by the survival-of-the-fittest principle of natural
selection. The algorithm uses very few hyperparameters. Hence, it does not require
extensive tuning.

3. Problem Formulation

We shall describe a generic charging station placement problem [2–5,8] in this section.
A few definitions follow. Candidate charging stations (CCSs) are all the potential locations
for deploying CSs on a given city map. We define a DP (demand point) as a location where
EV charging is in significant demand. Let us define SDP to be the set of all demand points,
SCS to be the set of all charging stations, and SCCS to be the set of all candidate charging
stations. Clearly, SCS ⊆ SCCS. Ndp = |SDP| is the total number of DPs, Ncs = |SCS| is
the total number of charging stations, and Nccs = |SCCS| is the total number of candidate
charging stations.

We can now define a shortest Euclidean distance matrix D of dimension Ndp × Nccs,
where D[i][j] denotes the shortest Euclidean distance between the ith DP and the jth CCS.
Let the maximum distance that an EV user can travel to reach a charging station be τ.
This is known as the reachability distance. As a result, we must ensure that after traveling a
distance of τ, the EV user definitely has access to a CS.

The total number of CSs that can be deployed in a city is subject to a budget. Let β
represent the maximum number of CSs that can be deployed in a city. Hence, the actual
number of deployed CSs (Ncs) should always be less than the maximum budget (β) for
CSs, i.e., Ncs ≤ β. Let S be the supply matrix of dimension Ndp × Nccs, which represents
the allocation (mapping) of a CS to a DP. S[i][j] = 1 implies that the jth CCS is allocated to
the ith DP, otherwise S[i][j] is 0. Let O be a binary array with Nccs elements which indicates
whether a CCS is finally chosen to be a CS or not. O[i] = 1 implies that the ith CCS is
considered as a CS, otherwise it is not considered to be a CS.

The aim is to ensure an optimal placement of the CSs across the city. To solve
this problem, we minimize the cost, which can be represented as an objective function

∑
Ndp
i=1 ∑Nccs

j=1 D[i][j]× S[i][j]. This is the sum of the total distance that all EV users have to
travel (assuming there are the same number of users at each demand point). The overall
mathematical formulation of the problem is shown below.

Minimize
Ndp

∑
i=1

Nccs

∑
j=1

D[i][j]× S[i][j] B Overall distance (1a)

Subject to:
Nccs

∑
j=1

D[i][j]× S[i][j] ≤ τ, ∀i ∈ {1 . . . Ndp} B Reachability (1b)

Nccs

∑
j=1

S[i][j] = 1, ∀i ∈ {1 . . . Ndp} B One CS connected to one DP (1c)

S[i][j] ≤ O[j], ∀i ∈ {1 . . . Ndp}, j ∈ {1 . . . Nccs} BAssociate only if the CCS is a CS (1d)
Nccs

∑
i=1
O[i] ≤ β B Budget condition (1e)

Constraint (1b) ensures that all the DPs must be at most τ units of distance away from
a placed CS. Constraint (1c) states that ∀DP, a CS must be allocated to it. This constraint
is very helpful in distributing the demand of DPs efficiently. Constraint (1d) ensures that
the allocated CS must be chosen as a CS (sanity check). Finally, constraint (1e) states

Smart Cities 2023, 6 3067

that the number of CSs must be less than or equal to the budget β. This model is similar
to the one proposed by Kulkarni et al. [47] and is similar to the models in many more
references [1,7,9–12].

Our primary constraints helped us to identify the exact location to place the CSs. But,
just placing the CSs does not solve our woes. We need to take care of other electrical
constraints such as constraint (2) (described in Section 3.1), and we need to be sure that the
areas with high traffic (most visited roads) are handled well. We establish that if a CS is
located in an area with high traffic density, it would require additional chargers to serve the
customers. Basically, a charger is a power supply device that supplies power for recharging
an EV. A CS can have multiple chargers. These chargers reflects the size and capacity of
a CS.

In order to simplify the underlying problem and enhance the performance of the
method, we consider all these constraints as additional constraints.

It is a standard practice to divide the problem into two parts: a solution that satisfies
the primary constraints, and then modifications to the solution based on additional con-
straints: traffic conditions, capacities of charging stations (issue of inductive and capacitive
loads), electrical regulations, and the importance of the area as additional constraints. The
additional constraints mostly affect the internal working of the charging station [48,49].

3.1. Additional Constraints

Let us incorporate additional information about the traffic, electrical load, and queuing
time in the model. The overall electrical load is dependent upon multiple aspects, including
but not restricted to the charging pattern (fast charging), the popularity of the charging
stations (public charging stations, workplace charging stations), the power efficiency of the
chargers, and the charging capacity of the electric vehicles. EV chargers are high-frequency
electronic converters that transform the AC supply into a DC supply to charge an EV.
These converters impose a load of a nonlinear nature that has an adverse impact on the
performance of the power grid as it introduces harmonics into the system [50]. Additionally,
the process of charging electric vehicles (EVs) results in a quick and impulsive increase
in the load on the charging infrastructure, hence causing voltage instability issues. Thus,
balancing the load among the CSs is crucial.

To achieve this, first, we need to define the number of chargers in a CS. So, let the
matrix K of size Ncs × Na represent the allocation of a charger to a CS, where Na is the
total number of chargers. K[i][j] = 1 means that the jth charger is allocated to the ith CS,
otherwise K[i][j] is 0. Using K, we define ai = ∑Na

j=1 K[i][j] as the number of chargers at the

ith charging station.
Let us add some electrical constraints to the model [12]. In the real world, CSs will

present themselves as large electrical loads. By adding these constraints, we can distribute
the electrical load more efficiently across phases and across CSs. We define an array L of size
Ncs, where L[i] denotes the total load placed on the ith CS. It is a deciding factor in estimating
the largest amount of load that can be placed on a CS such that it still maintains harmonic
in-line currents, phase balance, and voltage deviations (within the limit). Additionally, each
CS should contain at least one charger (sanity check). The following equation (constraint (2))
highlights that the chargers in a CS should not be overloaded, and still contain at least
one charger.

1 ≤ ai ≤
L[i]
ρev

B Chargers in a CS must not be overloaded (2)

Here, ρev denotes the charging power rating of an EV. Constraint (2) is used to tackle
the load imbalance problem across CSs, as the maximum load of a CS must be less than the
overloading factor L [21]. The chargers are also allotted a budget (βa). Constraint (3) highlights
the fact that the total number of chargers in a region should not exceed the budget for that

Smart Cities 2023, 6 3068

region (βa). This will ensure that there are no local hotspots, and that the power requirement
of a CS never exceeds the substation’s capacity and power quality is maintained.

Ncs

∑
i=1

ai ≤ βa B Total budget of chargers (3)

Next, we define the queuing time [51,52] as the time spent waiting in a queue to charge
the EV. This depends on several factors such as the traffic at a CS, the charging time for
each EV, and the number of chargers available at a CS [51]. We use a queuing model to
model the traffic and the queuing time across the city; this is a popular model that has been
used in a lot of prior work. It was proposed by Zhu et al. [51].

The queuing time at a CS increases proportionally to the increase in demand and
traffic, whereas an increase in the number of chargers at the said station will reduce the
queuing time, as presented in Equation (4a). This model is similar to the one proposed by
Zhu et al. [51].

Qi =
ai(ηiai)

ai+1P0i
λiai!(ai − aiηi)2 B Queuing time at the ith CS (4a)

λi =
∑x

j=1 Xi[j]

tc
B Traffic flow rate around the ith CS (4b)

P0i =

[(
ai−1

∑
j=0

(ηiai)
j

j!

)
+

(ηiai)
ai (ai)

ai!(ai − aiηi)

]−1

B Probability of finding an idle charger at the ith CS (4c)

ηi =
λi
µai

B Chargers’ utilization at the ith CS (4d)

µ =
1
ts
B Service time of a charger (4e)

Here, λi denotes the EV traffic at the ith CS (Equation (4b)) and tc denotes the time
duration during which the traffic was monitored. We estimate the traffic at a CS by
simulating the traffic flow using the SUMO traffic simulator. Here, we make the reasonable
assumption that the traffic in a CS is dependent on the EV traffic within the reachability
distance. λi is calculated by adding all the EV traffic of the nodes on the road that are
τ-reachable (within τ units of distance) from that CS. Let Xi be an array of size x, where
x is the number of nodes that are τ-reachable from the ith CS and Xi[j] denotes the traffic
between the ith CS and the jth connected node.

Next, P0i defines the probability of finding an idle (empty) charger upon arrival at the
ith CS, and is defined in Equation (4c), where ηi represents the utilization factor of a CS,
which measures the degree of utilization of the chargers (Equation (4d)). Here, µ represents
the service time of a charger, which is inversely proportional to the charging time of a single
charger ts (Equation (4e)).

The aim is to reduce the queuing time and minimize the total number of chargers used.
Keeping this in mind, additional objective functions can be defined as follows:

Minimize
Ncs

∑
i=1

Qi B Additional objective function 1

Minimize
Ncs

∑
i=1

ai B Additional objective function 2

(5)

We can have multiple objective functions in our formulation. From a single-objective
optimization problem, it will become a multi-objective optimization problem. A Pareto
optimal point can be chosen subject to some overall desirability function, as is the standard
practice.

Smart Cities 2023, 6 3069

Now, that the problem has been defined, we need to find a method to effectively solve
it. To achieve this, we need to understand the features present in modern cities and show
that their layouts are quite similar, in a topological sense. This means that they consist of a
set of basic primitives, where each primitive can be arbitrarily stretched and deformed (in
certain ways). This is the objective of the next section.

4. Characterization

A collection of selected nodes (CCSs) represents a city’s road network. In order to
identify the topological shapes present in a city, the first aim is to select the best clustering
algorithm to identify and isolate constituent topological clusters (of CCSs) from a city’s
road network.

Clustering Algorithm—Identification of the Clusters in a City

We perform an extensive analysis of several state-of-the-art clustering algorithms,
namely, k-means, agglomerative, and ToMATo to determine which algorithm can successfully
isolate the topological clusters of CCSs present in a city. The details of the clustering
algorithms are presented in Section 2.1.1. The analysis is performed on a section of Berlin,
Germany, using the system configuration detailed in Table 1.

Table 1. System configuration.

Hardware Settings

Chip: Apple M1 CPU cores: 8
GPU: Apple M1 8-core GPU DRAM: 8 GB

Software Settings

Operating System: MacOS Monterrey 12.6 Python Version: 3.7
TensorFlow Version: 2.11.0 Tkinter Version: 8.6.12

Gudhi Version: 3.8.0 CVXPY Version: 1.3.1

We improve the computation speed of the clustering algorithms by performing ran-
dom point reduction [53–55] (random sampling) to reduce the number of points. This is
performed for all the algorithms. We empirically determined that it is possible to decrease
the points by up to 75% without causing much distortion to the topological shapes.

Let us consider a representative example. Figure 1a shows the input points for the clus-
tering algorithm after performing point reduction on a section of the Berlin city. Figure 1b
shows the outcome of k-means clustering with 10 clusters (k = 10). Due to the fact that
k-means assumes that each cluster has the same size and is susceptible to noise, it is quite
incapable of isolating the topological shapes.

Figure 1c shows the outcome of agglomerative clustering with 10 clusters. We observe
that the clusters that are generated by the algorithm are relatively similar to the ones
generated by k-means clustering. They also fail to isolate the topological shapes. Figure 1d
shows the outcome of ToMATo with radius r = 80. The algorithm generates clusters by
connecting all the nodes within a radius of 80 m. It can isolate the majority of the topological
shapes as it considers both the highly dense and less dense areas. We conclude that the
clusters generated by ToMATo can successfully isolate a majority of the shapes. In our
experiments, this observation is found to hold across all big cities (our dataset). Therefore,
this is the most desirable clustering algorithm for identifying the constituent topological
shapes of a city.

Next, we take a look at the proposed scheme and how it uses the clustering algorithm.

5. Material and Methods
5.1. Overview of the Scheme

The primary objective of this work (problem 1) is to identify the locations of CSs based
on a set of primary constraints (budget, reachability radius, demand points). Similar to

Smart Cities 2023, 6 3070

prior work [48,49,56], we address an additional objective (problem 2) of distributing the
chargers among the CSs such that no additional constraints (traffic, electrical regulations,
queuing time) are violated.

Problem 1: Figure 5 shows that the primary objective is achieved using the proposed
PC-ILP algorithm by using a hierarchical decomposition method. In this method, the city
map (represented as a set of CCSs) is decomposed into clusters of CCSs using a topological
clustering algorithm. Next, a CNN is used to identify the geometric shape of each cluster.

Primary objective
(prim. constraints)

Check for constraint
violation ?

Solution feasible ?

Repair (Surrogate
function) Additional objective

(additi. constraints)

Yes

Yes

Chargers at
each CS

No

No

Hierarchical
decomposition
framework

Optimal
locations
of CSs

PC-ILP: Placement
of CSs

Chargers at CSs

Figure 5. A high-level representation of the proposed scheme.

We study topological shapes (clusters of CCSs) present in 50 of the largest cities in
the world, and based on our findings, we argue that a few basic shapes can be used to
capture the topological structures of most cities. This conclusion is supported by the fact
that a small number of 2D simplexes (a line, a circle, a mesh, a star, and a concentric circle)
can be used to define any topological shape of interest in a modern city [57]. We present a
pictorial representation of all the 2D simplexes in Figure 6. Our experiments support this
assumption.

(a) (b) (c) (d) (e)

Figure 6. Representation of the five 2D simplexes: (a) circle, (b) concentric circle, (c) line, (d) star,
(e) mesh.

These clusters are seen as small subproblems and we use a database of precomputed
solutions to solve these subproblems. The database comprises optimal solutions for various
shapes (clusters of CCSs) over a spectrum of parameters including the number of DPs,
budget, and reachability distance, as shown in Table 2. During the runtime, a user only
needs to look at the database to obtain a solution for each shape. However, the final solution
that has been obtained from the database may not be feasible. Such infeasible solutions are
fixed using a surrogate function (details to follow).

Table 2. Primary parameters of the problem.

Parameter Description

SCCS The CCSs depict the potential charging stations across the city.

τ
The reachability distance is the maximum distance an EV user needs to travel from a

DP.
β The budget represents the maximum possible number of CSs in a city.
SDP The demand points correspond to the points in the city that demand EV charging.

Smart Cities 2023, 6 3071

Problem 2: Then, the repaired/feasible solution from PC-ILP is sent to the second
stage—a small ILP optimization problem. This considers a few of the additional parameters
(traffic, queuing time, and electrical regulations). The reason for this is that the traffic
patterns within a city can exhibit severe variations. Consequently, attempting to create a
database capable of accommodating all of these combinations would not be feasible. The
queuing time also depends on the traffic in a CS, so it is also considered as an additional
parameter. Additionally, the electrical regulations also directly influence the number
of chargers in a given CS. Therefore, all of these factors are categorized as additional
parameters, which have a direct impact on the number of chargers in each CS. This ILP
stage (which is a much smaller problem) finds the optimal number of chargers that need to
be placed at each CS. This stage is needed for flexibility. Modern EV placement problems
can have a lot of constraints and objective functions (soft and hard). Hence, a two-stage
approach suits us well.

5.2. Placement of Charging Stations (Primary Objective)

A high-level diagram of the proposed scheme is shown in Figure 7. The algorithm
is divided into six major components: 1 Precomputation of the ILP solutions for various
basic shapes. These solutions are stored in a database. 2 Identification of the potential
charging point locations (CCSs) in a city. 3 Partitioning of the city map into distinct clusters
of CCSs using ToMATo. 4 Basic shape identification of the clusters using a CNN. 5 Finding
the most appropriate match in the database for the identified shape. 6 Estimation of the
final solution based on the matching solution from the database. Algorithm 1 describes our
proposed scheme. We also show a glossary of the symbols in Table 3.

Identification
of the potential
charging stations

CCSs point
reduction

Shape identification

CCSs

Optimally
placed CSs

Database
computation

CCS, DP,
Budget

CCS, DP,
Budget

MapperCS
Tool

Clustering

ToMATo

Convolution NN

For each cluster

Offline

Reduced
CCSs & DP

Divide the
budget

Placement of
the CSs

Budget

Matching solution
from the database

Demand
points

5

4

3
2

1

6

Figure 7. A high-level diagram of the proposed scheme.

Table 3. A nomenclature of the symbols.

Symbol Definition Symbol Definition

Nccs Number of CCSs D The distance matrix between DPs
and CCSs

Ndp Number of DPs M Mapping between cluster and DPs
τ Reachability distance β Budget (max allowed CSs)

Ncs Total number of CSs S The supply matrix (DP-CS
allocation)

O[Nccs]
Boolean array that indicates

whether a CCS is a CS P A set of basic shapes and DP
distribution

C A set of clusters DB Precomputed database

S The shape of a cluster SimS A similar shape retrieved from the
database

|X| Size of the set X {x, y} Concatenate x and y

Smart Cities 2023, 6 3072

Algorithm 1: PC-ILP (online stage)

1 Input: Candidate charging stations CCS = (CCS1, CCS2...CCSNccs) ; Demand
points DP = (DP1, DP2...DPNdp); Budget β; Reachability distance τ;
Precomputed Database DB; Threshold T

2 Output: Charging stations CS = (CS1, CS2..CSNCS)

3 * Reduce the size of each CCS by a factor of x *\
4 CCSnew = ReducePoints(CCS, Nccs/x)

5 * Identify the clusters in CCSs *\
6 C = ToMATo(CCSnew)

7 * Assign each DP to its nearest cluster *\
8 M = Assign(C, DP)
9 Sort C in decreasing order of |C|

10 i← 1
11 while i ≤ |C| do

12 * Divide the budget among the clusters *\

13 b =
⌊ β

|C|

⌋
14 if i ≤ (β mod |C|) then
15 b← b + 1
16 end

17 * Identify the shape of the cluster Ci*\
18 S = IDShape(Ci)

19 * Find the most similar shape in the database for the cluster Ci*\
20 SimS = TraverseDB(S, Ci,M,DB, b)

21 * Apply the solution of SimS to cluster Ci*\
22 CSCi = ApplySolution(SimS, Ci,M, T)
23 CS.append(CSCi)
24 i← i + 1
25 end
26 return CS

5.2.1. Create Database of Precomputed Solutions (Offline)

The first stage is creating an exhaustive database containing solutions to the CS placement
problem for a set of basic shapes. Each basic shape is represented by a set of CCSs.
I Normalization of the latitude and longitude: Each of the CCS nodes in a shape is
denoted by a pair of latitude and longitude coordinates. Now, across cities, the constituent
topological shapes may remain the same, but their sizes may vary significantly. Since
it is not possible to store the results for all potential basic shape sizes in a database, we
normalize the values of the longitudes and latitudes for different shapes. Normalizing the
geographical coordinates in a large urban city to store a scaled version of the geographical
information is a well-known concept that is used in urban city planning [58–62]. It helps to
simplify and generalize the geographic data (nodes), making them more manageable.

To achieve this, we normalize the location of each node, i.e., the latitude and longitude
values, such that they lie in the range [0, 1]. This is performed for a combined set of DPs and
CCSs (SCCS ∪ SDP) as normalization of each set individually would distort the locations of
the DPs.

We empirically estimated the size of the shapes in 50 of the largest cities in the world
and observed that the maximum area of a shape among all the five basic shapes is 8.5 km2,
while the minimum possible area is 1 m2. Our resolution is quite fine, even though such a
granularity is almost never required. Most of the time, we can cover a roughly 3 km × 3 km
section of the city in a single well-defined basic shape.

Smart Cities 2023, 6 3073

I Patterns of DP distribution in a shape: DPs denote the points at which a demand for
charging exists. We place DPs manually based on the density of CCSs, the presence of
public amenities like malls and hospitals, and downtown areas. To characterize the location
of DPs, we subdivide all the normalized shapes into zones. If a DP falls in a zone, we
assume that it is in the centroid of the zone (refer to Figure 8). This means that there is
some feature of interest in the city and all the roads in the vicinity lead to it.

We ensure that our database captures all the possible locations of the DPs in a city. Let
us assume that the maximum possible number of DPs associated with a shape is d and the
total number of zones in a shape is z, then the total number of possible DP patterns that
should be present in the database is ∑d

i=0
zCi. zCi is the number of ways in which we can

choose i elements out of z elements (number of combinations).

A cluster of
CCSs (circle)

The shape is divided
into multiple zones

 Actual position of a DP Position of a DP
in the database
(center of the zone)

Any DP in a given zone is located
at the center of the zone.

Figure 8. Creation of zones for a cluster.

After successfully estimating all the possible DP distribution patterns for a given shape,
we apply ILP to solve the CS placement problem for the shape and the corresponding DP
distribution patterns, given a budget and a reachability radius. This generates possible sets
of locations for the CSs. This procedure is conducted offline. We combine the locations
of the CSs with the shape (cluster of CCSs) and the parameters (DP distribution pattern,
budget, reachability radius) into one single database entry. In addition, we also compute
ILP solutions for a given shape and DP distribution pattern for a range of budget and
reachability radii (the range is estimated empirically) and add all the computed solutions
to the database.

After creating the database, we estimate the solution for a new input map using the
precomputed database. The next series of steps are all performed online.

5.2.2. Locating Potential Charging Stations in the Input Map

The first task is to identify the prospective CCSs in the input map. To identify prospec-
tive CCSs in the cities, we identify the road network of the city and place CCSs along it. We
developed our in-house interactive tool MapperCS that enables the filtering of the street
data from a specific city map and also identifies the potential CCSs (see Section 6).

5.2.3. Clustering Algorithm

Next, we perform clustering on the CCS set to isolate the basic clusters using a
topological clustering algorithm, ToMATo. It captures all the topological shapes present in a
city. The computation speed of the clustering algorithm is improved by randomly reducing
the number of points [53–55] in the CCSs using the ReducePoints function.
I Mapping DPs to clusters: In the next step, we map each DP (represented as DPi) to its
nearest cluster Ci ∈ C. A single cluster can be mapped to many DPs, creating a many-to-one
mapping. To map DPs to a cluster, we first compute the convex hull for each cluster using
the QuickHull algorithm [63]. We categorize the DPs into two categories based on their
position relative to the convex hull. 1 The DPs that are contained within the convex hull
of a cluster Ci are automatically mapped to Ci. 2 The DPs that fall outside the convex hull
of all clusters are mapped to the closest cluster Ci using the Assign function as described in
Algorithm 2. Basically, the clusters are characterized by their centroids. We find the cluster
closest to a DP by estimating the distance between the centroid of the cluster and the DP.
We map the DP to its nearest cluster based on the minimum distance to each centroid [64].

Smart Cities 2023, 6 3074

Algorithm 2: Function Assign(C, DP)

1 Input: Demand points DP = (DP1, DP2...DPNdp), Clusters C = (C1, C2...Ct)

2 Output: MappingM
3 for i = 0 to Ndp do

4 * Identify the closest cluster from the DP (DPi).*\
5 old = ∞
6 clust = C1
7 for j = 1 to t do
8 new = dist(DPi, centroid[Cj])

9 if new < old then
10 clust = Cj

11 end
12 end
13 M[clust].append(DPi)
14 end
15 returnM

Once we find the closest cluster (Cj) for a DP (DPi), we add the DP (DPi) toM[Cj]
whereM is the demand point–cluster mapping (DCM), which stores the details of the mapping
between DPs and clusters. This process is repeated until we find a mapping for every
DP. After the mapping procedure is complete, we divide the total budget in proportion
to the number of CCSs covered by each cluster. To achieve this, clusters (C) are sorted in
decreasing order of the cluster size. The clusters with more CCSs are allotted a greater
portion of the budget (β), as described. Subsequently, we iterate over the sorted clusters
C and process each cluster Ci individually. The next task is to identify the shape of the
cluster Ci.

5.2.4. Shape Identification Using a Convolutional Neural Network (CNN)

To determine the shape of a given cluster, we use a CNN model. We studied the
constituent shapes of the major urban agglomerations of the world to create a realistic
dataset for training and testing the CNN model. After extensive experimentation, we
designed a novel CNN architecture capable of identifying shapes. The architecture is
presented in Figure 9.

3 2
3

2
3

33

23 2

Convolution
layer 1 +
LeakyRelu

Cluster
Image

Persistance
Diagram

Convolution
layer 2 +
LeakyRelu

Pooling
layer 2

Pooling
layer 3

Pooling
layer 1

Concatenate

Flatten

SoftMaxFully-connected+
LeakyRelu

Fully-connected

Convolution
layer 3 +
LeakyRelu

3 2
3

2
3

33

23 2

Convolution
layer 1 +
LeakyRelu

Convolution
layer 2 +
LeakyRelu

Pooling
layer 2

Pooling
layer 3

Pooling
layer 1

Convolution
layer 3 +
LeakyRelu

32

32

64

64

128

128

Figure 9. Proposed CNN architecture.

The input of the model is the point cloud and the PD of its MAT. The PD of the MAT
of the point cloud is generated by removing holes and connected components which are
less persistent by introducing a threshold, as illustrated in Figure 10. Figure 10a is a typical

Smart Cities 2023, 6 3075

PD and Figure 10b is the PD of the MAT (modified PD) after thresholding. Now, let us take
a deeper look at the architecture of the model.

Holes

(a) (b)
Figure 10. Model input—a PD diagram with threshold and point reduction. The red crosses denote
the holes present in the point cloud, and the blue circles denote the connected components present in
the point cloud. (a) A typical PD diagram; (b) the PD of the MAT. All points below the threshold are
removed.

I Model architecture: The proposed model architecture comprises two parallel CNN lay-
ers, as depicted in Figure 9. Both layers consist of an identical three-layer CNN architecture.
In the three sequential convolutional layers, the number of filters increases in the sequence
(32, 64, 128). Each convolutional layer is followed by a Leaky ReLU activation function and
a maxpooling layer with a pool factor of 2× 2. Finally, we employ a regularization technique
called dropout, which involves randomly deactivating the neurons within a layer. The
respective dropout percentages for the three convolutional layers are 25%, 25%, and 40%.

The outputs of the two parallel convolutional structures are combined using a con-
catenate layer. Thereafter, the result of this layer is changed from a 2D matrix to a 1D
vector using a flatten layer. This conversion enables the output to be processed by the fully
connected layers (dense layer).

The dense layer consists of 512 neurons and a Leaky ReLU activation function, which is
followed by another dropout layer that is configured to exclude 50% of the neurons. The
subsequent fully connected layer has five neurons for the five basic shapes. Finally, we
use the softmax activation function to predict the class of the cluster. The above-described
model can identify an input shape quite accurately.

Now that we have successfully identified the shape of a cluster (IDShape function),
we must query our precomputed database to discover the closest matching solution for a
new input cluster.

5.2.5. Retrieval of the Precomputed Solution from the Database

The next step of PC-ILP is to identify the closest solution for a new cluster from
a database of precomputed solutions using the TraverseDB function. We first need to
normalize the input cluster to set it in the same scale as the clusters in the database (refer to
Section 5.2.1). For the solutions of any two clusters to be broadly similar, they must be 1 of
the same shape and 2 have similarly placed DPs with respect to the shape of the CCSs.
The similarity in the DPs can be measured by finding out the zone of each demand point
with respect to the shape. If the DPs in both the clusters fall in the same zones, then we can
argue that the DP distribution is similar.

Next, we determine whether the solutions presented in the closest matching shape(s)
are within the input budget. We choose the solution with the lowest budget (represented as
SimS). This enables us to maintain a contingency budget that can be utilized in the event of
constraint violations. A closest match will always be found in the database as we know
that the database is exhaustive (as described in Section 5.2.1). Algorithm 3 describes this
process in further detail.

Smart Cities 2023, 6 3076

Algorithm 3: Function TraverseDB(S, Ci,M,DB, b)

1 Input: Input cluster Ci, DCMM, Shape S of cluster Ci, Database DB, Budget β
2 Output: SimS, the closest match of Ci present in DB
3 * Normalize the input cluster Ci *\
4 CCS′Ci

, DP′Ci
= normalize({CCSCi ,M(Ci)})

5 old← ∞
6 for (Pj, shapej) ∈ DB do
7 * Match the shapes and the DPs. Pj = {CCSPj , DPPj , CSPj} and shapej is the

shape of the cluster in the database. *\
8 if S == shapej and |M[Ci]| == |DPPj | then

9 * Find the zones of DP′Ci
and compare them with the zones of DPPj . *\

10 if zones(DP′Ci
) == zones(DPPj) then

11 * Find the matching solution with least budget utilization. *\
12 if |CSPj | < β and |CSPj | < old then
13 SimS← Pj

14 old← |CSPj |
15 end
16 end
17 end
18 end
19 return SimS

5.2.6. Mapping the Precomputed Solution

The database provides the positions for the optimal locations of the CSs for the closest
matching cluster (SimS) with the least possible budget. To apply the solution of SimS to the
input cluster Ci, we need to relocate the CS in SimS with respect to the CCSs in the input
cluster. To achieve this, we find a CCS in our input cluster for each CS in SimS which is
within the distance threshold of T from the said CS. In the event that no such CCS satisfies
this constraint, we select the one which is closest to the CS. We have empirically estimated
that we can set T to be 0.1 units (where the points are normalized to the [0–1] range). Once
this is complete, we denormalize the CSs to obtain the final solution. Algorithm 4 describes
this process in detail.

Figure 11 shows a graphical illustration of the ApplySolution function. Figure 11a
represents the input cluster Ci, and its closest matching solution from our database SimS
is shown in Figure 11b. Next, we try to find the closest CCS (CCSCi) in the input cluster
for each charging station (CSS) in SimS—this is shown in Figure 11c. The final solution is
presented in Figure 11d.

Smart Cities 2023, 6 3077

Algorithm 4: Function ApplySolution(SimS, Ci,M, T)

1 Input: Input cluster Ci, with CCSC = CCSC1 , CCSC2 ...CCSCn ; Closest match
SimS = (CCSS, DPS, CSS) ; DP mappingM; Threshold T

2 Output: Final locations of charging stations CSopt = CS1, CS2...CSm

3 * Normalizing the input cluster. {X, Y} refers to the concatenation of the sets X
and Y *\

4 CCS′C , DP′C = normalize({CCSC ,M(Ci)})
5 * Find the closest CCS in the input cluster for each CS (CSS)*\
6 for CSj ∈ CSS do
7 old = ∞
8 c = 1
9 for k = 1 to n do

10 new = distance(CSj, CCS′Ck
)

11 if new < T then
12 break
13 end
14 else if new < old then
15 c = k
16 end
17 end
18 CS′C .append(CCS′Cc

)
19 end

20 * Denormalize CSn
Ci

to get original solution.*\
21 CSopt = denormalize(CS′C , {CCSC ,M(Ci)})
22 return CSopt

(a)

CS1

CS2

DP2

DP1

DP3

(b)
Figure 11. Cont.

Smart Cities 2023, 6 3078

CS1

CS2

DP2

DP1

DP3

(c)

CS1

CS2

DP1

DP2

DP3

(d)
Figure 11. A pictorial representation of the ApplySolution function: (a) the input cluster Ci (query).
(b) Closest matching solution (SimS) from the database. CS1 is mapped to DP1 and DP2, CS2 is
mapped to DP3. (c) Finding the closest CCSCi in the input cluster for each CS in SimS. (d) Applying
the closest matching solution (CSs) on the input cluster (query).

5.3. Repairing an Infeasible Solution

As with any other hierarchical solution, we must check that the assembled solution
satisfies all the constraints of the original problem [28]. We observe that three of our four
constraints cannot be violated due to the design of PC-ILP—each DP is associated with the
CS placed closest to it. So, constraint (1c) is never violated. To ensure that constraint (1d) is
not violated, we make sure that when applying the solution of SimS to Ci, the CSs placed
for Ci are CCSs, as illustrated in Algorithm 4. We also divide the provided budget across
the various shapes in order to ensure that constraint (1e) is not violated. Subsequently, a
match for each cluster for a given budget is located in our database.

This leaves the reachability constraint, which may be violated, resulting in an infeasible
solution. The solution to this problem is to maintain a contingency budget for use in the
event of a constraint violation. This enables us to repair the infeasible solution by adding
additional CSs for the demand points where a constraint violation is detected without
affecting the pre-existing locations of the CSs. This simplifies the problem, allowing for a
fast estimation of the feasible solution.

The initial phase is the verification step, in which we determine whether or not a
constraint has been violated in the original solution. To determine this, we map all DPs
within a reachability distance from a CS. This is performed for all CSs. Next, we determine
if any DPs are left unmapped, which indicates that the reachability constraint has been
violated (refer to Algorithm 5).

To address this issue, we solve the original optimization problem with a 15% budget
reduction, allowing us to use the remaining budget to fix the possibly infeasible solution.
This is the surrogate optimization problem, where we use the PC-ILP algorithm, albeit with
a reduced budget. First, we query the database with the unmapped DPs and a portion of
the remaining budget (using the TraverseDB function). The function returns the closest
matching shape for the given set of unmapped DPs and CCSs (details in Section 5.2.5).
Then, we apply the solution to the matching shape using the ApplySolution function,
which returns the optimal placement of the CSs for the given unmapped DPs. We recheck
whether or not all the DPs are mapped using the obtained solution within the given budget.
If they are not mapped, the entire procedure is repeated with a slightly increased budget.

If a feasible solution is found, to arrive at the final repaired solution we combine
both the initial infeasible solution and the surrogate solution for the DPs with constraint
violations. The infeasible solution consists of the locations of CSs (old CSs) that served a
subset of DPs. Sadly, some DPs were left unmapped, and we used the surrogate function to
add new CSs to serve those DPs using the extra budget. The final solution is essentially a

Smart Cities 2023, 6 3079

union of the locations of both the sets of charging stations (new CSs and old CSs). In cases
where the entire budget has been spent and no solution has been found, a solution to the
problem is deemed to be impossible.

Algorithm 5: Function Repair(CS ,DP , β0,M, Ci, S, b)

1 Input: CS locations CS , Demand points DP , Database DB, Remaining budget β0,
Shape S of the given cluster Ci, Budget ∆

2 Output: New optimally placed charging stations CS
3 * Check the constraint violation in the given solution*\
4 for CSo ∈ CS do
5 DPM ← Find DPs within the τ distance from CSo
6 end

7 * Handle the constraint violation *\
8 if DPM 6= DP then
9 for (DPi /∈ DPM)&(DPi ∈ DP) do

10 D.append(DPi)
11 end

12 * Repeat the process until a feasible solution is found or the budget is
exhausted *\

13 while b ≤ β0 do

14 * Search the database for the solution *\
15 SimS = TraverseDB(S,D,DB)
16 CS r = ApplySolution(SimS, Ci,D, b,DB)
17 * Check the constraint violation in the new solution *\
18 for CSo ∈ CS r do
19 DPM ← Find DPs within the τ distance from CSo
20 end
21 if DPM == D then

22 * No violation - Get the repaired solution *\
23 return CS ⋃ CS r

24 end
25 else

26 * Violation - Increase the budget *\
27 b← (b + ∆)
28 end
29 end
30 return No feasible solution
31 end
32 else
33 * No violation *\
34 return CS
35 end

5.4. Chargers at Each Charging Station (Additional Objective)

Once a solution for the primary objective is obtained from our database, we proceed
to solve an ILP problem in order to integrate the additional constraints into the estimated
solution. We have referred to this as Problem 2. Our experimental observations indicate
that the proposed approach has the capability to include a wide variety of additional
constraints and objective functions. Nevertheless, the present version of the work presents
a proof of concept by considering only the additional electrical constraints, queuing time,

Smart Cities 2023, 6 3080

and traffic information. Equation (2) (see Section 3.1) introduces the concept of adding
multiple chargers at each charging station, which can easily be found by solving an ILP
problem. Note that the size of this problem is much smaller than our original problem,
where our solution space was much larger. Here, we just have to determine the capacity (in
terms of the number of chargers) of each CCS.

For our experiments, we formulate an ILP, which is in line with the equations shown
in Section 3.1. The ILP problem returns the optimal number of chargers at each location
(CS). We observe that the execution time for these ILPs is very small as compared to the
ILP for Problem 1, due to the fact that its search space is much lower.

6. Results and Discussion

In this section, we shall discuss the evaluation methodologies that are used to compare
PC-ILP to other state-of-the-art algorithms. In addition, we characterize the effect of
different shapes on the performance of the solution obtained by PC-ILP for various cities.

6.1. Setup

The details of the system setup along with all the software and hardware configurations
are shown in Table 1. We have developed an in-house tool named MapperCS (map-based
tool using persistence homology for charging station placement), which runs on MacOS,
Windows, and Ubuntu. The tool has an interactive map in the center of the screen with
two side panes. MapperCS takes map data from OpenStreetMaps [35] using the overpass [65]
API, filters out many details, and retains the street data, which are used to create the CCSs
via a manual annotation process. Figure 12 shows a screenshot of the MapperCS tool. This
highly interactive tool is designed to perform many operations on the city map using two
interactive side panes. The users can not only annotate the DPs and potential CSs, but they
can also perform more complex operations, such as clustering the CCSs, and run an ILP for
a given set of constraints.

Console
The console is where we observe
 the status of different operations. Navigation window

Using this window we can navigate
through the differnt clusters

and visualize them on the interactive map.
This window allows us to run various analyses

 such as ILP, SUMO, clustering, shape detection.

Analysis window

Interactive map

Figure 12. A screenshot of the MapperCS tool.

I Benchmarks: We consider the top 50 cities by population (source: [66]). We focus on the
areas that have a high population density in the cities (35–387 km2). The details are shown
in Table 4. We can make some broad observations based on the maps of the cities (also

Smart Cities 2023, 6 3081

visualized using our MapperCS tool). We observe that American cities have historically
been laid out as grids (meshes), whereas European towns have predominantly adopted a
radial organization (all the arterial roads are oriented towards the center of the city). We
show two examples in Figure 13 for sections of downtown Paris and New York.

A set of CCSs from OpenStreetMap

(a)

A set of CCSs from OpenStreetMap

(b)

Figure 13. Sections of cities studied using MapperCS: (a) radial (Paris, France); (b) mesh-based (New
York City, USA).

Table 4. The list of cities considered in our work.

City, Country Area (km2) City, Country Area (km2) City, Country Area (km2)

New York, USA 386.79 Lima, Peru 241.31 Lahore, Pakistan 160.17
Paris, France 102.34 Xian, China 220.28 Mumbai, India 291.42

Karachi, Pakistan 153.01 Beijing, China 207.69 Moscow, Russia 128.10
Rio de Janeiro,

Brazil 171.39 Shanghai, China 157.75 Bangalore, India 125.20

Lagos, Nigeria 165.09 Seoul, South Korea 166.19 Ahmedabad, India 147.39

Hyderabad, India 276.80 Manila,
Philippines 151.15 Chicago, USA 139.47

Bogota, Colombia 205.81 Chennai, India 127.07 Delhi, India 257.32
Tokyo, Japan 169.75 Sao Paulo, Brazil 240.79 Hangzhou, China 162.14
Tianjin, China 114.95 Istanbul, Turkey 270.62 Nanjing, China 300.42
Ho Chi Minh,

Vietnam 179.39 Kinshasa, Congo 153.25 Cairo, Egypt 170.04

Madrid, Spain 173.26 Chongqing, China 352.70 Osaka, Japan 111.54
Jakarta, Indonesia 183.40 Kolkata, India 150.39 Chengdu, China 170.70

Buenos Aires,
Argentina 158.54 Los Angeles, USA 177.53 Dhaka, Bangladesh 185.52

Luanda, Angola 216.53 Kuala Lumpur,
Malaysia 287.39 Tehran, Iran 128.08

London, UK 106.80 Nagoya, Japan 103.43 Hong Kong, China 316.96

Shenzhen, China 140.79 Guangzhou, China 132.14 Mexico city,
Mexico 192.33

Wuhan, China 198.08 Bangkok, Thailand 183.51 Berlin, Germany 35.80

I Dataset for the CNN-based algorithm: The shapes of the clusters of CCSs are identified
using a CNN model (see Section 5.2.4). The training dataset contains clusters that can be
classified into five basic shapes, namely, circle, mesh, star, line, and concentric circle. Each
cluster is defined by its point cloud representation and the PD of its MAT. We trained our
model using synthetic data, because in this case we can generate as much as synthetic data
as we want (we are not limited by the training set size or real-world constraints regarding
the availability of data). For instance, if we want to generate synthetic data for a star, then
we lay a random number of points out as a star, and then perturb them randomly. In this

Smart Cities 2023, 6 3082

way, we can generate a lot of training examples for a given topology. The same approach
can be repeated for other topologies and we can continue training our model. Note that
there is no need for manual annotation here because we already know which basic shape a
given point cloud corresponds to. We used the point clouds (CCS locations) in the 50 cities
as test cases. Table 5 shows the number of shapes found across our dataset of 50 cities.

Table 5. Shapes found in our dataset comprising 50 cities.

Shape Data Points

Circle 3600
Line 2889
Star 2189

Concentric circle 1248
Mesh 203

6.2. Parameters for the Creation of the Precomputed Database
6.2.1. Number of Zones in Each Shape

The number of zones within a shape affects the total number of DP distribution
patterns, which in turn influences the size of the database. We perform extensive exper-
iments to find the total number of zones in each basic shape. We estimate the cost (see
Equation (1a)) using ILP for two scenarios: (a) when the DP is located in the centroid of the
zone; and (b) when the DP is located anywhere else in the zone.

We considered 250 randomly generated patterns for DPs (for a given number of
CCSs, budgets, and reachability radii) and computed the difference in the costs for the two
scenarios for a given number of zones. This experiment was repeated by increasing the
number of zones in a shape. The results for the average cost difference for different shapes
are shown in Figure 14. We observe that after a certain limit, the difference in the cost
reduces and reaches a saturation point; the knee point is used to set the number of zones
in a shape. We conclude that we should divide the circles into 20 zones, whereas stars,
meshes, and lines should be divided into 16 zones, and finally, concentric circles should be
divided into 24 zones. In our experiments, these were found to be the optimal values.

6.2.2. Reachability Distance (τ)

The reachability distance (τ) denotes the maximum distance that an EV user needs
to travel from the DP to the nearest CS to charge the EV. We performed exhaustive ex-
perimentation to analyze the effect of the reachability distance on the cost of the solution.
For each shape, we first computed the ILP solution with τ = τinput, where τinput is the
input reachability distance. After this, we computed the ILP with τ ∈ [0.2τinput, 2τinput].
Figure 15 shows the variation in the cost function with the reachability distance for a circle
with a constant budget of four CSs, 117 CCSs, and three DPs. We observe that after a certain
value of the reachability distance, the cost of the solution remains nearly constant. A similar
observation is highlighted by Gopalakrishnan et al. [67]. We ensure that the database has
solutions for all potential values of the reachability distance prior to the saturation point
for different combinations of the DP distribution and the budget.

Smart Cities 2023, 6 3083

zones

(a) (b) (c)

(d) (e)
Figure 14. Number of zones versus the average difference in the cost for different shapes (arithmetic
mean): (a) circle; (b) concentric circle; (c) mesh; (d) star (e) line. The green line represents the
knee point.

(m
)

distance

Figure 15. Variation in the cost with respect to the reachability distance.

6.2.3. Budget (β)

We allocate a budget to a city that represents the total number of CSs that can be
placed in the city. However, we know that placing a CS without demand wastes resources.
Therefore, the budget and the demand points are directly related. In the worst-case scenario,
each DP will have its own CS. Therefore, the total number of CSs (or budget) can never
exceed the number of DPs. This establishes an upper limit on the budget.

Additionally, we observe that our clusters are created in such a way that a cluster
can have a maximum of three demand points. This is because big cities may consist of
many small-sized clusters as the ToMATo-clustering generates many small clusters, as
shown in Section 5.2.3, and demand points will be divided across these small clusters. We
experimentally validated that a cluster with more than three DPs is quite unlikely. We
ensure that our database contains all possible solutions within the specified budget range
for each cluster.

6.3. Performance Analysis

In this section, we evaluate our schemes for a set of micro- and macrobenchmarks. We
consider two metrics for evaluation: 1 the execution time of each algorithm and 2 the
cost of the solution provided by the algorithm (see Equation (1a)).

Smart Cities 2023, 6 3084

6.3.1. Microbenchmarks

To evaluate the efficiency of PC-ILP, we compare it against the standard ILP
approach [47] (timeout set to 1 h), the state-of-the-art lazy greedy with efficient gain (LGEG)
algorithm [8], and a fast metaheuristic JAYA algorithm [5], which uses a genetic algorithm.
As the ILP algorithm is time- and memory-intensive, we compare the algorithms on a
microbenchmark, which is a section of Berlin, Germany. We select an area of 32.50 km2

which contains approximately 4100 CCSs. We reduce the number of CCSs in this area to
2500 due to the memory constraints of the ILP. We choose 30 DPs and a budget of 35 CSs.
The DPs are generated uniformly at random, similar to Lam et al. [68]. Additionally, in
order to run the ILP with the given setup, we set an upper bound on the execution time to
avoid memory overflow. After exhaustive experimentation, we selected an upper bound of
3600 s.
I Cost vs. budget: We evaluate the performance of the algorithms by gradually increasing
the allocated budget while keeping the CCSs and DPs fixed.

Figure 16 compares the solutions provided by the various algorithms against the
allocated budget. Figure 16a shows that the cost of the solution provided by JAYA and
LGEG is worse than both ILP and PC-ILP. Specifically, PC-ILP outperforms LGEG by
38.87% and JAYA by 5.09 times with respect to the solution cost, which is expected as
LGEG is not operating exhaustively on the CCSs and DPs, and genetic algorithms are
known to scale poorly against complexity due to the exponential increase in the size of the
search space.

(a) (b)
Figure 16. A comparison between PC-ILP, state-of-the-art LGEG, standard ILP, and JAYA against the
budget: (a) cost; (b) performance.

Upon closer inspection, we see that the solutions provided by PC-ILP are marginally
better than the ILP solutions. Figure 16b shows that PC-ILP and LGEG are faster than stan-
dard ILP. This is expected as the ILP is more time- and memory-intensive than both LGEG
and PC-ILP. We also observe that PC-ILP provides an average performance improvement
of 3.27 times over LGEG and a 289.37 times speedup vis-a-vis JAYA.
I Cost vs. DPs: Next, we study the impact of gradually increasing the number of DPs
while keeping the CCSs and the budget constant. We evaluate the algorithms on the same
metrics as before. Figure 17 compares the three algorithms plotted against increasing DPs.
Figure 17a shows that PC-ILP performs better than the standard ILP, LGEG, and JAYA over
the entire range of DPs with respect to cost. We also observe that all costs rise with an
increase in the number of DPs. This is due to the budget being constant.

Figure 17b shows that the performance of PC-ILP is unaffected by the number of DPs,
as the execution time of PC-ILP is directly proportional to the number of clusters and the
time taken to process the DPs is minimal. On the other hand, the performance of LGEG
and JAYA deteriorates with a gradual increase in DPs since the execution time of LGEG

Smart Cities 2023, 6 3085

depends on the number of DPs and CCSs, while the execution time of JAYA depends on
the budget, CCSs, and DPs.
Summary: We have thus established that PC-ILP performs far better than LGEG, JAYA, and
standard ILP while providing marginally better solutions at the same time. Subsequently,
we focus on estimating the performance of all the algorithms on a set of macrobenchmarks.

(a) (b)
Figure 17. A comparison between PC-ILP, state-of-the-art LGEG, standard ILP, and JAYA against the
number of DPs: (a) cost; (b) performance.

6.3.2. Macrobenchmarks: 50 Cities

Next, we evaluate the performance of PC-ILP against ILP, LGEG, and JAYA on a set
of macrobenchmarks with the same hardware configurations as mentioned in Table 1. We
run this code on our full set of 50 cities. Because of a lack of space, we shall only present
the results for 14 cities (representative ones). Figure 18 shows the costs of the solutions
provided by PC-ILP, ILP, LGEG, and JAYA along with their average performance.

We observe that, on average, PC-ILP provides a solution that is 36.62% better than ILP
under the same system configurations, while providing 21.09% better solutions than LGEG
and 30.34% better solutions than JAYA. Figure 19 shows the time taken to compute the
solution using PC-ILP and the ILP for some cities, along with the average execution time
for across all cities. We observe that PC-ILP is nearly 1.5 times faster than LGEG, 1.78 times
faster than JAYA and 30 times faster than ILP.

Figure 18. Comparison of the cost of the solutions for different cities.

Figure 19. Comparison of the performance for different cities.

Smart Cities 2023, 6 3086

6.4. Scalability Analysis

In this section, we evaluate the scalability of the proposed scheme with an increasing
number of CCSs. We compute the execution time while increasing the total number of
CCSs linearly, as shown in Figure 20. We observe that PC-ILP scales linearly with an increase in
CCSs and clusters, whereas the standard ILP is known to be an NP-hard problem and will not scale
in the same way. This means that the proposed scheme performs 30 times better than the
standard ILP method for large-area city maps under the given system configuration and
assumptions. The costs of the solutions in both the methods remain nearly the same.

Figure 20. Performance comparison of PC-ILP and standard ILP for different number of CCSs.

6.5. Overheads of Fixing Violated Constraints

We note that when we repair the solution upon discovering the violation of any
constraint, an additional cost is borne. Constraints are violated in only 6 of the 50 actual
real-world cities (only 12% of cases). After repairing the solution and fixing the constraint
violation, we are able to obtain a solution for all the real-world use cases (real cities). For
reference, an average-sized cluster is approximately 250,000 m2. Without corrections in
these cases, the average cost (i.e., cost for an average-sized cluster) is 44.94 m (average
distance from a DP to its mapped CS). After the corrections, an additional cost of 4.87 m is
borne, bringing the total cost to 49.81 m and only an additional 4% of the total execution
time is spent on repairing the solution.

6.6. Overheads of Adding Additional Constraints

We evaluated the proposed scheme with a set of additional constraints (detailed in
Section 3.1). For this evaluation, we consider the same section of Berlin, Germany, with
500 CCSs, 10 DPs, a CSs’ budget (β) of 3, a chargers’ budget (βa) of 30, traffic monitoring
time (tc) of 24 h, and EV charging time (ts) of 30 min (same as [69]). We incorporate the
traffic information using the SUMO traffic simulator, as shown in Figure 21. The simulator
provides us with the traffic estimate at each CS. Figure 21 depicts the total number of
chargers placed at each CS using the proposed algorithm.

We observe that the cost of the PC-ILP and ILP solutions are nearly the same as
both algorithms place their CSs in nearly the same locations. The time taken to generate
a solution using a combination of PC-ILP along with ILP (for additional constraints) is
34.6 s, while the time taken by standard ILP is 112.7 s, with nearly the same cost. So, we
conclude that the proposed technique can accommodate any extra constraints with minimal
performance loss.

Smart Cities 2023, 6 3087

1 Chargers

712

5

Figure 21. Experiment: charging station placement with additional constraints. A section of Berlin,
Germany. The numeric digits represent the number of chargers placed in a charging station.

7. Related Work

We extensively analyzed prior work and classified the proposed solutions for solving
the EV charging placement problem into three main families of approaches: 1 mathematical-
programming-based approaches [70,71]; 2 heuristic- or metaheuristic-based
approaches [5,21,72]; and 3 hybrid approaches [13,73–76].

7.1. Mathematical-Programming-Based Approaches

The mathematical-programming-based approaches commonly define the task of de-
termining the optimal placement of charging stations as an optimization problem, wherein
the objective functions are created based on different criteria such as the maximum dis-
tance between a DP and CS or the number of CSs. This family of approaches includes
several classical approaches such as ILP, quadratic programming, mixed-integer nonlinear
programming (MINLP), etc.

Brandstatter et al. [70] propose utilizing ILP optimization models in order to find
the optimal location and sizes (number of chargers) of CSs by considering the expected
number of trips made by a shared EV based on the user demand and battery state. They
use the IBM ILOG CPLEX solver as a means of solving this problem and show that the
problem exhibits NP-hardness when either the budget or the battery capacity of EVs is
constrained. However, if we assume that both the budget and the battery capacity are not
constrained, the problem may be solved efficiently in polynomial time. Sadly, this is not a
realistic assumption. Similarly, Ullah et al. [2] employ multiple sets of constraints with a
classical ILP approach to ensure a good coverage by each CS, but this approach is extremely
time-consuming and memory-intensive. Furthermore, the authors fail to take into account
the queuing time and traffic density in the given region, making the implementation of the
proposed strategy unfeasible for real-world settings.

Kockelman et al. [71] used mixed-integer programming techniques to optimize the
problem of CS placement, taking into account the parking demand and the costs paid by
users in accessing the CS. The estimation of parking demand was conducted by consider-
ing the factors such as site accessibility, local employment opportunities, and population
densities. The approach only determined the ideal neighborhoods for the placement of
CSs, it did not specify the exact location and size of the CSs. Additionally, the majority
of mathematical-programming-based solutions have the drawback of requiring substan-
tial computational and storage resources, which serves as the greatest barrier to their
deployment in real-world scenarios.

Smart Cities 2023, 6 3088

7.2. Heuristic-Based Approaches

Heuristic-based approaches have been shown to effectively solve big and complex
optimization models in an efficient manner when compared to mathematical-programming-
based methods.

Lam et al. [72] propose and analyze multiple approaches to solve the CS placment
problem; they highlight the fact that a greedy approach is most helpful and proves to
be the most scalable if we want to solve the problem in polynomial time. However, the
authors only consider the reachability distance and the coverage by the CSs; they do not
account for the queuing time and traffic conditions, limiting the solution’s applicability in
real-world scenarios. Zhang et al. [8] present two heuristic-based approaches, lazy greedy
with direct gain (LGDG) and lazy greedy with effective gain (LGEG), utilizing a greedy
algorithm to determine the ideal location of charging stations. They take into account
multiple constraints like the charging demand, budget, and cruising range. They utilize
real-world GPS trajectory data spanning a duration of 87 days, obtained from taxi cabs in
Beijing, China, to obtain an estimate of the high-demand trajectories. However, the authors
only considered parking lots to be potential CSs, which limits the applicability of their
scheme. Also, the application of such approaches in large-scale road networks presents
obstacles due to the computationally intensive nature of their algorithm.

Shaoyun et al. [21] proposed a method of finding the optimal locations and sizes of
the charging stations by dividing a given area into small identical partitions. The number
of initial partitions was estimated based on the charging demand of EVs as well as on
the maximum and minimum capacity of a charging station. The loss was estimated as
the sum of weighted distances from the CS to the demand points. A genetic algorithm
was used to provide the final number of charging stations by minimizing the loss and
adjusting the number and coverage of the partitions accordingly. Sadly, the queuing time
and traffic density of the roads were not considered during the formation of the initial
partition, which implies that the solution is scenario-specific and is not universal. Mohanty
et al. [5] employed another population-based metaheuristic algorithm, known as JAYA,
to determine the ideal sites for charging stations (CSs) with the aim of reducing both the
installation and operation costs associated with the CSs. Our analyses show that PC-ILP is
not only faster than the JAYA algorithm but can generate 30% better solutions.

7.3. Hybrid Approaches

Hybrid approaches are techniques where a combination of multiple schemes (greedy
algorithm, genetic algorithm, ILP, MILNP, etc.) are used to solve the CS placement problem.
Awasthi et al. [73] employ a hybrid approach that combines a genetic algorithm with an
enhanced version of standard particle swarm optimization in order to determine the ideal
placement and size of the CSs. The particle swarm optimization method is capable of
optimizing the sub-optimal solution estimated using the genetic algorithm, resulting in
improved algorithm functionality and enhanced solution quality.

Kavianipour et al. [13] also estimate the locations for charging stations and the number
of chargers at each location by employing a decomposition-based strategy (similar to our
hierarchical strategy) that minimizes the total system cost, which includes the charging
station and charger installation costs. The initial subproblem uses commercially available
solvers and a metaheuristic algorithm to determine the precise location of the charging
stations. This subproblem also generates the information about the traffic flow and energy
demand at each CS. This information is sent to the subsequent subproblem, which is
a nonlinear mixed-integer mathematical model that determines the optimal number of
chargers to be installed at each of these stations in order to minimize both the charger
installation cost and the waiting time.

PC-ILP also employs a hybrid strategy, in which we first estimate the location of
charging stations using a hierarchical decomposition framework that uses a topological
clustering algorithm to divide a large city area into clusters. Then, we estimate the location
of CSs in each cluster using a precomputed database. In the second phase, we estimate the

Smart Cities 2023, 6 3089

optimal number of chargers in each location using ILP based on the traffic and electrical
constraints. This strategy enables us to break down the large complex CS placement and
sizing problem into simpler components, thus enhancing the computational speed and
memory requirements while maintaining the quality of the solution.

8. Conclusions

The problem of EV charging station placement is a classical problem, which is both
old and new. There are no two opinions about the fact that it is an established problem
and there are numerous metaheuristic algorithms and pseudo-polynomial time algorithms
that provide good solutions. However, the reason that this problem still represents an
active area of research is that citizens are not in the loop and there is a lot of scope for
further improvement. We need to understand that any solution for a smart city will have
to take into account the unique design of the city, its history, and the will of the residents.
Hence, there needs to be a way to have citizens in the loop whenever there is some kind of
automated city planning. Often, it is hard to represent such desires mathematically and any
attempt to achieve this using standard metrics such as reducing traffic congestion or the
distance between DPs and its mapped CSs leads to either very complex solutions or very
time-consuming ones that are not intuitive. Hence, we opted for a very different line of
thinking in this paper. We relied on the fact that regardless of the city, it is always composed
of five basic primitives (with some variation).

Using these primitives as the basic design elements, we can create intuitive methods
to analyze the map of a city, partition it, propose bespoke solutions for each separate cluster,
and precompute solutions for each cluster (based on the basic primitives). Precomputation
leads to a large speedup and also leads to solutions that are explainable and carry a degree
of intuition.

The other major design decision that we used in this paper was the use of surrogate
functions and a subsequent repair-based methodology. This allowed us to hierarchically
decompose both the map of the city as well as the set of constraints. We were able to
compute small solutions and combine them. Whenever a constraint was violated, we were
able to quickly fix the violation using our repair function. Along with speed, the advantage
of this approach lies in the fact that we can accommodation an arbitrary number of complex
constraints and secondary objective functions that are based on variables like the queuing
time, traffic density, nature, and amount of electrical loading (discussed in Section 3.1), etc.
We expect that this paper will illuminate the path of intuitive topology-driven approaches
for future work in this area.

Author Contributions: Conceptualization, M.B., B.R.D., N.S. and S.R.S.; methodology, M.B., B.R.D.,
N.S. and S.R.S.; software, M.B. and B.R.D.; validation, N.S. and S.R.S.; formal analysis, N.S. and S.R.S.;
writing—original draft preparation, M.B. and B.R.D.; writing—review and editing, N.S. and S.R.S.;
supervision, S.R.S.; project administration, S.R.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data will be available on request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional neural network
EV Electric vehicle
CCSs Candidate charging stations
CS Charging station
DP Demand point
ILP Integer linear programming

Smart Cities 2023, 6 3090

PC-ILP Persistence-based clustering-assisted integer linear programming
MAT Medial axis transform
DBSCAN Density-based spatial clustering of applications with noise
SUMO Simulation of Urban Mobility
PD Persistence diagram
ToMATo Topological mode analysis tool
LGEG Lazy greedy with effective gain
LGDG Lazy greedy with direct gain
MINLP Mixed-integer nonlinear programming

References
1. Kapustin, N.O.; Grushevenko, D.A. Long-term electric vehicles outlook and their potential impact on electric grid. Energy Policy

2020, 137, 111103. [CrossRef]
2. Ullah, I.; Liu, K.; Layeb, S.B.; Severino, A.; Jamal, A. Optimal Deployment of Electric Vehicles’ Fast-Charging Stations. J. Adv.

Transp. 2023, 2023, 6103796. [CrossRef]
3. Zhong, P.; Xu, A.; Kang, Y.; Zhang, S.; Zhang, Y. An optimal deployment scheme for extremely fast charging stations. Peer-to-Peer

Netw. Appl. 2022, 15, 1486–1504. [CrossRef]
4. Shafiei, M.; Ghasemi-Marzbali, A. Fast-charging station for electric vehicles, challenges and issues: A comprehensive review. J.

Energy Storage 2022, 49, 104136. [CrossRef]
5. Mohanty, A.K.; Babu, P.S. Optimal Placement of Electric Vehicle Charging Stations Using JAYA Algorithm. In Proceedings of the

Recent Advances in Power Systems; Gupta, O.H., Sood, V.K., Eds.; Springer: Singapore, 2021; pp. 259–266.
6. Zafar, U.; Bayram, I.S.; Bayhan, S. A GIS-based Optimal Facility Location Framework for Fast Electric Vehicle Charging Stations.

In Proceedings of the 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), Kyoto, Japan, 20–23 June 2021; pp.
1–5. [CrossRef]

7. Wu, X.; Feng, Q.; Bai, C.; Lai, C.S.; Jia, Y.; Lai, L.L. A novel fast-charging stations locational planning model for electric bus transit
system. Energy 2021, 224, 120106. [CrossRef]

8. Zhang, Y.; Wang, Y.; Li, F.; Wu, B.; Chiang, Y.Y.; Zhang, X. Efficient Deployment of Electric Vehicle Charging Infrastructure:
Simultaneous Optimization of Charging Station Placement and Charging Pile Assignment. IEEE Trans. Intell. Transp. Syst. 2021,
22, 6654–6659. [CrossRef]

9. Fang, C.; Lu, H.; Hong, Y.; Liu, S.; Chang, J. Dynamic Pricing for Electric Vehicle Extreme Fast Charging. Trans. Intell. Transport.
Syst. 2020, 22, 531–541. [CrossRef]

10. Bilal, M.; Rizwan, M.M. Electric vehicles in a smart grid: A comprehensive survey on optimal location of charging station. IET
Smart Grid 2020, 3, 267–279. [CrossRef]

11. Vazifeh, M.M.; Zhang, H.; Santi, P.; Ratti, C. Optimizing the deployment of electric vehicle charging stations using pervasive
mobility data. Transp. Res. Part A Policy Pract. 2019, 121, 75–91. [CrossRef]

12. Khan, W.; Ahmad, F.; Alam, M.S. Fast EV charging station integration with grid ensuring optimal and quality power exchange.
Eng. Sci. Technol. Int. J. 2019, 22, 143–152. [CrossRef]

13. Kavianipour, M.; Fakhrmoosavi, F.; Singh, H.; Ghamami, M.; Zockaie, A.; Ouyang, Y.; Jackson, R. Electric vehicle fast charging
infrastructure planning in urban networks considering daily travel and charging behavior. Transp. Res. Part D Transp. Environ.
2021, 93, 102769. [CrossRef]

14. Sachan, S.; Deb, S.; Singh, S.N.; Singh, P.P.; Sharma, D.D. Planning and operation of EV charging stations by chicken swarm
optimization driven heuristics. Energy Convers. Econ. 2021, 2, 91–99. [CrossRef]

15. Wang, J. Optimization of Ev Charging Pile Layout on Account of Ant Colony Algorithm. In Proceedings of the Cyber Security
Intelligence and Analytics; Xu, Z., Alrabaee, S., Loyola-González, O., Cahyani, N.D.W., Ab Rahman, N.H., Eds.; Springer Nature:
Cham, Switzerland, 2023; pp. 450–458.

16. Garcia Alvarez, J.; González, M.Á.; Rodriguez Vela, C.; Varela, R. Electric vehicle charging scheduling by an enhanced artificial
bee colony algorithm. Energies 2018, 11, 2752. [CrossRef]

17. Yang, H.; Gao, Y.; Farley, K.B.; Jerue, M.; Perry, J.; Tse, Z. EV usage and city planning of charging station installations. In
Proceedings of the 2015 IEEE Wireless Power Transfer Conference (WPTC), Boulder, CO, USA, 13–15 May 2015; pp. 1–4.
[CrossRef]

18. Mahadeva Iyer, V.; Gulur, S.; Gohil, G.; Bhattacharya, S. Extreme fast charging station architecture for electric vehicles with partial
power processing. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio,
TX, USA, 4–8 March 2018; pp. 659–665. [CrossRef]

19. Liu, Y.; Zhu, Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 2019, 4, 540–550.
[CrossRef]

20. Chen, X.; Li, Z.; Dong, H.; Hu, Z.; Mi, C. Enabling Extreme Fast Charging Technology for Electric Vehicles. IEEE Trans. Intell.
Transp. Syst. 2021, 22, 466–470. [CrossRef]

http://doi.org/10.1016/j.enpol.2019.111103
http://dx.doi.org/10.1155/2023/6103796
http://dx.doi.org/10.1007/s12083-022-01306-7
http://dx.doi.org/10.1016/j.est.2022.104136
http://dx.doi.org/10.1109/ISIE45552.2021.9576448
http://dx.doi.org/10.1016/j.energy.2021.120106
http://dx.doi.org/10.1109/TITS.2020.2990694
http://dx.doi.org/10.1109/TITS.2020.2983385
http://dx.doi.org/10.1049/iet-stg.2019.0220
http://dx.doi.org/10.1016/j.tra.2019.01.002
http://dx.doi.org/10.1016/j.jestch.2018.08.005
http://dx.doi.org/10.1016/j.trd.2021.102769
http://dx.doi.org/10.1049/enc2.12030
http://dx.doi.org/10.3390/en11102752
http://dx.doi.org/10.1109/WPT.2015.7139139
http://dx.doi.org/10.1109/APEC.2018.8341082
http://dx.doi.org/10.1038/s41560-019-0405-3
http://dx.doi.org/10.1109/TITS.2020.3045241

Smart Cities 2023, 6 3091

21. Ge, S.; Feng, L.; Liu, H. The planning of electric vehicle charging station based on Grid partition method. In Proceedings of
the 2011 International Conference on Electrical and Control Engineering, Yichang, China, 16–18 September 2011; pp. 2726–2730.
[CrossRef]

22. Du, B.; Tong, Y.; Zhou, Z.; Tao, Q.; Zhou, W. Demand-aware charger planning for electric vehicle sharing. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp.
1330–1338. [CrossRef]

23. Emelichev, V.; Girlich, E.; Nikulin, Y.; Podkopaev, D. Stability and Regularization of Vector Problems of Integer Linear Program-
ming. Optimization 2002, 51, 645–676. [CrossRef]

24. Sriabisha, R.; Yuvaraj, T. Optimum placement of Electric Vehicle Charging Station using Particle Swarm Optimization Algorithm.
In Proceedings of the 2023 9th International Conference on Electrical Energy Systems (ICEES), Tokyo, Japan, 13–14 November
2023; pp. 283–288.

25. Zhang, L.; Gao, T.; Cai, G.; Hai, K.L. Research on electric vehicle charging safety warning model based on back propagation
neural network optimized by improved gray wolf algorithm. J. Energy Storage 2022, 49, 104092. [CrossRef]

26. Jordanov, I.; Jain, R. Knowledge-Based and Intelligent Information and Engineering Systems; Springer: Berlin/Heidelberg, Germany,
2010.

27. Fredriksson, H.; Dahl, M.; Holmgren, J. Optimal placement of charging stations for electric vehicles in large-scale transportation
networks. Procedia Comput. Sci. 2019, 160, 77–84. [CrossRef]

28. Chaieb, M.; Jemai, J.; Mellouli, K. A hierarchical decomposition framework for modeling combinatorial optimization problems.
Procedia Comput. Sci. 2015, 60, 478–487. [CrossRef]

29. Koch, P.; Bagheri, S.; Konen, W.; Foussette, C.; Krause, P.; Bäck, T. A new repair method for constrained optimization.
In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, Madrid, Spain, 11–15 July 2015;
pp. 273–280.

30. Bagheri, S.; Konen, W.; Emmerich, M.; Bäck, T. Self-adjusting parameter control for surrogate-assisted constrained optimization
under limited budgets. Appl. Soft Comput. 2017, 61, 377–393. [CrossRef]

31. Batty, M.; Longley, P.A. Fractal Cities: A Geometry of Form and Function; Academic Press: Cambridge, MA, USA, 1994.
32. Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing.

ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [CrossRef]
33. Amenta, N.; Choi, S.; Kolluri, R.K. The power crust, unions of balls, and the medial axis transform. Comput. Geom. 2001,

19, 127–153. [CrossRef]
34. Patel, A. Generalized persistence diagrams. J. Appl. Comput. Topol. 2018, 1, 397–419. [CrossRef]
35. OpenStreetMap Contributors. 2017. Available online: https://planet.osm.org (accessed on 16 June 2023).
36. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 1 January 1967; pp. 281–297.
37. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with

Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA,
2–4 August 1996; pp. 226–231.

38. Ankerst, M.; Breunig, M.M.; Kriegel, H.P.; Sander, J. OPTICS: Ordering Points to Identify the Clustering Structure. SIGMOD Rec.
1999, 28, 49–60. [CrossRef]

39. Chazal, F.; Guibas, L.J.; Oudot, S.Y.; Skraba, P. Persistence-Based Clustering in Riemannian Manifolds. J. ACM 2013, 60, 1–38.
[CrossRef]

40. Lee, D.T. Medial Axis Transformation of a Planar Shape. IEEE Trans. Pattern Anal. Mach. Intell. 1982, PAMI-4, 363–369. [CrossRef]
41. Chazal, F.; Michel, B. An Introduction to Topological Data Analysis: Fundamental and Practical Aspects for Data Scientists. Front.

Artif. Intell. 2021, 4, 108. [CrossRef]
42. Maria, C.; Dlotko, P.; Rouvreau, V.; Glisse, M. Rips complex. In GUDHI User and Reference Manual, 3.8.0 ed.; GUDHI Editorial

Board: 2023. Available online: https://gudhi.inria.fr/python/latest/rips_complex_user.html (accessed on 16 August 2023).
43. Rouvreau, V.; Montassif, H. Čech complex. In GUDHI User and Reference Manual, 3.8.0 ed.; GUDHI Editorial Board: 2023.

Available online: https://gudhi.inria.fr/doc/latest/group__cech__complex.html (accessed on 16 August 2023).
44. Goričan, P.; Virk, Ž. Critical Edges in Rips Complexes and Persistence. 2023. Available online: http://xxx.lanl.gov/abs/2304.05185

(accessed on 16 August 2023).
45. Krajzewicz, D. Traffic Simulation with SUMO—Simulation of Urban Mobility. In Fundamentals of Traffic Simulation; Springer:

New York, NY, USA, 2010; pp. 269–293. [CrossRef]
46. Rao, R. Jaya: A Simple and New Optimization Algorithm for Solving Constrained and Unconstrained Optimization Problems.

Int. J. Ind. Eng. Comput. 2016, 7, 19–34.
47. Dilip, K.N. Optimal Placement of Electric Vehicle Charging Stations with Electricity Theft Control; Indian Institute of Technology Delhi:

New Delhi, India, 2020.
48. Chen, H.; Hu, Z.; Luo, H.; Qin, J.; Rajagopal, R.; Zhang, H. Design and Planning of a Multiple-Charger Multiple-Port Charging

System for PEV Charging Station. IEEE Trans. Smart Grid 2019, 10, 173–183. [CrossRef]
49. Zhang, H.; Hu, Z.; Xu, Z.; Song, Y. Optimal Planning of PEV Charging Station with Single Output Multiple Cables Charging

Spots. IEEE Trans. Smart Grid 2017, 8, 2119–2128. [CrossRef]

http://dx.doi.org/10.1109/ICECENG.2011.6057636
http://dx.doi.org/10.1145/3219819.3220032
http://dx.doi.org/10.1080/0233193021000030760
http://dx.doi.org/10.1016/j.est.2022.104092
http://dx.doi.org/10.1016/j.procs.2019.09.446
http://dx.doi.org/10.1016/j.procs.2015.08.169
http://dx.doi.org/10.1016/j.asoc.2017.07.060
http://dx.doi.org/10.1016/j.isprsjprs.2020.12.010
http://dx.doi.org/10.1016/S0925-7721(01)00017-7
http://dx.doi.org/10.1007/s41468-018-0012-6
https://planet.osm.org
http://dx.doi.org/10.1145/304181.304187
http://dx.doi.org/10.1145/2535927
http://dx.doi.org/10.1109/TPAMI.1982.4767267
http://dx.doi.org/10.3389/frai.2021.667963
https://gudhi.inria.fr/python/latest/rips_complex_user.html
https://gudhi.inria.fr/doc/latest/group__cech__complex.html
http://xxx.lanl.gov/abs/2304.05185
http://dx.doi.org/10.1007/978-1-4419-6142-6_7
http://dx.doi.org/10.1109/TSG.2017.2735636
http://dx.doi.org/10.1109/TSG.2016.2517026

Smart Cities 2023, 6 3092

50. Garwa, N.; Niazi, K.R. Impact of EV on integration with grid system—A review. In Proceedings of the 2019 8th International
Conference on Power Systems (ICPS), Rajasthan, India, 20–22 December 2019; pp. 1–6.

51. Zhu, J.; Li, Y.; Yang, J.; Li, X.; Zeng, S.; Chen, Y. Planning of electric vehicle charging station based on queuing theory. J. Eng. 2017,
2017, 1867–1871. [CrossRef]

52. Zhao, Z.; Li, X.; Zhou, X. Distribution route optimization for electric vehicles in urban cold chain logistics for fresh products
under time-varying traffic conditions. Math. Probl. Eng. 2020, 2020, 9864935. [CrossRef]

53. Sester, M. Optimization approaches for generalization and data abstraction. Int. J. Geogr. Inf. Sci. 2005, 19, 871–897. [CrossRef]
54. Sakai, T.; Imiya, A. Fast spectral clustering with random projection and sampling. In Proceedings of the International Workshop

on Machine Learning and Data Mining in Pattern Recognition, Leipzig, Germany, 23–25 July 2009; pp. 372–384.
55. Yuan, F.; Sawaya, K.E.; Loeffelholz, B.C.; Bauer, M.E. Land cover classification and change analysis of the Twin Cities (Minnesota)

Metropolitan Area by multitemporal Landsat remote sensing. Remote Sens. Environ. 2005, 98, 317–328. [CrossRef]
56. Yang, Q.; Sun, S.; Deng, S.; Zhao, Q.; Zhou, M. Optimal sizing of PEV fast charging stations with Markovian demand

characterization. IEEE Trans. Smart Grid 2018, 10, 4457–4466. [CrossRef]
57. Sklansky, J.; Gonzalez, V. Fast polygonal approximation of digitized curves. Pattern Recognit. 1980, 12, 327–331. [CrossRef]
58. Ma, Q.; Wu, J.; He, C.; Hu, G. Spatial scaling of urban impervious surfaces across evolving landscapes: From cities to urban

regions. Landsc. Urban Plan. 2018, 175, 50–61. [CrossRef]
59. Sözen, A.; Arcaklıoğlu, E.; Özalp, M.; Çağlar, N. Forecasting based on neural network approach of solar potential in Turkey.

Renew. Energy 2005, 30, 1075–1090. [CrossRef]
60. Jiang, B.; Liu, X. Scaling of geographic space from the perspective of city and field blocks and using volunteered geographic

information. Int. J. Geogr. Inf. Sci. 2012, 26, 215–229. [CrossRef]
61. Panakkat, A.; Adeli, H. Recurrent neural network for approximate earthquake time and location prediction using multiple

seismicity indicators. Comput.-Aided Civ. Infrastruct. Eng. 2009, 24, 280–292. [CrossRef]
62. Ouammi, A.; Zejli, D.; Dagdougui, H.; Benchrifa, R. Artificial neural network analysis of Moroccan solar potential. Renew. Sustain.

Energy Rev. 2012, 16, 4876–4889. [CrossRef]
63. Barber, C.B.; Dobkin, D.P.; Huhdanpaa, H. The Quickhull Algorithm for Convex Hulls. ACM Trans. Math. Softw. 1996, 22, 469–483.

[CrossRef]
64. Rezaei, M. Improving a Centroid-Based Clustering by Using Suitable Centroids from Another Clustering. J. Classif. 2020, 37,

352–365. [CrossRef]
65. OpenStreetMap Wiki Contributors. Overpass API/Overpass QL. OpenStreetMap Wiki, 2023. Page Name: Overpass

API/Overpass QL, Date Retrieved: 4 July 2023 12:04 UTC, Page Version ID: 2550700. Available online: https://wiki.
openstreetmap.org/w/index.php?title=Overpass_API/Overpass_QL&oldid=2550700 (accessed on 15 October 2023).

66. UN. World Urbanization Prospects. 2018. Available online: https://population.un.org/wup/ (accessed on 15 October 2023).
67. Gopalakrishnan, R.; Biswas, A.; Lightwala, A.; Vasudevan, S.; Dutta, P.; Tripathi, A. Demand prediction and placement

optimization for electric vehicle charging stations. arXiv 2016, arXiv:1604.05472.
68. Lam, A.Y.; Leung, Y.W.; Chu, X. Electric vehicle charging station placement. In Proceedings of the 2013 IEEE International

Conference on Smart Grid Communications (SmartGridComm), Vancouver, BC, Canada, 21–24 October 2013; pp. 510–515.
[CrossRef]

69. Veneri, O.; Ferraro, L.; Capasso, C.; Iannuzzi, D. Charging infrastructures for EV: Overview of technologies and issues. In
Proceedings of the 2012 Electrical Systems for Aircraft, Railway and Ship Propulsion, Bologna, Italy, 16–18 October 2012; pp. 1–6.
[CrossRef]

70. Brandstätter, G.; Leitner, M.; Ljubić, I. Location of charging stations in electric car sharing systems. Transp. Sci. 2020, 54, 1408–1438.
[CrossRef]

71. Chen, T.D.; Kockelman, K.M.; Khan, M. The electric vehicle charging station location problem: A parking-based assignment
method for Seattle. In Proceedings of the Transportation Research Board 92nd Annual Meeting, Washington, DC, USA, 13–17
January 2013; Volume 340, pp. 13–1254.

72. Lam, A.Y.S.; Leung, Y.W.; Chu, X. Electric Vehicle Charging Station Placement: Formulation, Complexity, and Solutions. IEEE
Trans. Smart Grid 2014, 5, 2846–2856. [CrossRef]

73. Awasthi, A.; Venkitusamy, K.; Padmanaban, S.; Selvamuthukumaran, R.; Blaabjerg, F.; Singh, A.K. Optimal planning of electric
vehicle charging station at the distribution system using hybrid optimization algorithm. Energy 2017, 133, 70–78. [CrossRef]

74. Battapothula, G.; Yammani, C.; Maheswarapu, S. Multi-objective simultaneous optimal planning of electrical vehicle fast charging
stations and DGs in distribution system. J. Mod. Power Syst. Clean Energy 2019, 7, 923–934. [CrossRef]

75. Sadeghi-Barzani, P.; Rajabi-Ghahnavieh, A.; Kazemi-Karegar, H. Optimal fast charging station placing and sizing. Appl. Energy
2014, 125, 289–299. [CrossRef]

76. Rajabi-Ghahnavieh, A.; Sadeghi-Barzani, P. Optimal Zonal Fast-Charging Station Placement Considering Urban Traffic Circulation.
IEEE Trans. Veh. Technol. 2017, 66, 45–56. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1049/joe.2017.0655
http://dx.doi.org/10.1155/2020/9864935
http://dx.doi.org/10.1080/13658810500161179
http://dx.doi.org/10.1016/j.rse.2005.08.006
http://dx.doi.org/10.1109/TSG.2018.2860783
http://dx.doi.org/10.1016/0031-3203(80)90031-X
http://dx.doi.org/10.1016/j.landurbplan.2018.03.010
http://dx.doi.org/10.1016/j.renene.2004.09.020
http://dx.doi.org/10.1080/13658816.2011.575074
http://dx.doi.org/10.1111/j.1467-8667.2009.00595.x
http://dx.doi.org/10.1016/j.rser.2012.03.071
http://dx.doi.org/10.1145/235815.235821
http://dx.doi.org/10.1007/s00357-018-9296-4
https://wiki.openstreetmap.org/w/index.php?title=Overpass_API/Overpass_QL&oldid=2550700
https://wiki.openstreetmap.org/w/index.php?title=Overpass_API/Overpass_QL&oldid=2550700
https://population.un.org/wup/
http://dx.doi.org/10.1109/SmartGridComm.2013.6688009
http://dx.doi.org/10.1109/ESARS.2012.6387434
http://dx.doi.org/10.1287/trsc.2019.0931
http://dx.doi.org/10.1109/TSG.2014.2344684
http://dx.doi.org/10.1016/j.energy.2017.05.094
http://dx.doi.org/10.1007/s40565-018-0493-2
http://dx.doi.org/10.1016/j.apenergy.2014.03.077
http://dx.doi.org/10.1109/TVT.2016.2555083

	Introduction
	Salient Features of PC-ILP
	List of Contributions

	Background
	Mathematical Techniques
	Clustering
	Medial Axis Transform (MAT)
	Topological Data Analysis (TDA) and Persistence Homology

	Simulation of Urban Mobility (SUMO): Traffic Simulator
	JAYA Algorithm

	Problem Formulation
	Additional Constraints

	Characterization
	Material and Methods
	Overview of the Scheme
	Placement of Charging Stations (Primary Objective)
	Create Database of Precomputed Solutions (Offline)
	Locating Potential Charging Stations in the Input Map
	Clustering Algorithm
	Shape Identification Using a Convolutional Neural Network (CNN)
	Retrieval of the Precomputed Solution from the Database
	Mapping the Precomputed Solution

	Repairing an Infeasible Solution
	Chargers at Each Charging Station (Additional Objective)

	Results and Discussion
	Setup
	Parameters for the Creation of the Precomputed Database
	Number of Zones in Each Shape
	Reachability Distance ()
	Budget ()

	Performance Analysis
	Microbenchmarks
	Macrobenchmarks: 50 Cities

	Scalability Analysis
	Overheads of Fixing Violated Constraints
	Overheads of Adding Additional Constraints

	Related Work
	Mathematical-Programming-Based Approaches
	Heuristic-Based Approaches
	Hybrid Approaches

	Conclusions
	References

