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Abstract: Ensuring safe and clean drinking water for communities is crucial, and necessitates effective
tools to monitor and predict water quality due to challenges from population growth, industrial
activities, and environmental pollution. This paper evaluates the performance of multiple linear
regression (MLR) and nineteen machine learning (ML) models, including algorithms based on
regression, decision tree, and boosting. Models include linear regression (LR), least angle regression
(LAR), Bayesian ridge chain (BR), ridge regression (Ridge), k-nearest neighbor regression (K-NN),
extra tree regression (ET), and extreme gradient boosting (XGBoost). The research’s objective is to
estimate the surface water quality of Al-Seine Lake in Lattakia governorate using the MLR and ML
models. We used water quality data from the drinking water lake of Lattakia City, Syria, during
years 2021–2022 to determine the water quality index (WQI). The predictive performance of both the
MLR and ML models was evaluated using statistical methods such as the coefficient of determination
(R2) and the root mean square error (RMSE) to estimate their efficiency. The results indicated that
the MLR model and three of the ML models, namely linear regression (LR), least angle regression
(LAR), and Bayesian ridge chain (BR), performed well in predicting the WQI. The MLR model had
an R2 of 0.999 and an RMSE of 0.149, while the three ML models had an R2 of 1.0 and an RMSE of
approximately 0.0. These results support using both MLR and ML models for predicting the WQI
with very high accuracy, which will contribute to improving water quality management.

Keywords: Seine lake; machine learning; water quality; water quality index; evaluation; prediction

1. Introduction

Water is a fundamental natural resource for all life forms on planet Earth. Safe water
should be free from harmful chemical substances or microorganisms at concentrations that
cause health problems, according to the recommendations of the World Health Organization
(WHO) [1]. Rivers and lakes are considered the main sources of freshwater and represent
one of the most important water resources for various uses, such as drinking, agriculture,
industry, and domestic needs. They resemble lifelines for communities and play a crucial
role in social, economic, and environmental development [2].

However, these water bodies are severely depleted due to excessive human activities,
such as manufacturing, urbanization, and population growth. Surface water sources in-
cluding rivers and lakes have been subjected to widespread pollution from various sources,
according to the United Nations Environment Programme [3]. In addition, poor water
resource management and climate change have caused a decline in water quality in recent
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decades, leading to surface water pollution [4]. The surface water quality in a region largely
depends on the nature and level of various human activities in the relevant watersheds.

The chemical, physical, and biological compositions of surface water are subject to nu-
merous effects, including natural effects such as rainfall, watershed geography, atmosphere,
and geology, as well as human effects such as industrial, agricultural, and household
activities [5]. Increasing surface water pollution leads to the deterioration in water quality,
threatens human health, affects the balance of the aquatic ecosystem, and hinders economic
development and social progress [6]. According to a report by the WHO, polluted water
causes about 80% of human diseases. When groundwater is polluted, its quality can be
restored by stopping the flow of pollutants from the source [7]. Therefore, it is essential to
continuously monitor the quality of surface and groundwater and improve the methods
and means to protect them.

The water quality index (WQI) is used to assess and summarize the overall water
quality of water [7]. It takes into account various physical, chemical, and biological param-
eters, including temperature, pH, dissolved oxygen, turbidity, and levels of pollutants such
as nutrients and contaminants. The WQI provides a numerical value or rating that helps
determine the health and suitability of water for different uses, such as drinking, recreation,
or aquatic life. Higher WQI values generally indicate better water quality, while lower
values suggest poorer water conditions. This index helps decision makers to take effective
measures to manage water resources and maintain their quality [6,8]. The formulation
and use of quality indices have been strongly supported by organizations responsible for
water supply and pollution control. Nevertheless, the utilization of the WQI to evaluate
groundwater and surface water quality was limited for a long time due to the lack of
sufficient data and appropriate statistical and modeling methods.

In recent years, machine learning (ML) techniques have been widely used to evaluate
water quality, including estimating the WQI [9]. These techniques have proven powerful
tools for modeling complex linear and nonlinear relationships in environmental and water
resource research [10]. The application of multivariate statistical methods, such as multiple
linear regression (MLR), cluster analysis (CA), principal components analysis (PCA), factor
analysis (FA), and discriminant analysis (DA), is useful in reducing the complexity of large
water quality data sets (reducing the number of variables) without losing the original
information [11]. Applying these statistical techniques helps interpret complex data to
better understand the environmental water quality status and identify potential sources
or factors that affect water systems, in addition to providing a quick solution to pollution
problems for simple and cost-effective water quality assessment [12].

A literature review shows that each ML algorithm has its strengths and weaknesses,
and its behavior depends on the water quality input variables in different study areas [13,14].
Gupta and Gupta investigated the health status of the Damodar River in India for drinking
purposes using the WQI method. They analyzed eleven water quality parameters from ten
monitoring sites along the river and applied an MLR model to predict WQI. The results
showed that river health varied between good and unfit categories. In addition, it identified
biochemical oxygen demand (BOD), total coliform (TC), and iron (Fe) as the primary factors
affecting WQI values, and the MLR model was found to be effective for evaluating river
health for efficient river management. The model exhibited a strong fit, indicating a robust
relationship between the identified factors and the WQI values. The results underscore the
potential of the MLR model as a valuable tool for evaluating river health [15].

The WQI method was used to investigate water quality in Taihu Basin of China. The
results revealed generally moderate water quality, with notable variations among the six
river systems studied and distinct seasonal patterns. Through a stepwise MLR analysis, the
authors developed a simplified WQImin model consisting of five key parameters (NH4

−N,
CODMn, NO3

−N, DO, and Tur). These parameters were found to account for a significant
portion of the observed variance in water quality data within the basin [16].

Nair and Vijaya [17] developed ML models for predicting and classifying the WQI of
the Bhavani River. Their models showed promising results, such as an MLP regressor in
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prediction and an MLP classifier that achieved very good classification accuracy. These
findings have implications for effective water management strategies.

Malek et al. [18] investigated the use of MLR models to predict water quality classifica-
tion in the Kelantan River. Among the seven models tested, gradient boosting with a learn-
ing rate of 0.1 demonstrated superior performance. The significant variables for predicting
water quality classification were total suspended solid (TSS), ammoniacal nitrogen (NH3N),
biochemical oxygen demand (BOD), and chemical oxygen demand (COD). The findings
contribute to improving water quality and informing water resource management policies.

Duc et al. developed ML models to predict the WQI in irrigation systems of Vietnam’s
Red River Delta. They utilized parameters such as BOD5, NH4

+, PO4
3−, turbidity, TSS,

coliform, and DO for calculating the WQI. The gradient boosting model showed the
best performance among the others. This research demonstrates the potential of ML
for efficient WQI monitoring, particularly in developing countries, while limitations in
model generalization and integration of external factors affecting water quality should be
considered [19]. Rezaie-Balf et al. explored the prediction of the water quality index using
physicochemical parameters. The study proposes a new approach combining an ensemble
Kalman filter and artificial neural network models. A novel preprocessing technique
is introduced to enhance the model’s performance. The results demonstrate improved
accuracy in predicting the water quality index. Overall, the study provides valuable
insights for efficiently analyzing water quality and aiding water quality evaluation [20].

Saber et al. utilized artificial intelligence algorithms to predict the WQI in the Illizi
region of southeast Algeria. The MLR model showed higher accuracy when all parameters
were considered, while the RF model performed better in scenarios with limited data. Total
dissolved solids (TDS) and total hardness (TH) were identified as influential factors in
the WQI. The findings contribute to improving groundwater resource management for
sustainable water planning [21]. Dani et al. provides a comprehensive review of existing
methods for predicting water quality, examining parameters and artificial intelligence-
based models. The study compares 83 publications and highlights the superiority of hybrid
deep learning (DL) models. Potential solutions to data limitations are discussed, including
the use of generative adversarial networks (GANs) for synthetic data generation and
attention-based transformers for time series prediction. The article offers valuable insights
for researchers interested in water quality forecasting [22].

Building on this rich literature, our aim in this work is to develop a robust model that
can accurately predict the quality of drinking water based on various input variables. It is
based on evaluating the quality of surface water sources and reducing their pollution by
studying various physical and chemical pollution parameters over two consecutive years
(2021–2022) using the arithmetic weighted WQI and the MLR models, as well as a set of
various machine learning models based on different algorithms. These techniques help
to interpret data sets, evaluate the quality of surface water, and reduce the number and
frequency of different laboratory experiments by using these models.

As a case study, we focus on evaluating laboratory analysis results for pollution
parameters in Al-Seine Lake (collected from the Lattakia drinking water intake as an
approved monitoring point) by comparing them with the standards of WHO and then
calculating the WQI to determine their classification and level of pollution. Located in the
western part of Syria, Al-Seine Lake has a significant importance in providing drinking
water to the cities of Lattakia and Tartous, as well as its other agricultural and industrial
uses. The National Sanitation Foundation Water Quality Index (NSFWQI) was calculated
for Al-Seine Lake for the years 1991–2004–2007–2011, and the evaluation results showed
that the water quality ranged from good to fair according to the adopted monitoring
point [23].

This paper presents a novel contribution by conducting a comprehensive performance
comparison between the MLR and various ML models, including regression, decision
tree, and boosting, in predicting the water quality index for the Al-Seine Lake intake. The
objective is to assist lake managers and decision makers in selecting the most effective
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model, simplifying laboratory work and reducing costs, efforts, and time requirements.
These advanced machine learning techniques support urban water management processes,
promoting sustainable and resilient smart cities.

2. Materials and Methods

This research progressed through the following steps. First, we chose the Al-Seine
Lake as a study area. Second, we conducted data collection. Third, we pre-processed the
data sets, excluding outliers. Fourth, we chose the parameters to be included in the analysis.
Fifth, we calculated the WQI using the formulas provided below. Sixth, we applied the
MLR model and evaluated the quality of this model. Seventh, we applied a set of 19 ML
models and compared them to the performance of the MLR model. Eighth, we constructed
a time-series model to predict the WQI over time without the use of variables and we
compared it to the previous models.

2.1. Study Area

Al-Seine Lake is formed from the Al-Seine spring, which is considered one of the
important and main water sources in Syria. The lake is fed by 14 springs and is located
between latitudes (35◦15′13′′ N)–(35◦15′31′′ N) and longitudes (35◦58′09′′ E)–(35◦57′59′′ E);
Figure 1. According to Google Earth Pro, the lake has a perimeter of 1267 m and an area of
64,337 m2. Its water capacity is 400,000 m3 and its maximum depth is 9 m.
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Figure 1. Location of the monitoring point for the drinking water intake in Lattakia city on
Al-Seine Lake.

Al-Seine Lake supplies drinking water to the Syrian coast cities (Lattakia and Tartous)
and surrounding villages, serving approximately 5% of Syria’s population. The lake’s water
resources, including the Al-Seine spring, contribute about 60% of the drinking water in the
coastal basin, with an average pumping rate of 13,500 m3/h to consumption areas. Apart
from drinking water, the lake is also utilized for irrigation and industrial purposes. The
lake’s significance is heightened by the growing water demand resulting from population
growth, agricultural expansion, and industrial development in the Syrian coast cities and
countryside. Efforts are currently underway to explore the possibility of utilizing the water
of Al-Seine Lake to provide drinking water to additional cities. However, the presence
of residential areas close to the lake and scattered throughout its basin, in addition to
neighboring agricultural lands, contributes to the deterioration of its water quality, as well
as the wells and springs in the nearby rural areas located in the Al-Seine basin.

2.2. Sample Collection and Analysis

This study is based on data collected from Lattakia’s drinking water intake over
2021–2022 through the Al-Seine Lake monitoring and protection program. This included
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530 measurements at a daily rate. Data preprocessing involved cleaning and removing
any missing values and outliers. The water quality index (WQI) was calculated using the
weighted arithmetic method. A multiple linear regression (MLR) model was developed to
incorporate the significant variables in evaluating the intake water quality. Additionally,
various machine learning (ML) models that utilized regression, decision tree, and boosting
algorithms were applied to predict the WQI for Lattakia’s water intake. The samples were
specifically collected from the Lattakia water intake monitoring point S1, situated at latitude
35◦15′31′′ N, longitude 035◦58′04′′ E, and elevation of 19 m; Figure 1. This selection was
based on the approved monitoring program, ensuring that the samples were representative
of the intake water quality.

In the laboratory, comprehensive tests were conducted to determine various water
quality parameters. These included pH, sulfates (SO4

−2), nitrates (NO3
−), nitrites (NO2

−),
ammonium (NH4

+), phosphates (PO4
−3), turbidity (Tur), and electrical conductivity (EC).

The analysis of these parameters provided detailed insights into the chemical composi-
tion, clarity, and electrical characteristics of the water, contributing to a comprehensive
understanding of the water quality at the Lattakia intake.

Table 1 shows the descriptive statistical analytical indicators for the measured and
research-based data. Figure 2 illustrates the correlation matrix between all studied variables,
including the calculated water quality index (WQI).

Table 1. Descriptive statistics for physicochemical parameters of water samples.

Descriptive Statistics
N Minimum Maximum Mean Std. Deviation

WQI 530 15.969 69.499 23.6427 4.24165
pH 530 7.00 08.90 7.7704 0.17769

SO4
−2 (mg/L) 530 6.00 18.00 11.0811 2.19447

NO3
− (mg/L) 530 0.66 12.00 3.3711 0.89827

NO2
− (mg/L) 530 0.00 03.20 0.0212 0.13915

NH4
+ (mg/L) 530 0.00 0.05 0.0023 0.00592

PO4
−3 (mg/L) 530 0.01 0.90 0.2053 0.09166

Turbidity (NTU) 530 0.38 09.94 1.9497 1.00350
EC (µS/cm) 530 445.00 503.00 477.7830 7.92975
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1—Assigning each parameter of the eight previously mentioned parameters a weight
ranging from 1 to 5 depending on its importance and its role in affecting water quality,
based on expert opinions in previous reference studies.

The standard values, assigned weights, and relative weights of the eight parameters
are shown in Table 2.

Table 2. Permissible standard values, assigned weights, and relative weights of the study parameters.

Parameter Water Quality Stander (Si) Assigned Weight (wi) Relative Weight (Wi)
pH 6.5–8.5 4 0.1212

SO4
−2 (mg/L) 250 4 0.1212

NO3
− (mg/L) 50 5 0.1515

NO2
− (mg/L) 1 5 0.1515

NH4
+ (mg/L) 0.50 3 0.0910

PO4
−3 (mg/L) 0.50 4 0.1212

Turbidity (NTU) 5 4 0.1212
EC (µS/cm) 1000 4 0.1212

Total ∑ wi = 33 ∑ Wi = 1

The relative weight was calculated using the following equation:

Wi =
wi

∑n
i=1 wi

(1)

where:
Wi: The relative weight.
wi: The weight assigned to the parameter.
n: The number of parameters.
2—For each parameter, a quality assessment scale (qi) was calculated by dividing the

laboratory measurement values of the pollutant concentrations by the standard values
according to the World Health Organization (WHO). The result was multiplied by 100
using the following equation:

qi =
Ci
Si
× 100 (2)

Note that for the pH and dissolved oxygen parameters, the quality assessment scale
(qi) is calculated using the following equation:

qi Do, pH =
(Ci−Vi)
(Si−Vi)

× 100 (3)

where:
Ci: The measured value of the water quality parameter.
Vi: The ideal values for dissolved oxygen (i.e., 14.7) and pH (i.e., 7).
Si: The standard value for the water quality parameter.
3—The assigned weight is multiplied by the relative weight to obtain the sub-indices

Sli. The WQI is the sum of the sub-indices according to the following equation:

Sli = Wi × qi (4)

WQI = ∑n
i=1 Sli (5)

The WQI values are classified according to the scale proposed in previous studies,
Table 3.

Table 3. Water quality index scale [24].

Water Quality Index 0–25 26–50 51–75 76–100 Above 100

Water Quality Excellent Good Fair Poor Very Poor



Smart Cities 2023, 6 2813

2.4. Multiple Linear Regression (MLR)

Multiple linear regression is a statistical modeling technique used to model the rela-
tionship between a dependent variable (the variable being predicted or explained) and two
or more independent variables (predictor variables). The goal of multiple linear regression
is to find the best linear equation that can predict the value of the dependent variable
based on the values of the independent variables. The relationship is expressed in terms of
weights assigned to the independent variables, which allows for predictions to be made
about the dependent variable.

The general equation for multiple linear regression (Equation (6)) can be written as:

Y = β0 + β1X1 + β2X2 + . . . + βnXn + ε (6)

where Y is the dependent variable, X1, X2, . . ., Xn are the independent variables, β0
is the intercept, and β1, β2, . . ., βn are the regression coefficients (also known as the
slope coefficients); these coefficient values signify both the strength and direction of the
relationship. ε is the error term, which represents the variability in the dependent variable
that is not explained by the independent variables.

The multiple linear regression model can be used for prediction, as well as for under-
standing the relationships between the dependent and independent variables. The model
can also be used for hypothesis testing and model selection. Before building the MLR
model, multi-collinearity diagnostics, cross-validation, or regularization procedures are
implemented to prevent unstable results.

Using multiple linear regression (MLR) for WQI modeling involves analyzing several
input parameters related to the water physicochemical characteristics and producing
a single index score reflecting overall water quality. During the model building, we
constructed and ran a series of MLR models based on chosen features (variables) covering
data sets of different sizes. We split data into training and testing subsets to verify model
performance before making the final decision of its utility.

2.5. Machine Learning Models (ML)

Machine learning (ML) is an aspect of artificial intelligence (AI) that enables machines
to learn and adapt to data instead of relying on explicit programming. ML techniques
include models such as artificial neural networks (ANNs), principal component analysis
(PCA), and random forests (RFs). These models vary in their learning approaches and
require expertise in mathematics, programming, and statistics, and domain-specific knowl-
edge. Such techniques are used in many fields, including data analysis, speech and image
recognition, prediction and classification, robot control, and improving game performance.
They are also used in water quality management, to analyze real-time data, improve moni-
toring water quality, and analyze and predict the current and future water quality resulting
from several influencing factors, such as acidity, turbidity, salts, nutrients, and pollutants.

3. Results and Discussion
3.1. Evaluation of Water Quality Parameters

The samples were analyzed for important pollution parameters, including pH, SO4
−2,

NO3
−, NO2

−, NH4
+, PO4

−3, turbidity, and EC, as follows:

3.1.1. pH

pH is an important indicator of drinking water quality as it helps to evaluate the
suitability of water for drinking and other uses. The pH should range between 6.5 and 8.5
according to World Health Organization standards to ensure drinking water quality [25]. If
the pH is below 6.5, the water is acidic and can cause corrosion of pipes and equipment
used in water transport and distribution. If the pH is above 8.5, the water is alkaline and
can cause calcium and magnesium deposition on surfaces and pipes.
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The results shown in Figure 3 indicate the relative fluctuation of the concentration of
H+ ions in the water, ranging from 7 to 8.9, with all samples falling within the alkaline range.
The alkaline values are due to the presence of bicarbonate ions, while the relative decrease
in values may be due to an increase in salt concentration and dominance of the chloride and
sulfate phase over the bicarbonate phase, leading to a slight decrease in pH towards acidity.
Overall, the studied water samples are within the suitable alkaline limits for drinking,
except for only two values that exceeded the permissible limit, as shown in Figure 3.
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3.1.2. Sulfate (SO4
−2)

Sulfates occur naturally in some sources of groundwater and surface water, and they
do not pose a health risk to humans when present at low levels. However, excessive use
of sulfite-containing chemicals in industry or agriculture can pollute water sources and
increase sulfate concentrations to levels that pose a health risk. Sulfates are salts containing
sulfur and are primarily formed through the biological oxidation of organic matter in
surface and groundwater, as well as the oxidation of minerals in soil and rocks surrounding
water sources [26]. Organic matter contributing to sulfate formation includes plant and
animal matter, human and animal waste, and anaerobic bacteria.

Purification processes for surface and groundwater can remove some sulfates, but they
cannot eliminate them, meaning most drinking water will contain certain levels of sulfates.
To assess the presence of sulfates in drinking water, their concentration is reviewed and
compared to allowable limits and approved health standards related to water quality. For
example, according to the World Health Organization, the safe concentration of sulfates in
drinking water should be less than 500 milligrams per liter.

The study results shown in Figure 4 indicate that the concentration value of sulfate
ions ranged from 6 to 18 mg/L, which is within the allowable values according to the
World Health Organization. This very low concentration may be due to the geological
formation of the basin area, where sulfate ion concentrations in groundwater are influenced
by the type of rocks and the period they have been exposed to. Gypsum and anhydrite
(calcium sulfate) are the main sources of sulfates, while sandstone with very little limestone
content is considered a minor source. In addition, bacterial activities in soil layers play an
important role in oxidation-reduction reactions of sulfur species, and sulfate concentration
in groundwater often increases with depth due to the increased likelihood of dissolution
of adjacent rocks. Furthermore, anaerobic degradation of sulfur-containing compounds,
gypsum, and anhydrite is the main process of geological formation, in which sulfur is
reduced by Thiobacillus desulfuricons bacteria to form sulfur compounds that are oxidized to
sulfuric acid under aerobic conditions.
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3.1.3. Nitrate (NO3
−)

Nitrates are one of the most widespread pollutants in groundwater, and a major prob-
lem in some shallow groundwater layers. The primary sources of nitrates in groundwater
are sewage and industrial wastewater, plant residues, and animal waste, as well as chemical
fertilizers and herbicides used in agricultural activities.

Controlling the concentration of nitrates in drinking water is essential due to the
potential health problems associated with increased levels. Nitrates are known carcinogens,
and when consumed by humans, they can be converted into nitrite (NO2

−) within the
intestines. This conversion affects the ability of red blood cells to carry oxygen, leading to a
condition called methemoglobinemia. Infants and pregnant women are particularly vul-
nerable, and the condition is commonly known as blue baby syndrome [27]. According to
WHO standards, the maximum permissible level of nitrates in drinking water is 45 mg/L.

We represent the laboratory analysis results for daily measurements of nitrate concen-
trations in water samples taken from the Lattakia city intake over the two years (2021–2022)
in Figure 5.
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Based on the laboratory analysis results and graphical representations, several obser-
vations can be made. The range of nitrate concentration in the studied water samples fell
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within the allowable limit for drinking water according to the WHO standards, which is
45 mg/L. Additionally, the highest concentration of nitrate (12 mg/L) was recorded during
the winter season, as indicated in Figure 5. This is thought to be due to the role of rainfall
in transporting fertilizer residues from soil and agricultural lands into the groundwater
reservoir. The lowest recorded value for nitrate concentration (0.66 mg/L) was observed in
July 2022.

3.1.4. Nitrite (NO2
−)

Nitrite is usually formed in drinking water when the water is contaminated from
various sources such as agricultural fertilizers, animal waste, wastewater, and chemical
industries. Nitrite can also naturally form in groundwater and surface water when water
reacts with nitrates in the soil.

Several mechanisms can lead to the formation of nitrite in drinking water, including:

- Agricultural pollution: Nitrates, ammonium, and urea are added to the soil as nitrogen
fertilizers for crops, and water can seep into the groundwater containing nitrates and
nitrites. Nitrates in agricultural fertilizers can also decompose and turn into nitrites
through bacterial processes.

- Industrial pollution: Chemicals in raw materials or used in industry can leak into the
soil and groundwater, and then into surface water sources. Some industries using
nitrates, such as fertilizers, insecticides, and other chemicals, can contribute to nitrite
pollution in surface and groundwater.

- Sewage: Sewage and animal waste from animal and poultry facilities can seep into
groundwater and surface water sources, leading to increased concentrations of nitrates
and nitrites.

- Air pollution: Rain, snow, and airborne spray can carry industrial and agricultural
pollutants into water sources, leading to increased concentrations of nitrates and
nitrites in surface water.

- Drug pollution: Some drugs can seep into the soil and groundwater from various
sources and may be found in surface and groundwater sources.

The level of nitrite in water is measured in specialized laboratories using various
methods, including the colorimetric method (which depends on the reaction of nitrite
with chemicals to produce a measurable color). The nitrite concentration in drinking
water should not exceed the allowable limit according to the World Health Organization
standards, which is 1 mg/L [25].

The results of the study shown in Figure A1 indicate that the nitrite ion concentration
ranged from 0 to 0.13 mg/L, which is within the allowable values according to the World
Health Organization, except for a single value in January 2022, which reached 3.2 mg/L.
This low concentration may be due to strict measures regarding human activities allowed
in the buffer area of the Al-Seine basin.

3.1.5. Ammonium NH4
+

Ammonia is typically formed in drinking water due to the natural decomposition of
organic, plant, and animal matter in the aquatic environment. Ammonia can also form
because of the leakage of animal waste, fertilizer, and industrial waste into groundwater
and surface water.

In general, the presence of ammonia in drinking water can be evaluated by analyzing
the water and measuring the level of ammonia in it. It is preferable to maintain low levels
of ammonia in drinking water, as high levels of ammonia can indicate the presence of
contamination in the water with organic matter that can be decomposed. This represents a
health hazard to water users.

In general, the concentration of NH4
+ in drinking water can be measured by conduct-

ing chemical tests. This is usually undertaken by adding a solution of chlorine to the water
sample and then measuring the level of ammonia in the water after a specified period. The
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NH4
+ level in the water should be less than 0.5 parts per million (ppm) according to the

World Health Organization’s standards for drinking water.
The study results during the years 2021–2022 shown in Figure A2 indicate that the

concentration of the ammonium ion ranged from 0 to 0.05 mg/l and all values were within
the allowable limits according to the World Health Organization [25].

3.1.6. Phosphate PO4
−3

Phosphate compounds are produced by the combination of phosphorous and oxygen
compounds. Organic phosphates are produced by the decomposition of plant and animal
residues, as well as the breakdown of waste and food remnants. Inorganic phosphates, on
the other hand, are mainly sourced from fertilizers used for agricultural purposes, as well
as soap manufacturing and domestic wastewater. Therefore, measuring the concentration
of phosphate in drinking water and natural water sources is an important indicator when
studying water source quality [28]. According to World Health Organization (WHO)
standards, the maximum allowed limit for phosphate ion concentration in drinking water is
0.5 mg/L. Figure 6 shows the laboratory analysis results of measured changes in phosphate
ion concentration values in water samples collected from the Lattakia drinking water intake
over the two years (2021–2022).

Based on the laboratory analysis results and graph, several observations can be made
regarding the phosphate ion concentration in the studied water samples. The measured
values ranged from 0.01 mg/L to 0.9 mg/L, with the lowest concentration observed in July
2022 and the highest in December. Although most of the measured values fell within the
allowed limit for drinking water of 0.5 mg/L, five points exceeded this limit. These points
were recorded in October 2021, December 2021, and April 2021 and 2022. It can also be seen
from Figure 6 that all the points exceeding the limit were recorded during the winter season.
This can be attributed to rainfall events during this season, which wash away fertilizer and
pesticide residues from soil and agricultural lands and transport runoff rich in pollutants,
including phosphate ions, from nearby catchment basins to the groundwater reservoir.
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3.1.7. Turbidity

Turbidity in drinking water is usually caused by the presence of very small, suspended
particles, microorganisms, and dissolved organic and inorganic matter that are difficult
to see with the naked eye. These particles and organic matter can originate from various
sources such as soil, leaves, and industrial and animal waste [23]. Turbidity is affected
by several factors, including the water source, water flow, temperature, storage duration,
nature of suspended matter in the water, and level of biological and chemical pollution.
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Turbidity can affect the taste, odor, and overall appearance of the water, and in
some cases, it can cause health problems. Therefore, the allowable limits for turbidity
concentration in drinking water are determined according to international and local quality
standards. The maximum allowable limit according to the World Health Organization
(WHO) standards is 5 NTU, where turbidity level depends on the size and number of
suspended particles and solid matter in the water.

Several methods can be used to reduce turbidity in water, such as filtration, reverse
osmosis (RO), and removal of suspended particles by adding materials that help coagulate
and remove them.

The study results during the two years (2021–2022), as shown in Figure A3, indicate
that the values of turbidity ranged from 0.38 to 9.94 NTU, all of which were within the
allowable values according to the WHO, except for eleven values that were recorded during
the rainy months.

3.1.8. Electrical Conductivity (EC)

Electrical conductivity measurement in drinking water provides an idea about the
quantity of dissolved substances in the water, especially mineral salts that dissolve in water
to form ions. Electrical conductivity is affected by the concentration of these ions.

When chemicals dissolve in water, they are separated into negative and positive
ion particles, which move in the water to achieve electrical balance. Therefore, electrical
conductivity in water increases as the concentration of dissolved salts increases. Electrical
conductivity is used to evaluate the quality of drinking water, where high values of electrical
conductivity indicate the presence of large amounts of mineral salts in the water, and vice
versa, indicating that the water is not suitable for drinking.

Electrical conductivity is measured using a conductivity meter, and the resulting value
represents the number of positive and negative ions in the water. The value is measured in
Siemens units, which indicate the amount of electrical current flowing through the water
between poles at a certain temperature and pressure.

The study results during the two years (2021–2022), as shown in Figure A4, indicate
that the concentration values of electrical conductivity ranged from 445 to 503 µS/cm, all
of which were below the allowable value according to the WHO, which is 1000 µS/cm [25].

Figure 7 shows the results of applying the water quality index (WQI) to the Lattakia
drinking water intake for the period 2021–2022. These results indicate that the quality of
the intake water fell within the excellent classification for 70.4% of the observations and
within the good classification for 29.2% of the observations, while we had only two values
(0.004%) that fell within the poor classification.
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3.2. Multiple Linear Regression (MLR)

To determine the relationship between the water quality index (WQI) in the Lattakia
drinking water intake and the explanatory variables used in the study (pH, sulfates, nitrates,
nitrites, ammonium, phosphates, turbidity, and electrical conductivity), a multiple linear
regression model was developed with the variables listed in Table 4, where the previous
variables were considered as independent explanatory variables and the WQI variable was
considered as the dependent variable.

Table 4. Results of the multiple linear regression analysis model.

MLR Model B T Sig. Correlation
Coefficient R

Determination
Coefficient R2

VIF
Variance

Inflation Factor
F Sig.

(Constant) −56.751 −124.833 0.00

0.999 0.999 69,855.695 0.00

pH 8.227 217.177 0.00 1.057

NO3
− 0.304 37.335 0.00 1.244

NO2
− 15.167 289.537 0.00 1.239

PO4
− 24.370 337.218 0.00 1.024

Turbidity 2.428 365.470 0.00 1.037

EC 0.011 13.183 0.00 1.070

The results of the regression model in Table 4 showed that the regression model was
significant, with an F-test value of 69,855.695 and a statistical significance (0.00) smaller
than the significance level (0.01). This indicates the quality of the relationship model and
the reliability of relying on the model results without errors. The results also indicate that
the independent explanatory variables explain 99% of the variance in the water quality
index (WQI), based on the coefficient of determination (R2). The beta values (B), which
indicate the relationship between WQI and the explanatory variables, were all statistically
significant, as shown by the t-values and associated functions. For example, the beta value
that indicates the relationship between WQI and turbidity was 2.43, and it was statistically
significant (0.00). This means that if the turbidity value improved by one unit, the WQI
level would improve by 2.43 units; the same interpretation applies to the other variables.
Table 4 also shows the results of the multicollinearity test, which revealed that all the
variance inflation factors (VIFs) were less than three (VIF < 3), indicating no problem of
multicollinearity between the model variables. Therefore, we can formulate the regression
equation (Equation (7)), which consists of the beta values (B) for each of the previous
independent variables and the constant value, as follows:

Water Quality Index (WQI) = −56.751 + 8.227 (pH) + 0.304 (NO3) + 15.167 (NO2) + 24.370 (PO4)

+ 2.428 (Turbidity) + 0.011 (EC)
(7)

Figure 8a shows the mathematical relationship between the measured values and the
estimated values by applying the MLR model to the data matrix. Figure 8b shows the
model’s performance through the coefficient of determination (R2).

Based on the highly performing multiple linear regression model (MLR), we have
designed and programmed a graphical user interface (GUI) tool to calculate the water
quality index for practical and simple use by decision makers and stakeholders responsible
for monitoring and controlling water quality. The tool allows entering the values of
the model variables resulting from laboratory analysis and immediately determining the
drinking water quality index for the studied intake in Al-Seine Lake, as shown in Figure A5.
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3.3. Machine Learning Models (ML)

As an important first step in building an ML model, enough input variables must
be chosen that contain sufficient basic information to predict the WQI. In addition, this
selection can improve the model’s accuracy by avoiding unwanted influence on predic-
tive performance. In the current study, eight water quality variables were identified as
potential inputs. There are several current methods for evaluating input sets, including
self-correlation, partial self-correlation, mutual correlation, and the correlation coefficient.
From these methods, the correlation coefficient was used in this study because of its accu-
racy and efficiency [4]. The correlation matrix in Figure 2 shows that the WQI variable is
correlated with turbidity, followed by PO4

−3, NO2
−, pH, NO3

−, and EC, respectively. We
can neglect the NH4

+ and SO4
−2 variables due to their weak correlation with WQI.

After selecting the input WQI variables, 19 ML models were built and compared to
predict water quality index, as shown in Table 5, where the database was divided into
70% for training and 30% for testing, and the performance of these models was evaluated
during testing [29]. In this study, two packages, Scikit-Learn and PyCaret, were used,
built in a programming environment using Python, to develop nineteen ML models for
predicting WQI. The root mean square error (RMSE) and coefficient of determination (R2)
were used as typical model efficiency statistics to evaluate the performance of ML models
and measure the quality of compatibility between predicted and measured values. RMSE
(Equation (8)) measures the deviation between observed and predicted values, while R2

(Equation (9)) measures the degree of correlation between observed and predicted data.

RMSE =

√
∑n

i=1(Oi − Pi)
2

n
(8)

R2 = 1− ∑n
i=1(Oi − Pi)

2

∑n
i=1
(
Oi −O

)2 (9)

where n is the total number of predicted values, Oi is the observed value, O is the average
of observed values, and Pi is the predicted value.

The results of machine learning (ML) models for predicting the quality of drinking
water at the Lattakia intake shown in Table 5, based on the studied pollution variables
during the period 2021–2022, indicate that the three ML models (linear regression (LR),
least angle regression (LAR), and Bayesian ridge (BR)) achieved the best performance, with
a correlation value between measured and predicted values of 100%.
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Table 5. Comparison of machine learning (ML) model performance in calculating the drinking water
quality index for the Lattakia intake (ranked by performance).

Model MAE MSE RMSE R2 RMSLE MAPE

Ir Linear Regression 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

lar Least Angle Regression 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

br Bayesian Ridge 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

ridge Ridge Regression 0.6266 5.7816 1.3336 0.8822 0.0406 0.0235

et Extra Trees Regressor 0.6691 7.7039 1.6521 0.8227 0.0514 0.0240

gbr Gradient Boosting Regressor 0.6713 7.7261 1.6444 0.8216 0.0505 0.0240

xgboost Extreme Gradient Boosting 0.6906 7.8954 1.7136 0.8092 0.0531 0.0249

rf Random Forest Regressor 0.8350 8.2094 1.8274 0.7900 0.0589 0.0312

huber Huber Regressor 1.2459 10.5125 2.1805 0.6997 0.0772 0.0492

dt Decision Tree Regressor 1.2773 9.9978 2.3195 0.6650 0.0782 0.0501

lightgbm Light Gradient Boosting Machine 1.0778 9.8756 2.3649 0.6560 0.0762 0.0403

ada AdaBoost Regressor 1.4226 10.1218 2.4847 0.6166 0.0871 0.0579

lasso Lasso Regression 2.2606 13.7407 3.3067 0.2884 0.1212 0.0941

llar Lasso Least Angle Regression 2.2606 13.7407 3.3067 0.2884 0.1212 0.0941

en Elastic Net 2.3091 13.9869 3.3621 0.2580 0.1231 0.0961

knn K Neighbors Regressor 2.4627 14.7339 3.5339 0.1645 0.1295 0.1011

omp Orthogonal Matching Pursuit 2.7662 17.7386 3.9547 −0.0604 0.1456 0.1154

dummy Dummy Regressor 2.7546 17.9070 3.9646 −0.0620 0.1462 0.1152

par Passive Aggressive Regressor 3.6783 28.3909 5.0279 −0.9922 0.1892 0.1473

Figure 9a illustrates the optimal performance of the machine learning model in the
case study of linear regression (LR) through residual error and its distribution between
measured and predicted values by applying this model to the data matrix of the training
and testing phase. Figure 9b shows the model’s performance strength through the value of
the coefficient of determination (R2).
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Machine learning (ML) models can effectively handle time series data analysis; there-
fore, they are a good option for analyzing such data. This is due to their ability to deal with
data related to time order and analyze it accurately and efficiently. They are usually used
in time series data analysis to predict future values or analyze temporal behavior of data.
They can be used to analyze temporal patterns in productivity, sales, the environment, or
any other type of time series data.

For example, the XGBoost model can be trained using available time series data saved
in chronological order. After training, the model can be used to predict future values based
on available historical data.

The K-Neighbors regressor can also be used successfully for time series data analysis,
but it requires a good understanding of time series data, statistical analysis methods, and
machine learning techniques. It is also important to verify the quality of the data and
ensure that there are sufficient data for training and analysis. This algorithm falls within
supervised learning techniques and is used to solve regression and classification problems.
It is a non-parametric algorithm, which means that it does not make any assumptions about
the underlying data and seeks to better fit the training data in building the function, while
maintaining some ability to generalize based on the unseen data. Hence, it can fit a large
number of functions.

Therefore, we applied nineteen ML models to the available time series during the
study period (2021–2022) and we verified the ability of these models to predict the quality
of drinking water at the Lattakia intake. Regardless of the pollution variable values (which
did not enter into building the models), the K-Neighbors regressor (K-NN) model achieved
the best performance with a determination coefficient value of 34% between measured
and expected values of the water quality index, and an RMSE value of 4.62; Figure 10a.
Figure 10b shows the model’s performance strength through the value of the coefficient of
determination (R2).
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4. Conclusions

This research explored the capacity of multiple linear regression (MLR) and machine
learning (ML) techniques to predict surface water quality. Analyses were conducted on
data collected from the intake of Lattakia city in Al-Seine Lake over 2021–2022. Data
included the following water quality parameters: pH, sulfates (SO4

−2), nitrates (NO3
−),

nitrites (NO2), ammonium (NH4
+), phosphates (PO4

−3), turbidity (Tur), and electrical
conductivity (EC). The research findings demonstrated the excellent performance of MLR
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in accurately predicting the WQI and identifying influential factors, achieving excellent
results by explaining 99% of the WQI variations. Furthermore, a graphical user interface
(GUI) was developed to facilitate the utilization of the MLR model by decision makers and
water quality monitoring personnel. Tests conducted with 19 ML models showed that the
best performances were provided by the linear regression (LR), least angle regression (LAR),
and Bayesian ridge (BR) models, with a correlation value of 100% between measured and
predicted values. The K-Neighbors regressor (K-NN) model performed the best for time
series data, with a coefficient of determination of 34% and a root mean square error of 4.62.
This research demonstrates the effectiveness of using ML techniques to manage surface
water in Al-Seine Lake and shows their high capacity to predict the water quality index.
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