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Abstract: Many smart city applications have been proposed and demonstrated over the years;
however, moving to large-scale deployment is still scarce. A contributing factor to this scarcity
is the lack of well-established engineering methodologies for large-scale smart city applications.
This paper addresses engineering methodologies and tools for large-scale smart city application
engineering, implementation, deployment, and evolution. A model-based engineering approach
based on IoT, SOA, and SysML is proposed and applied to a smart streetlight application. Engineering
considerations for streetlight area enlargement and updated technology generations with additional
capabilities are discussed. The proposed model-based engineering approach provides considerable
scaling simplifications and opportunities for considerable savings on engineering costs. The model-
based engineering approach also provides good documentation that enables technology evolution
specifications that support both maintenance and emerging behaviours.
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1. Introduction

Smart cities have been discussed for quite some time in the scientific community,
industries, and societal groups, and a number of reviews on the topic are available. There
are properties related to smart cities that distinguish them from other domains, such
as Industry 4.0 production, smart energy grids, and smart houses. Such distinguishing
properties are as follows:

• Very large number of devices and users >105;
• Very large number of independent functionalities with emerging behaviours

and interactions;
• Extremely heterogeneous technologies; and
• Extremely distributed environments >10 km2.

Moving the smart city ideas and experiments into real-world realisation, while en-
abling the above properties, is a current challenge. The further enabling of widespread
smart city functionalities and their integration will require economically and commercially
sound implementations. This will put new demands on the engineering, deployment,
operation, maintenance, and evolution of smart cities.

Such demands can be transferred into a number of more detailed requirements that
need to be addressed. Such requirements are, e.g., as follows:

• Architecture for smart cities;
• Engineering of smart city solutions;
• Operation of smart city solutions;
• Maintenance of smart city solutions;
• Evolution of smart city solutions;
• Training related to smart city engineering, operations, maintenance, and evolution;
• Smart city security; and
• Smart city safety.
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Clearly, the details of these requirements will be viewed differently depending on
the “smart” city functionality. The enabling of integration between functionalities and
their evolution will call for architectures allowing for run-time engineering, management,
maintenance, and evolution. It is clear that smart city functionalities have to be addressed
using some type of system of systems (SoS) thought and architecture. Fundamental
properties of SoS can be found in [1,2].

Current technology trends point towards the usage of service-oriented architecture
(SOA) and microservices, as a well-accepted approach. An interesting example of a detailed
implementation architecture based on microservices is [3]. The engineering of SoS SOA
solutions has been discussed since early 2000. SOA is, to a large extent, the dominant
approach for creating automation and digitalization solutions in industrial production,
smart grids, smart environments, etc. We currently find a smaller number of edge solution
frameworks/platforms; a recent review of such industrial frameworks/platforms is [4].
However, in what way can these types of platforms be used for smart city engineering?
The engineering of SOA/microservice-based solutions has some history in the area of
business computing (e.g., banking) and cloud-based computing [5]. Moving SOA and
microservice solutions to the edge has been a focus area of multiple European projects over
the last decade. Important publications demonstrating this development are, e.g., Colombo
et al. [6,7] and Delsing [8,9]. For the engineering of SOA-based solutions, Urgese et al. [10]
recently published an approach for modelling and integrating a solution engineering
process using an SOA approach. This approach allows for modelling and integrating
various solutions at different stages of engineering, operations, and evolution.

This approach to smart city functionality and integration engineering is model-based.
Service-oriented modelling has been addressed since early 2000. A prominent example
is [11].

The smart city engineering approach applied herein is based on an SOA/microservice
architecture. Thus, we need to consider an SoS SOA architecture. For the modelling thereof,
SysML is used. As an SoS SOA architecture backbone, the Eclipse Arrowhead reference
architecture and implementation platforms have been used [12].

The intention is to show how model-based engineering can serve in design and
engineering of complex smart city solutions where advanced and dynamic boundary oper-
ational conditions are at hand. Thus, the focus of this paper is on how simple functionalities
can be engineered to integrate into more complex functionalities in a smart city context.

In summary, this paper focusses on smart city engineering, both in design and run-time.

2. Related Work

The knowledge field of smart cities is very broad. Given the geographical size of smart
cities, it is obvious that updates and extensions (e.g., geographically) of single functional
solutions and installation of new functionalities have to occur in parallel to the operation
of existing functionality solutions. Integration between existing, upgraded, extended, and
new functionalities is one area that has a large dependence on interoperability, integrability,
and composability of the involved functionalities. Thus, the engineering of smart cities has
to consider not only design time engineering, but also maintenance of the smart city, its
evolution, and emerging behaviours.

Current literature on smart city engineering is limited. One reason for this is the very
early adoption phase of smart city solutions. Another reason for this can be found in the
knowledge gap between the current city engineers and the smart city community [13].
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Using engineering approaches from other domains, such as production and smart
grids, is appealing. The current engineering process standards, such as ISO 81346, ISO
15288 [14,15], and others, do not consider smart city properties as indicated above. Thus,
this paper can make a contribution to this open field of knowledge.

The SoS literature holds some interesting work related to SoS SOA engineering. Most
of the engineering-related publications address SoS SOA engineering at higher levels in
enterprises, prominent examples are [16,17]. Very few SoS SOA engineering papers related
to production have been found, e.g., [18].

For each of the related requirement areas, some primary references are indicated below:

• Architecture for capturing, e.g., design, engineering, operation, and evolution. RAMI4.0
and IIRA [19,20] are such architectures for Industry 4.0 and, e.g., IEEE 1547 and
IEEE2030 [21], which address the smart energy grid domain. There are a number of
proposals for smart city high level architectures, see, e.g., [22,23], which seem to be
quite simple compared to existing industrial and smart grid architectures.

• Operation of smart city solutions. Many experiments with single functionalities have
been pursued. Experiments with multiple functionalities seem to be limited.

• Maintenance of smart city solutions. In this regard, substantial work on mainte-
nance based on SOA and microservices addressing the production domain exists, see,
e.g., [24–26]. The maintenance of microservice-based systems is reported by Tizzel
et al. [27].

• Training related to smart city engineering, operations, maintenance, and evolution.
This is an open field, primarily because of the immaturity of the market for smart
city solutions.

• Security of smart city solutions. A comprehensive review can be found in [28].

Since the literature on engineering of smart city functionalities is limited, this paper is
intended to provide a valuable contribution to the field.

3. SoS Engineering

Here, the engineering of IoTs and their interaction to form a System of Systems, SoS,
in a complex smart city context is addressed. For this purpose, a smart streetlight use case
is considered. Thus, the engineering of a complex SoS based on smart streetlight IoTs is
elaborated in this paper.

The SoS engineering approach applied is model-based systems engineering (MBSE) [29].
To enable a structured approach to SoS engineering, a feasible engineering process is needed.
The one adopted herein comes from Urgese et al. [10], and is depicted in Figure 1. This
engineering process can be described using an SOA perspective. The use case architecture
is based on SOA/microservices; thus, it follows the major architecture trends in the area.
Further discussion of a smart city engineering process makes use of an SOA framework
and implementation platform. The engineering process is based on some very recent de-
velopments in SOA modelling with SysML [30]. Thus, further description and discussion
of the engineering process makes use of Eclipse Arrowhead framework and implemen-
tation platform [8,12]. This is facilitated by the available SysML profile and library for
Eclipse Arrowhead (http://www.github.com/eclispe-arrowhead/SysML-profile-library
(accessed on 29 April 2021)).

Figure 1. The engineering process applied in this paper is based on ISO 81346 as extended and refined by Urgese et al. [10].

http://www.github.com/eclispe-arrowhead/SysML-profile-library
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3.1. Smart City Application-Requirements and Evolution

The proposed engineering approach is discussed for a smart streetlight application.
Here, each streetlight has a sensor that can detect the presence of a non-stationary object
within the illumination area of the streetlight. The “smartness” is that streetlights should
only be ON if there is a non-stationary object within its illumination area. It is assumed that
there is a small overlap between the illumination areas of each streetlight. The handover
of illumination should be made between streetlights when objects are moving from one
illumination area to another.

To include the evolution aspect of the application, three generations of the streetlights’
sensors will be considered:

Gen.1 IR sensor;
Gen.2 Camera;
Gen.3 3D camera.

Given these streetlight generations, the following scenario regarding design, installation,
updates, extension, and segment integration is considered from an engineering perspective:

1. Smart streetlights generation 1 deployed in multiple city sections. The primary
objective is that streetlights should be ON when a person or moving object (e.g.,
bicycle, car, wheelchair) enters the streetlight illumination area.

2. Smart streetlights generation 2 deployed in multiple city sections. In this case, both
presence and object location within the illumination area can be detected. The primary
objective is still that streetlights should be ON when a person or moving object
(e.g., bicycle, car, wheelchair) enters the streetlight illumination area. The secondary
objective is that the next street along the position trajectory of the object can be lit up
before the object enters that streetlight illumination area.

3. Smart streetlights generation 3 deployed in multiple city sections. In this case, in
addition to presence and object location, velocity (speed and direction) within the
illumination area can be detected. The primary objective is still that streetlights
should be ON when a person or moving object (e.g., bicycle, car, wheelchair) enters
the streetlight illumination area. The secondary objective is that the next street along
the position trajectory of the object can be lit up before the object enters that street-
light illumination area. The third objective is improved and smoother illumination
handover between light poles, resulting in improved illumination experience and
reduced energy consumption.

4. Integration between city sections using all smart streetlight generations. Here, we
create a handover between city sections, allowing for seamless movement between
city sections having different technology generations.

5. Streetlight sections with cameras also provide the emergent capability of tracing
the movements of identifiable individuals, which might be of interest as forensic
information. This adds engineering requirements on, e.g., data security, storage,
and lifetime.

The emerging installation plan for the smart streetlight areas is schematically depicted
in Figure 2.
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Figure 2. Smart streetlight installation plan for different sections in the city. The smart streetlights
generation, section installation time, and section-to-section integration time is indicated for each
city section.

3.2. Engineering Approach

The engineering approach proposed herein is based on a two-dimensional perspective.
The two dimensions considered are as follows:

• Architecture;
• Engineering process.

The engineering process dimension was briefly introduced above and depicted
in Figure 1.

The architecture is based on the Eclipse Arrowhead. Fundamental parts of the archi-
tecture are depicted in Figure 3.

Core parts of the architecture are as follows:

• Software system: a software-based microsystem capable of producing and/or con-
suming microservices and executing its own functionality.

• Local cloud: a set of microsystems in a private network capable of jointly executing a
set of functionalities. The local cloud always includes mandatory core microsystems
to establish necessary SOA infrastructure. This is a local-scale SoS.

• System of local clouds: a set of local clouds capable of jointly executing a set of
functionalities. This is a large-scale SoS enabling the architecture and its engineering
to address the expected very large scale of smart cities.

• Device: a hardware hosting one or several software systems.
• Network: a network enabling private clouds with DMZ (De-Militarised Zone) and

open internet with communication between the involved software systems and lo-
cal clouds.

The engineering process, on one hand, and the architecture based on Eclipse Arrow-
head, on the other hand, have been used to form a two-dimensional matrix approach to
the engineering of complex SoS SOA-based smart city solutions; see Figure 4. The matrix
has been captured in a SysML profile [31]. In addition, most of the Eclipse Arrowhead core
SOA systems have been modelled and made available as a library, along with a number of
templates for often-used constructs. The SysML profile, library, and templates are available
at www.github.com/eclipse-arrowhead/profile-library-SysML (accessed on 29 April 2021).

www.github.com/eclipse-arrowhead/profile-library-SysML
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Figure 3. The SoS architecture applied in this paper, Eclipse Arrowhead. It addresses five levels
from communication network and devices over microsystems and microservices enabling first
level of scalability into individual local clouds and finally to large scalability considering system of
local clouds.
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Figure 4. The two engineering approach dimensions. From bottom row up—the architecture dimension starting at the network and device levels up to large-scale SoS level. Thus, enabling
the capturing of the very large scale expected in smart cities. The engineering dimension starts with requirements, high-level functional objective, and design, all the way to deployment,
maintenance, and evolution. Architectural block relationships and associated constraints are modeled with SysML directed associations.
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The Eclipse Arrowhead SysML library provides all currently released core systems
of Eclipse Arrowhead plus a number of the release candidate systems (expected re-
lease is Q3 2021). In this most fundamentals of SOA/micro-service architectures are
supported including;

• Security:Authentication, authorisation, and accounting are supported down to indi-
vidual service exchanges. Payload protection is provided based on chosen protocol,
but for most modern protocols, TLS is used. Secure on-boarding for both hardware
and software is supported. Monitoring of security standard compliance and some
security issues is also supported by the Eclispe Arrowhead framework and the mod-
elling thereof.

• Interoperability: Autonomous protocol translation, support for data model transla-
tion based on ontologies. Adaptors for multiple legacy protocols like, e.g., OPC-UA,
Z-wave, Modbus-TCP are provided both as code and models by the Eclipse Arrow-
head framework.

An extensive discussion of the SysML modelling of SOA/micro-service and SoS where
Eclipse Arrowhead has been used as the validation implementation framework will be
provided in a forthcoming paper [30].

Next, each of these dimensions is described in more detail.

3.2.1. Architecture Dimension

Here, we take an SoS architecture perspective and assume a solution approach based
on service-oriented architecture and microsystem and microservices. In this context, a
microservice is produced by a microsystem, which performs its functionality independently
and can be stateful or stateless. The perspective is based on the Eclipse Arrowhead
framework and makes use of network, devices, and microsystem with microservices,
which are aggregated to independent local clouds which can be further integrated to a
system of local clouds. The architecture is divided into these five levels, shown in Table 1.

Table 1. The architectural view of the engineering approach. Here, the use case level and scale are indicated in green boxes
with the corresponding architectural level from the Eclipse Arrowhead as stereotyped in SysML in yellow boxes.

Architecture Level SOA/Eclipse Arrowhead Concepts Smart Streetlight Use Case Concepts

Network functionality connecting
hardware and its functional systems and
services

Private local cloud networks with
functionality enabling secure service
exchanges to other local clouds

Local cloud routers, switches, cabling,
wireless access points and access point to
the open Internet

Hardware hosting one or more systems
and associated services

Hosting one or more microsystems and
associated services plus necessary SOA
administrative and support systems

The sensor, controller, and light switch,
and the necessary SOA administrative
and support systems

Individual system (IoT system) and its
produced and consumed services

Individual microsystems and their
produced and consumed microservices

Individual streetlight poles and their
sensor, controller, and the light source
switch

Local-scale SoS composed of a number of
microsystems

Local clouds’ private networks composed
of a number of microsystems, each
private network responsible for a set of
functionalities that primarily can be
performed in isolation

City section, e.g., a number of city blocks
or streets and associated streetlights

Large-scale SoS interaction between the
local-scale SoS networks responsible for a
set of functionalities

System of local clouds: aggregated
interaction between a number of local
clouds and their private networks. In this
way scalability to very large number and
heterogeneous “smart devices and
functionalities” is provided [32].

System of city sections, e.g., sets of
streetlight city sections, thus enabling the
capturing of very large number of “smart
devices” and associated functionalities.
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3.2.2. The Engineering Process

The engineering process is based on ISO 81346 and extended to the Eclipse Arrowhead
SoS engineering process [10], depicted above in Figure 1. The process is detailed in Table 2.

Table 2. The engineering process view of the engineering approach.

Engineering Phase SOA/Eclipse Arrowhead Phase Smart Streetlight Use Case Phase

Requirements Formalised requirements for all architecture levels
Use case requirements for all architecture levels. As a part of
the requirements, the SysML use case diagram model is
provided in Figure 5

Functional design
Black box functional designs and models for each architecture
level. Here, the system level details of one involved
microsystem and its microservice are provided in Figure 6

Use case design and models for each architecture level

Functional engineering and
procurement

White box design, models, and engineering for each
architecture level, procurement of specified HW, SW, and
services. Detailed modelling of functional and security
policies, tests, and software instalment procedure. In Figure 7,
the white box design of a local cloud is provided.

White box design, models, and engineering for each
architecture level of the streetlight solution, procurement of
streetlight poles and their sensor, controller, light switch and
light source, network, etc. Detailed modelling functional and
security policies, test, and deployment procedure

Implementation
Implementation, hardware, and code of the respective
microsystems and deployment of code to the dedicated
hardware

Implementation, hardware, and code of the smart streetlight
microsystems and deployment of code to the sensor,
controller, and light switch

Deployment
Physical deployment of hardware, software, functionality and
security policies, network, etc. Final tests and operational
commissioning according to procedures

Physical deployment of smart streetlight hardware,
orchestration and security policies, network, etc. Final tests
and operational commissioning according to procedures

Maintenance Maintenance procedures and execution at all levels of the
architecture and its implementation

Maintenance procedures and execution at all levels of the
smart streetlight architecture and its implementation

Evolution Functional and technology evolution and its execution at all
levels of the architecture and its implementation

Functional and technology evolution and its execution at all
levels of the smart streetlight architecture and its
implementation

3.3. Engineering Details

This section details some of the engineering aspects and demonstrates a reason-
ably possible engineering flow through the architecture/engineering matrix, as shown
in Figure 4.

Functional Design-Black Box

Taking the SysML modelling approach, the requirements are first transferred to a use
case diagram. In the case of the smart streetlights, an example is shown in Figure 5.

Functionality modelling needs to start with individual systems and their produced
and consumed services. This is exemplified herein by a model of the streetlight controller;
see Figure 6.

When all black box designs of all involved microsystems and their produced/consumed
microservices have been completed, we can move to the next level, namely, local SoS, which
in Arrowhead architecture will be treated as a local cloud [32].

Here, the microsystem interactions-exchanges of microservices is modelled. Integrat-
ing the involved IoTs into an SoS based on SOA, we also need a model of the necessary SOA
infrastructure to support fundamental SOA properties like lookup, loose coupling, and
late binding, plus the important IoT security. An example is shown in Figure 7. This model
now constitutes a functional Arrowhead local cloud having support for fundamental SOA
properties and security. From our use case perspective, such local cloud can correspond to
a city section and its smart street lighting.

The integration of functionality in one city section, namely, the local SoS architecture
level, is done using orchestration of service exchanges and creation of associated security
policies. Orchestration rules and security policy details can be automatically extracted and
deployed from an engineering model, such as the SysML model used herein.

It is clear that multiple local clouds can be designed. Interaction between streetlight
sections can be established using the Eclipse Arrowhead Gatekeeper and Gateways core
systems [33].
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Figure 5. A SysML use case diagram for the smart streetlight use case.

Figure 6. The SysML black box model of the streetlight controller and its consumed application services.
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Figure 7. A SysML internal block diagram for a small local cloud of smart streetlight poles, including
necessary SOA infrastructure support systems, orchestration principles, and service interaction secu-
rity policies. For simplicity, only 3 streetlights have been modelled. Each streetlight has the capability
of sensing the presence of objects for which the light should be turned on. Only one streetlight
holds the Eclipse Arrowhead core systems ServiceRegistry, Authorization, and Orchestration, which
supports the fundamental SOA principle. With the help of these core systems, more streetlights can
be added, and defective ones can be replaced with minimal system integration effort and cost. In
addition, interaction with other streetlight sections can be established using the Eclipse Arrowhead
Gatekeeper and Gateways core systems [33].

The next step is to provide the white box design of our involved microsystem, its
services, and its interaction within the local cloud. This includes definition of used service
protocols, e.g., HTTP, CoAP, MQTT. Security policies for each designed service exchange
are also defined at this stage. These definitions will enable partly automated code gener-
ation for the designed systems, thus supporting the coding of non-existing application
systems. The Eclipse Arrowhead core systems used can simply be pulled from GitHub as
docker containers.

Next, the created and identified micro-systems should be installed into some hardware.
The hardware should in turn be connected to a network. Thus, we need a model of the
hardware devices and the network design. Examples of black box, white box, and specific
purpose hardware implementations are provided for hardware devices in Figure 8 and for
networks in Figure 9. These models are required to provide necessary information for the
deployment of the solution in the real world.
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Figure 8. Black box, white box, and implementation models of the hardware devices with some spe-
cific implementation examples indicating different device roles and the associated code deployment.



Smart Cities 2021, 4 655

Figure 9. Black box, white box, and implementation models of the open internet structure and the
private network structure.

Next, the devices and network are integrated into a local cloud model that describes
in which light pole individual hardware and its microsystems are installed. An example is
depicted in Figure 10.
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Figure 10. An implementation of a small smart streetlight city section. The designed streetlight
microsystems are installed in selected hardware, the SOA infrastructure microsystems are installed
on their selected hardware and the local cloud network router is included.

The final step is deployment. In this step, a number of metadata defining where and
how each light pole is connected to power supply, network, etc., are provided.

The proposed engineering flow through the architecture–engineering process matrix
is depicted in Figure 11.
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Figure 11. The proposed engineering flow through the architecture–engineering process matrix.
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4. Discussion

The proposed engineering approach addresses the knowledge gap identified in the
related work Section 2. The very limited smart city engineering literature addresses
engineering at design time. This paper provides an approach that supports not only
design time engineering, but also in-time engineering, maintenance time engineering, and
evolution time engineering. The approach can, to a very large extent, be implemented in
SysML engineering tools such as MagicDraw [34] or Eclipse Papyrus [35]. We can identify
a number of engineering actions in this approach that can be automated. Such automation
has the potential to significantly reduce engineering efforts and cost of smart city features.

Above, the engineering approach for the first smart streetlight deployment in a city
sector based on Eclipse Arrowhead architecture was described. To indicate engineering
efficiency and use case evolution, the use case comprises three generations of deployment
in different city sectors, as shown in Figure 2. The new generations of technology only
require the additional modelling of generations 2 and 3 of the sensors and controllers. This
is easily done by cloning the 1st generation models and adding the new functionality. Then,
we can clone the first city sector local cloud and exchange the sensors and controllers to
the new generations. In this way, it is possible to duplicate the engineering models for any
number of city sections where smart streetlights are desired.

However, what about interactions between adjacent city sectors? Can handovers
between city sectors (see Figure 2) be made using the technology approach? Making
use of the Eclipse Arrowhead features, integration of functionality between local clouds
and, thus, city sections is clearly possible and maintains security level. The required
functionality is provided by the GateKeeper and Gateway systems [36], as indicated
already at the functional design level, cf. Figure 7. In this way, service information can be
exchanged between different city sections, thus enabling handovers from one city section
to an adjacent city section, provided that the necessary functionality is supported by the
controllers. Above is another example of SoS evolution and emergent behaviour, which is
possible to address and engineer with the proposed approach of this paper. Notably, this
type of integration across different technology frameworks is still an interoperable and
composability challenge.

Integration between clouds with different technology generations can be managed
with minimal engineering efforts, if proper requirements on the services data models
are stated. This indicates that technology evolution can be handled positively, given the
integration of the engineering process and the SOA-based architecture. These details will
be the subject of upcoming papers.

The street light use case and its plan for different sections and technology generations
provides a basis for showing the benefits and capability of the engineering process and
architecture matrix. The use case construct enables us to show that the following parts of
the engineering process can be captured:

• Requirements;
• Functional design;
• Engineering and procurement;
• Deployment;
• Maintenance;
• Evolution.

It further contains all the architecture levels of the architecture. Network and device
level to a lesser extent but micro-system and associated micro-service, local cloud, and
system of local clouds to a large extent.

For the smart streetlight scenario with its sensing capability, it is clear that other
usage scenarios can be added to the light controllers and the data they can collect. Such
extended functionality includes, e.g., surveillance information (of potential interest in
forensic investigations) and capturing of city usage trends (of interest for city planning).

It is clear that integration of various smart city functionalities using interoperable
and composable technology will provide numerous opportunities and risks. Thus, hav-
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ing a technology engineering approach that produces documentation of the design, its
deployment, maintenance, and evolution is of value when considering both opportunities
and risks.

Coming back to the distinguishing properties of smart cities these are supported by
the proposed architecture and engineering procedure as follows:

1. Very large number of devices and users >105;
Is enabled by the chosen architecture through the use of the local cloud concept where
functional and security scalability is provided to system of local clouds.

2. Very large number of independent functionalities with emerging behaviours
and interactions;
Is supported as indicated with the three generations of sensors in the smart street light
use case. Since the architecture and the engineering process is independent from the
choice of device and functionality technology, the approach can handle technology
with a very large number of independent functionalities. Emerging behaviour and
interactions are also supported as discussed above.

3. Extremely heterogeneous technologies;
(see 2) above.

4. Extremely distributed environments >10 km2;
(see 1) above. The only part not discussed is the choice of networking infrastructure
enabling extremely distributing environments. Since the 4G and 5G telecom network
provides such capabilities, this can be addressed by the engineering approach by
adding such network interfaces.

In this way, the utilised SoS architecture, Eclipse Arrowhead, addresses the smart city
distinguishing properties, while also providing support for smart city detailed requirements
areas like:

• Maintenance of smart city solutions;
• Evolution of smart city solutions;
• Smart city security,

as discussed above.

5. Conclusions

An approach for the engineering of complex smart city solutions has been proposed
herein. The engineering spans from design-time over run-time to maintenance and evolu-
tion time, thus extending most existing engineering processes to cover almost the whole
life cycle of solution. This approach provides a structured integration between a basic
SoS architecture applied to smart city use cases and a comprehensive SoS engineering
approach based on SOA. The engineering approach has been demonstrated using a smart
streetlight solution and its extension and evolution over time. The solution has been mod-
elled in SysML, where it has been shown that functional properties can be addressed. It
has also been shown that security policies can be captured in the model and extracted for
subsequent deployment and operational use.

The evolution of SoSs and their emerging behaviours have been discussed. It has
been noted that the model-based approach provides comprehensive documentation of
the SoS solutions. Such documentation will become a valuable asset in the analysis of
opportunities and risks connected to integration of various smart city functionalities using
interoperable and composable technology.
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