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Abstract: Vehicular Ad hoc Networks (VANETs) are one of the pillars of the Internet of Vehicles,
they provide plenty of applications ranging from safety to entertainment. Safety applications largely
depend on reliable and authentic traffic-related data. However, ensuring the data reliability and
authenticity is facing many challenges due mainly to the scalability of VANETs such as the high speed,
the long roads, and the open nature of VANETs. This paper addresses these challenges by proposing
a decentralized Blockchain-based trust management framework (BC-TMF) aiming to compute trust
metrics for vehicles. These trust metrics rely on the authenticity of the messages. Each vehicle assesses
the authenticity of the received messages in real-time, calculates a local trust metric for the originator
of such messages, then shares it with a miner. Periodically each miner aggregates the received
trust metrics into global trust metrics, then packs them in a block. To investigate the efficiency and
consistency of the proposed framework, extensive simulations are conducted. The obtained results
show that the proposed BC-TMF has an excellent capability in computing accurate trust metrics for
vehicles. Besides, it outperforms the existing ones in terms of the accuracy of computed trust metrics,
particularly for malicious vehicles.
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1. Introduction
1.1. Problem Statement

VANETs are a fundamental component of the Internet of Vehicles (IoV) [1], which is one
of the newest technology designed for Smart transportation in Smart Cities. In VANETs,
a myriad of smart vehicles, smart devices, and roadside units (RSUs) communicate to
provide plenty of applications to the passengers [2]. These applications range from safety
to entertainment aiming to facilitate and improve the passengers’ journey. Particularly,
safety applications in VANETs are based on a frequent exchange of alert messages aiming
to share information reporting the road state, the traffic crowding, and sudden events
such as vehicle crashes. The ultimate aim of the safety applications is to enhance road
safety via vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication.
Nevertheless, safety applications require a reliable, authentic, and appropriately-timed
exchange of data to avoid severe damage [3]. The vehicles should not only authenticate
their peers, originators of messages but also assess the reliability of the received data to react
accordingly. According to the IEEE 1609.2 standard [4], a public key infrastructure (PKI)
would be used to authenticate vehicles using certificates. However, PKIs cannot be used to
ensure the reliability of the data. Besides, a PKI allows mitigating only outsider attackers,
an authenticated vehicle holding a valid certificate may forge messages without being
detected. The concept of trust is used to overcome this shortcoming of PKI. In VANETs,
trust management schemes have the potential to mitigate messages alteration and spoofing
attacks, also to detect forged messages and intruder attackers [5,6]. Furthermore, trust
schemes allow vehicles to communicate with unknown peers. Plenty of approaches has
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been put forward to establish and maintain trust communications in VANETs [6–10]. In our
previous work [11], recent approaches have been reviewed. The existing approaches have
been classified into two categories: centralized-based and distributed-based. In centralized-
based trust management approaches, the trust values are processed and stored in a central
server or authority. However, given the large scale of VANETs in terms of long distances
and the high number of vehicles, besides the time-sensitivity of the safety applications,
the centralized-based approaches are ill-suited for VANETs. In decentralized-based trust
management approaches [12], trust computing and storing are performed locally by the
vehicles and/or the roadside Unit (RSU). However, due to the different conditions and
capabilities to perceive and assess the target vehicles, trust values computed by only one
vehicle cannot be always reliable.

1.2. Literature Review

The number of publications that have focused on providing trust management schemes
for IoV has greatly increased in recent years [7–9]. In [10] a comprehensive review of existing
trust management methods is presented. The authors present an adversary-oriented
survey where they have discussed the attacks that can bypass the trust management
schemes and how to mitigate them. The authors in [8] discuss trust management in
vehicular environments from different perspectives. Additionally, they have classified
the existing trust management schemes into two categories. The first category is the
artificial intelligence-based approaches based on clustering, reinforcement learning, fuzzy
logic, and game theory techniques. The second category is emerging technologies-based
approaches based on Cloud, Fog, Edge, Blockchain, and Software-defined networking
(SDN). These new technologies improve classic trust computing approaches in terms of
accuracy, aggregation, and sharing of the trust values.

Moreover, classic approaches (not based on emerging technologies) often rely on
recommendation systems to enhance the accuracy and consistency of the trust metrics like
in [13,14]. In [13] the authors designed a decentralized trust management framework based
on fuzzy logic-based and Q-learning approaches. Each vehicle assesses the trustworthiness
of its 1-hop neighbors based on a direct and an indirect trust. The direct trust is evaluated
based on the direct experience with the target vehicle, particularly, the forwarding ratio,
the ratio of legitimate forwarded messages, and the percentage of the detected incidents
reported by the target vehicle. The indirect trust is evaluated based on recommendations re-
ceived from other vehicles about the target vehicle. Xia et al. proposed in [14] a lightweight
trust-aware multicast routing protocol using a feedback mechanism and Markov prediction
algorithm. They combined subjective trust with recommendations to create an attack-
resistant trust inference model for VANETs. In both approaches, the accuracy of the trust
values depends on the number of recommendations received from other vehicles, which
makes it non-suitable for rural scenarios which are usually not dense. In [15], a distributed
trust computing framework named EDTCF to compute the trust metrics of the vehicles
in a VANET. Each vehicle solely assesses the trust metrics of its neighbors based on the
credibility of their broadcast messages. However, it does not share them with other vehicles,
in so doing, each vehicle in the network will have many trust metrics at the same time.
Thereby, the trust metrics of each vehicle may be non-consistent with each other. Like many
classic models, EDTCP [15] suffer also from the cold start problem because the trust metrics
are not shared between the vehicles mainly in distributed approaches.

Blockchain is a modern technology that appeared in the last decade and it has grown
quickly to provide a lot of promises. It is a distributed ledger that provides a secure and
transparent way to create, verify and record any type of transaction [16]. It solves the issues
related to trust in any particular type of communication. Blockchain technology comprises
several technologies, such as cryptographic hash, digital signatures, and consensus algo-
rithms. Blockchain is an emerging technology used today to improve the trust management
scheme [8]. Although tremendous efforts have been made to provide trust management
schemes for VANETS, the research on blockchain-based trust management schemes is still
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limited. In [16] a blockchain-based trust management scheme is proposed for vehicular
networks. It is a decentralized and hybrid scheme where each vehicle calculates first a trust
rating about the received messages, then uploads the results to the nearest RSU. Based on
the trust rating received from the vehicles, each RSU calculates the trust values of its target
vehicles, packs these data into a block, then solves the Proof-of-Work (PoW) and Proof-of-
Stack (PoS) consensus to add the block into the blockchain. In the proposed scheme, the
trust evaluation relies only on the geographic position of the vehicle, if it is near to the
event location then it is trustworthy. Nevertheless, the location is not sufficient to decide on
the credibility of the received data and the trustworthiness of the originator vehicle because
the message may be generated by a malicious vehicle located near the event. In [17] Lu
et al. proposed a Blockchain-based Anonymous Reputation System (BARS). To estimate the
reputation of a vehicle both direct historical interactions and indirect opinions about the
target vehicle are considered. In their entity-centric framework, three different blockchains
are used. The first one is used to store valid certificates, the second one is used to store
the revoked certificates and the third one is used to store the messages disseminated in
the network. To authenticate the vehicles, their certificates are searched in the first and
second blockchains. If the certificate is present in the former blockchain and absent in the
latter one, the vehicle is authentic. Further, RSUs will act as validators of this framework
using Proof of Work consensus. BARS is based also on a Law enforcement authority (LEA)
responsible for recording the pairs of public keys and real identities of the vehicles. LEA is
a centralized authority which leads to a lack of scalability. Kchaou et al. [18] proposed a
distributed trust management scheme for VANETs named DTCMV based on blockchain.
The scheme consists of three steps: the transmission of messages, the creation of blocks,
and the validation of the block. In their scheme, the RSUs will serve as miners performing a
PoW consensus. However, the authors did not explain the trust metrics calculation process
and which factors are considered to assess the trustworthiness of the vehicle.

In [19] the reputation score is calculated using an indirect reciprocity principle, where
each vehicle calculates its reputation score according to its cooperation with other peers.
The limitation of this approach is the fact that each vehicle updates its reputation value.
Javaid et al. [20], propose a blockchain-based protocol for computing trust management
on the Internet of Vehicles using smart contracts, certificates, and a dynamic proof-of-
work consensus algorithm. The proposed entity-centric protocol consists of two phases: a
setup phase and a data transfer phase. In the first phase, the vehicles register to become
trusted users and get a blockchain account and unique ID. In the second phase, secure
communication links between trusted vehicles are established. However, the proposed
protocol revokes malicious vehicles definitively from the network, also it does not assess the
credibility of the message itself, so a trust vehicle can broadcast forged messages without
being detected. A Blockchain-based collaborative intrusion detection networks (CIDNs)
framework is proposed in [21]. It is a data-centric framework that enables the vehicles to
form a consortium chain by verifying the received data messages and the alarm rankings,
which uses blockchains. The RSUs serve as a validator, responsible for detecting advanced
malicious vehicles. The RSUs compute the trust values by comparing the received messages
with the expected content. Unfortunately, this framework does not detect malicious vehicles
in real-time. In [22], the author proposed a trust management system using a multi-criteria
decision-making model, where each vehicle assesses the reliability of the messages and
computes the trust value of the sender. Afterward, each vehicle transmits the computed
trust values to the nearest RSU, which in turn calculates the trust values using a multi-
criteria decision-making model. After that, the RSU creates a block and tries to solve
the consensus to add the newly created block to the blockchain. The limitation of this
system is the use of the RSU as miners, which is not practical because of their expensive
deployment cost.
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1.3. Contribution

One of the key features of Blockchain is the fact that is easily applied to distributed
systems where multiple entities maintain the same information without requiring a central
authority. It has a massive potential to improve the performance of distributed systems.
Particularly, it allows mitigating many types of attacks emanating from systems governed
by a central authority and reduces communication overhead with central servers and
authorities [8,23,24].

In the same context, a new Blockchain-based Trust Management framework baptized
BC-TMF is proposed in the current study. It aims to compute and share the trust metrics of
the vehicles in a distributed fashion. It is a context-dependent framework where the trust
metric of the vehicles depends on the trustworthiness of their alert messages disseminated
in the network. These alerts report hazardous events on the road. The proposed BC-TMF is
built on Blockchain technology to take benefit of its features. On one hand, the distribution
and availability facilitate the update of the trust metrics of the vehicles. On the other hand,
the integrity that blockchain technology offers allows saving the computed trust metrics
in a dependable ledger. In so doing, the proposed BC-TMF will avoid bad-mouthing
attacks. Moreover, the availability of the Blockchain allows sharing the computed trust
metrics between the vehicles, which mitigates the cold start problem when a vehicle enters
a new network and has to timely authenticate alerts received from unknown peers. To
enhance the distribution of the proposed framework, the miners will be a set of vehicles
selected on the road instead of RSUs, which seems more efficient in rural environments
and in the earlier stages of VANETs deployment where few RSUs are deployed in the
network due to their high costs. Unlike existing approaches, where the trust metrics of the
vehicles are computed in the RSU, in the proposed approach the trust metrics of the vehicles
are computed in a fully distributed manner in the vehicles due to their high potential to
perceive the events on the roads. Furthermore, contrary to existing frameworks, in the
proposed approach, the trust metric is inferred based only on direct observations without
considering recommendations from other vehicles.

The remainder of the paper is organized as follows. Section 2 presents the different
details of the proposed BC-TMF. Section 3 is devoted to the performance evaluation and
discussion. Finally, Section 4 concludes the paper and presents some future directions.

2. Methods
2.1. Overview of BC-TMF

The proposed framework aims to compute, store, and publish the trust metrics of the
vehicles based on the credibility of their messages. Each vehicle will have only one global
trust metric at a given time, shared between all the vehicles in the network. This will avoid
the cold start problem and expedite the authentication of the reported events in real-time.
Moreover, due to the integrity provided by blockchain technology, the trust metrics will be
stored in a secure and reachable ledger.

In the context of safety applications in VANETs, each vehicle traveling on the road
disseminate and forward periodic alerts about the encountered events like traffic crowds
and accidents. These alerts will fluidize the traffic, make far vehicles aware of the road state
and allow drivers to make timely decisions [2]. Nevertheless, some malicious vehicles may
deliberately disseminate forged alerts about non-existing events or alter the content of alerts
reporting the real events. In the current model, two types of vehicles are distinguished:
malicious and non-malicious vehicles. The probability for vehicle v to be malicious is
denoted PM(v). It is a value in the interval (0–1). All malicious vehicles have their PM
strictly greater than 0: PM > 0. However, non-malicious vehicles have PM = 0. On one
hand, if a malicious vehicle perceives an event on the road, it may alter the alerts reporting
this real event with probability PM. Similarly, it may alter all the forwarded alerts with the
same probability. On the other hand, a malicious vehicle may forge alerts about non-real
events with probability PM.
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The primary objective of the proposed framework is to compute the trust metrics of
malicious and non-malicious vehicles. These trust metrics should reflect the real behavior
of the vehicles. A malicious vehicle should never reach the highest trust level. In the same
way, a non-malicious vehicle must have high trust metrics. In the proposed BC-TMF, two
trust metric types are considered: a local trust metric and a global trust metric. The local
trust metric is a subjective value computed by a monitor about a target vehicle based on its
own experience with it. The global trust metric is an aggregated trust metric computed by
the miner about each vehicle based on local trust metrics received from the monitors, it is
stored in the blockchain.

The local trust metric of vehicle v, calculated by vehicle m, noted Tm(v) is defined
as a value in the interval (0–1). The local trust metric of v relies on the credibility of its
messages sent to m. Besides, the trust metric evaluation is based on direct experiences with
target vehicles. Each vehicle asses the trust metric of its neighbors based on the received
alerts subjectively. It is worth noting that the local trust metrics are asymmetric: Tm(v) is
different and independent from Tv(m).

In the proposed BC-TMF, blockchain technology is used to store the trust values of
vehicles and make them reachable by all other vehicles in the network. Contrary to many
existing frameworks where the RSUs serve as miners [18,22], in the proposed approach, a
public blockchain is considered, where the miners are a set of vehicles elected randomly
on the road. Actually, it is not very practical to build the framework on RSUs because it is
very expensive to deploy many RSUs along the roads, particularly in rural scenarios. More
importantly, the RSUs are vulnerable to physical attacks. As illustrated in Figure 1, the
proposed BC-TMF goes through three main phases.
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In the first phase, the local trust metrics of the vehicles are evaluated by their neighbors.
In the second phase, the obtained local trust metrics are shared with the miners, which
are responsible for the aggregation to compute a global trust metric for each vehicle in
its neighborhood. In the third phase, the miners generate and validate their blocks, then
compete to add them to the blockchain. The following sections describe the different phases
of the framework.
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2.2. Trust Metric Evaluation

The first phase of the proposed framework is to compute local trust metrics for the
vehicles saved locally in their monitors, these local trust metrics will be aggregated later
into global trust metrics in the miners. To compute the local trust metrics of the vehicles in
the proposed BC-TMF, protocol EDTCP proposed in [15] is used. It is a hybrid approach
aiming to compute the trust metrics of the vehicles, and evaluate the reliability of the
disseminated alerts. Each vehicle monitors its neighbors and updates their trust metrics
accordingly. The local trust metric update is event-driven. Upon perceiving an event
on the road, vehicle v periodically broadcasts alert messages that report the event in its
neighborhood. Once vehicle m receives the alert message from vehicle v, it should, first,
check the credibility of the event reported in the alerts. To this end, a tier-based data
reliability assessment technique is used [11]. It aims to decide if the detected event is
reliable or not. Afterward, vehicle m updates the trust metric of vehicle v accordingly: if
the event is reliable, Tm(v) increases by 0.1 otherwise it decreases by 0.1:

Tm(v) =
{

+0.1, if the event is reliable
−0.1, otherwise

(1)

Initially, vehicle v has Tm(v) = 0.1 in vehicle m. Each neighbor m of vehicle v
separately computes a trust metric for it, this local trust metric will be stored in a local
database named List_Local_Tm(m). Consequently, vehicle v will have more than one
local trust metric evaluated by different vehicles at the same time. Besides, vehicle v
has to cooperate with its neighbors along its journey to increase its trust metrics stored
locally in its neighbors. Let us note that all the vehicles mutually and independently
monitor and compute trust metrics about each other. The next phase of BC-TMF is trust
metrics aggregation.

2.3. Trust Metrics Aggregation

It is not practical for each vehicle to have different trust metrics in different vehicles.
This may lead to a non-consistency problem between different calculated local trust metrics
because each monitor will update the trust metrics of its neighbors based on its own
experience with them. Besides, this may facilitate the badmouthing attack where a vehicle
overestimates or underestimates its neighbors. Therefore, each monitor m has to forward
the trust metrics list of its monitored vehicles to the miners. As aforesaid, the miners are
random vehicles selected on the road. Hence, periodically, each SendTransTimer period,
monitor m transmits a copy of its database List_Local_Tm(m) to the nearest miner in its
neighborhood. Afterward, the miner proceeds to the aggregation of the received local trust
metrics into global trust metrics. The aggregation is a time-driven process. Periodically, the
miner will go through the received databases and looks for trust metrics of each vehicle v,
then it computes one global trust metric denoted TM(v) for v as shown in Equation (2):

TM(v) =

(
TM(v)old + ∑N

i=1 Ti(v)
)

N + 1
(2)

where N is the number of monitors of vehicle v and TMold(v) is the old trust metric of
v stored in the blockchain. Initially TMold(v) is equal to 0.1. Similarly to the local trust
metric, the aggregated TM is a value in the interval (0–1). If vehicle v gets TM(v) = 1,
it is considered trustworthy. After aggregation, the miner records the new aggregated
trust metric TM(v) in a local database, to be packed later in a block. Afterward, the miner
proceeds to the subsequent task which is the block generation and validation.

2.4. Block Generation and Validation

The main objective of the proposed blockchain-based framework is to compute for each
vehicle only one accurate and up-to-date trust metric that reflects its current behavior and
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is available to all the other vehicles in the network. Blockchain technology is a distributed
ledger, it is exploited to record the trust metrics of the vehicles in it. Sharing the global
trust metrics with all the vehicles in the network allows coping with the cold-start problem
that arises when a new vehicle enters a new region without prior experience with the
encountered vehicles. Consequently, it has to cooperate efficiently and for a long period
to build a high trust metric. Unlike existing frameworks where the blocks are created
continuously on every update of the local trust metrics [18,22], in the proposed BC-TMF
the creation of the blocks is performed periodically every addBlockTimer period. The
periodicity of the block generation has two main benefits. First, it allows the miners to
collect more accurate trust metrics from the monitors because the more the monitor has
a long experience with its neighbors, the more accurate the computed local trust metrics
will be. Secondly, it economizes the computation resources of the miners upon the PoW
calculation. More importantly, adding the blocks periodically to the Blockchain will reduce
the number of blocks, consequently, it expedites the retrieve of the global trust metrics from
the ledger.

Each block consists of two compartments: the header and the body. The block header
contains the block version that indicates the position of this block in the blockchain, the
previous block’s hash, Merkle tree root hash, which is a hash value of all the trust metrics
included in the current block, the nonce used in the PoW, as well as the timestamp, which is
the block generation time. Besides, the header contains difficulty metric D used to solve the
Proof-of-Work [23]. The body contains the list of trust metrics of the vehicles aggregated as
explained in the previous section. The structure of the block is shown in Figure 2.
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Since many miners may try to add their blocks at the same time to the blockchain,
a technique to select which miner to add its block first must be expected. In Blockchain
technology, the concept of PoW consensus is used to solve this problem [18]. The miner has
to continuously hash the header of its block until getting a hash value H smaller than or
equal to a threshold value named difficulty D: H ≤ D, also D zeros must be padded in front
of the hash. D is a hash threshold that can be tuned to control the difficulty of the PoW.
The miner that solves the PoW first, adds its block first, to the blockchain. After the PoW
computation, the miner signs the block using its private key and sends it to other miners.
Other miners should validate the received block by checking if it fulfills the following
condition H ≤ D, also they check the signature of the miner originator of the block, if both
conditions are fulfilled, the miners add the received block to their copies of the blockchain,
also forward it to other vehicles in the network. Hereafter, every vehicle that receives an
alert from a new vehicle can retrieve its global trust metric from the blockchain. The PoW
Algorithm 1 is described below:
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Algorithm 1: PoW

1. Start
2. Input D, nonce
3. Do
4. Calculate the block hash H
5. Increment nonce
6. While (H > D and (the number of zeros padded in the front of the block hash < D))
7. End

3. Simulation Results and Discussion

In this section, the performance of the proposed BC-TMF are investigated using
simulations. We are interested in the efficiency of the framework and the consistency of
its results.

3.1. Simulation Setup

An extensive set of simulations has been conducted using the vehicular network
simulator Veins [25], conjointly with the road traffic simulator SUMO [26]. Both the
proposed framework and EDTCP protocol [15] used in the trust metrics evaluation phase
are implemented in Veins. The considered network map is shown in Figure 3.
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Figure 3. Network Map.

The vehicles enter the network from one entry point with a rate of 2 vehicles/s. All
vehicles speed up to a maximum of 50 km/h. In the considered scenario, the vehicles will
encounter congestion events on the road, in this case, they slow down or/and stop for a
while till the road becomes unblocked. These congestions are reported in alerts broadcast
periodically (every 1 s) in the network. Table 1. summarizes the simulation parameters.

3.2. Results

Initially, we are interested in the efficiency of the proposed BC-TMF. Figures 4 and 5
show the average global trust metric (TM) of non-malicious vehicles having PM = 0 as a
function of addBlockTimer for an entry rate of 2 vehicles/s and 4 vehicles/s, respectively.
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Table 1. Simulation Set up.

Parameters Values

Simulation period 1200 s
MAC/PHY IEEE 802.11p

PM (0–1)
Number of Miners 50% of the total number of vehicles

Percentage of Malicious vehicles 15%
Maximum speed 50, 65 km/h

Transmission range 350 m
SendTransTimer 50, 100 s
AddBlockTimer (150–350) s
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It is obvious from Figures 4 and 5 that the average trust metric of non-malicious
vehicles varies between 0.92 and 0.95 for both scenarios. Besides, it is obvious that it is
slightly higher in the case of 50 km/h compared to the case of 65 km/h. This result is
due to the fact that the high speed causes an intermittent connection between the vehicles,
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consequently, the monitors may not receive a sufficient number of alert messages from
the target vehicles to increase their trust metrics. Furthermore, few vehicles did not
reach a trust metric equal to 1 and this is maybe because they have recently joined the
network, so they need more time to coordinate with their monitors and increase their trust
metrics. Furthermore, we observe that addBlockTimer does not affect the trust metrics
of non-malicious.

Figures 6 and 7 portray the average trust metric of malicious vehicles as a function
of the PM for different speeds and addBlockTimer values. On one hand, we notice that
in all the considered scenarios the average trust metric decreases inversely to the PM.
This is an expected result because the PM impacts the behavior of the vehicles in terms
of the percentage of non-authentic messages disseminated in the network. The more PM
increases, the more the authenticity of the detected events is altered. Consequently, when
the percentage of non-authentic messages increases, the trust metric of the source vehicle
decreases. More importantly, although only 10% of the messages sent by malicious vehicles
are non-authentic in the case of PM = 0.1, it is obvious that their average trust metric does
not exceed 0.3 for all scenarios, which confirms the efficiency of the proposed BC-TMF
in calculating the trust metrics of the vehicles. It does not allow malicious vehicles to be
trustworthy (TM = 1).
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Besides Figures 6 and 7 point out the importance of the sendTansTimer parameter on
the convergence of the global TM of the malicious vehicles to lower values. Particularly,
we remark that the average TM slightly decreases when sendTransTimer increases mainly
for high PM values (>0.5). We notice in Figures 6 and 7 that the average TM slightly
decreases also when addBlockTimer increases for high PM values. It passes from 0.25 in
case of addBlockTimer = 150 s to 0.19 in case of addBlockTimer = 350 s, for PM = 0.7 and
sendTransTimer = 50 s. This result provides enough evidence that addBlockTimer and
SendTransTimer must be accurately tuned to obtain exact trust metrics and ensure that the
global trust metrics of malicious vehicles converge rapidly to lower values.

To emphasize the accuracy of the proposed BC-TMF compared to existing frameworks,
we portray in Figure 8, the average global trust metric of malicious vehicles as a function of
the percentage of malicious vehicles in the network. The average trust metric computed by
the proposed BC-TMF is compared to that computed by NBC-TMV framework proposed
in [22]. For both scenarios PM is equal to 0.7. As depicted in Figure 8 for both frameworks
the average trust metric of malicious vehicles decreases when the percentage of malicious
vehicles increases. This result is expected since the percentage of non-reliable alert messages
increases. Nevertheless, the proposed BC-TMF outperforms NBC-TMV mainly in the
case of a high percentage of malicious vehicles. It is obvious that it is about 0.1 for BC-
TMF for 25% of malicious vehicles while it is 0.2 for NBC-TMV. This result is due to the
aggregation process in BC-TMF that avoids overestimating the trust metric of malicious
vehicles. Another reason behind the outperformance of the proposed BC-TMF is the update
of the trust metrics performed in miner vehicles compared to the NBC-TMV framework
where it is performed in the RSUs. However, RSUs are not deployed everywhere on
the road, so the aggregation process and block creation may be delayed in NBC-TMV,
consequently, the trust metrics are not updated timely.
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the network.

Now we focus on the consistency of the computed trust metrics stored in the blockchain.
To this end, Figure 9 presents the variance of the global trust metrics for non-malicious
vehicles (PM = 0) computed as in Equation (3) below:

variancenonmalicious =
∑N

i = 1(TM(i)− Avg)2

N
(3)

where N is the total number of non-malicious vehicles, Avg is the average global trust
metric for non-malicious vehicles, and TM(i) is the global trust metric of vehicle i.
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Figure 9, portrays the variance of the global trust metric for the non-malicious vehicles
as a function of addBlockTimer for different speed and sendTransTimer values.

It is obvious from Figure 9 that the variance does not exceed 0.01 in all scenarios,
which confirms the consistency of the obtained trust metrics presented in Figures 4 and 5
shown above.

Similarly, Figure 10 portrays the variance of the global trust metric of malicious
vehicles as a function of PM, it is computed as in Equation (4) below:

varianceMalicious =
∑N

i=1(TM(i)− AvgM)2

M
(4)

where M is the total number of malicious vehicles, AvgM is the average global trust metric
for malicious vehicles, and TM(i) is the global trust metric of the malicious vehicle i.
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We observe in Figure 10 that the variance does not exceed 0.18. It passes from around
0.18 for PM = 0.1 to around 0 for PM = 1 and addBlockTimer = 350 s. Additionally, it is obvi-
ous that addBlockTimer slightly affects the variance. It passes from 0.18 for addBlockTimer
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equal to 350 s to around 0.15 in the case of PM = 0.1. The value of addBlockTimer = 150 s
seems to be the most appropriate to get lower trust metrics for malicious vehicles. This
result confirms once again, the excellent capability of BC-TMF to compute exact and
consistent trust metrics for malicious vehicles.

Let us now consider Figure 11 where we portray the fraction of malicious vehicles that
reach a trust metric TM = 0.8 as a function of PM denoted PS(8) and computed as shown in
Equation (5) below:

PS(8) =
Number of vehicles (PM > 0 and TM ≥ 0.8)

Total number of malicious vehicles
(5)
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This metric (PS(8)) is interesting because it will be considered later as selection criteria
of the miners. Let us recall that in the current work, the miners are a randomly selected set
of vehicles. In Figure 11, the results computed using BC-TMF are compared to the results
computed using EDTCP [15] where each vehicle has many local trust metrics saved in its
monitors, no aggregation or sharing techniques are used.

We remark in Figure 11 the huge difference between the results obtained for the
proposed BC-TMF compared to EDTCP mainly for PM ≥ 0.7. Particularly, PS(8) is less than
0.02 for BC-TMF. However, it goes to 0.5 for EDTCP, which means that for EDTCP about
half of the malicious vehicles having (PM = 1) reaches a trust metric higher than 0.8. Again
BC-TMF computes accurate trust metrics, particularly for malicious vehicles.

3.3. Discussion

In this section, the most important features of the proposed framework are discussed
and compared to the existing approaches. First of all, unlike classic approaches [13,14]
where trust is based on direct observations and recommendations, the framework proposed
in this study does not rely on a recommendation system, yet it allows calculating accurate
trust metrics as shown in the previous section and this is due to the accurate tier-based
event authentication approach used in the first phase of the framework. The proposed
framework solves also, the cold-start problem which is a limitation of the classic approaches
such as [14,15]. It arises when a vehicle enters a new network and has to cooperate with
unknown vehicles. This problem is solved using Blockchain which provides a shared
ledger used to securely store and share the global trust metrics of the vehicles. Additionally,
unlike the existing blockchain-based frameworks [16–18,22], the proposed framework does
not rely on RSUs to play the role of miners, instead, a set of vehicles randomly selected
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in the network play the role of miners. Only the vehicles are involved in the different
phases of the framework and this is for many reasons. First, the vehicles are supplied with
sensors and many potential capabilities to adequately monitor their surroundings and
perceive hazardous events timely and more accurately than the RSUs. Secondly, the RSUs
are very expensive to deploy everywhere on the road mainly in the earlier deployment
stages of vehicular networks. More importantly, as explained in the previous section,
assigning the local trust metric assessment to the RSUs may delay the global trust metrics
convergence and share. Hence, in the proposed framework, the local trust metric calculation
is performed by the vehicles then shared with the miners. It is worth mentioning here that
it will not cause a problem in terms of resources because the vehicles are equipped with
onboard units characterized by sustainable computational resources. Yet, it expedites global
trust metrics calculation in the miners since they will receive from the vehicles only the
local trust metrics unlike the approaches proposed in [16–18] where the vehicles share with
the miners the data messages, then it is up to these latter to assess and calculate the trust
metrics. Moreover, in the proposed approach, global trust metrics update is time-driven
contrary to existing approaches [16–18,22] where it is performed each time the vehicle
transmits a data message. This feature allows the monitors to assess more accurately the
local trust metrics of their neighbors, consequently, the global trust metrics converge rapidly
to the adequate value mainly for malicious vehicles as explained in the previous section.

4. Conclusions

In this paper, a decentralized blockchain-based trust management framework is pro-
posed. It aims to compute for each vehicle a global and accurate trust metric stored in the
blockchain. The proposed BC-TMF is built upon three phases: trust metrics evaluation,
trust metrics aggregation, and blocks generation and validation. Each vehicle assesses the
trust metric of its neighbors from which it receives alerts. The trust metric calculation relies
on the authenticity of the received messages. Then the miners aggregate the trust metrics
received from other vehicles to compute an aggregated trust metric for each vehicle. The
aggregated trust metric will be packed in a block signed by the miner, then added to the
blockchain after solving the PoW. Sharing the aggregated trust metrics in a distributed
ledger will solve the cold-start problem.

A set of simulations has been conducted to evaluate the efficiency and accuracy of
the proposed BC-TMF in terms of the average trust metric for both malicious and non-
malicious vehicles and the variance of the trust metrics as a function of many parameters.
The obtained results show that the proposed BC-TMF has excellent capability in computing
accurate trust metrics for malicious and non-malicious vehicles. The proposed BC-TMF
outperforms not only classic schemes but also existing blockchain-based frameworks. In
future work, it is expect to refine the miners’ selection process. Besides, it is expected to
conduct further simulations to tune the different parameters of the proposed framework.
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