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Abstract: The increasing use of distributed generation and electric vehicle charging stations provokes
violations of the operational limits in low voltage grids. The mitigation of voltage limit violations
is addressed by Volt/var control strategies, while thermal overload is avoided by using congestion
management. Congestions in low voltage grids can be managed by coordinating the active power con-
tributions of the connected elements. As a prerequisite, the system state must be carefully observed.
This study presents and investigates a method for the sparse measurement-based detection of feeder
congestions that bypasses the major hurdles of distribution system state estimation. Furthermore,
the developed method is used to enable congestion management by the centralized coordination of
the distributed electric vehicle charging stations. Different algorithms are presented and tested by
conducting load flow simulations on a real urban low voltage grid for several scenarios. Results show
that the proposed method reliably detects all congestions, but in some cases, overloads are detected
when none are present. A minimal detection accuracy of 73.07% is found across all simulations. The
coordination algorithms react to detected congestions by reducing the power consumption of the
corresponding charging stations. When properly designed, this strategy avoids congestions reliably
but conservatively. Unnecessary reduction of the charging power may occur. In total, the presented
solution offers an acceptable performance while requiring low implementation effort; no complex
adaptations are required after grid reinforcement and expansion.

Keywords: Smart Grid; congestion management; coordination; electric vehicle charging station;
photovoltaic; sparse measurements; low voltage grid

1. Introduction

The electricity grid is traditionally divided into the transmission level, which in-
cludes the high and very high voltage grids, and the distribution level, which includes
the medium and low voltage grids [1]. At each level, the distributed power injections and
absorptions may provoke voltage limit violations [2,3] and congestions [3-5], i.e., trans-
former and line overloading. At the transmission level, both types of limit violations are
separately addressed by two different operation processes: Volt/var control and congestion
management. Volt/var control uses transformers with on-load tap changers (OLTC) and
controllable reactive power devices to maintain the grid voltages within the acceptable
range [6]. Meanwhile, congestions are managed by manipulating the active power flows,
either by rescheduling the injections of power plants or by reallocating the active power
flows between different transmission lines [7]. Active power is not used to control the
voltage. At the distribution level, the voltage is conventionally controlled by the OLTC of
the supplying transformer, and in some cases, supportive capacitor banks are distributed
throughout the medium voltage grid [8]. The sufficient dimensioning of distribution grids
has obviated the need for congestion management.

Nowadays, the increasing use of distributed energy resources (DER) calls for an
adaption of the traditional control strategies. The intensive active power contributions of
photovoltaic (PV) systems and electric vehicle charging stations (EVCS) justify the use of
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Volt/var control and congestion management also at low voltage (LV) level. Besides the
use of OLTCs in distribution substations [9] and distributed or concentrated reactive power
control [10], the authors of many studies suggest to control the voltage by manipulating
the active power flows [11-14]. This idea mainly arises from the relatively high resistance
to inductance (R/X) ratio that prevails in distribution grids. However, active power is the
good that is traded between the different grid users. The necessary active power transfer
is the raison d’étre of the electricity grid, and therefore should not be curtailed unless no
other option is available to ensure compliance to the operational limits. Consequently,
voltage control is to be accomplished by using OLTC and reactive power control, while
congestions are to be managed by manipulating the active power flows. When upgrading
distribution grids to increase their hosting capacities for DERs, the first step is to implement
an appropriate Volt/var control strategy that reliably maintains the voltage within the
acceptable range and allows for the maximal active power transfer. Subsequently, if a
thermal overload is expected during peak load conditions, congestion management may be
implemented. Emergency-driven demand response is the main instrument of future Smart
Grids to mitigate congestions by coordinating the active power contributions of customer
plants (CP) [15].

The main resources available for demand response are all categories of storages, i.e.,
those that do inject the stored power back at the charging point of the grid (Cat. A); those
that do not inject the stored power back at the charging point (Cat. B); and those that
reduce the electricity consumption at the charging point in the near future (Cat. C) [16].
These resources must be coordinated—in a centralized or decentralized way—to enable
the emergency-driven demand response. The decentralized control architecture allows
to minimize the data to be exchanged, and to guarantee data privacy by design [17],
while it is more robust against communication errors and beneficial to prevent system
collapse [18]. But, the centralized system takes less time to create coordination among
constituent system parts.

In any case, this coordination requires a controller that observes the system state
and specifies set-points for the available control variables so as to prevent limit violations
within the observed area. At the transmission level, the system state is observed using
state estimation, i.e. an algorithm that converts redundant meter readings and other
available information into an estimate of the system state [19,20]. The application of
conventional state estimation techniques to distribution grids, especially to LV grids,
faces severe challenges due to their high R/X ratio, unbalance, complexity, and the low
availability of measurements [21]. Distribution system state estimation (DSSE) algorithms
have been developed in the past two decades, but their use is still very limited due to the
lack of measurements downstream of the substations, updated and accurate grid models,
easy access to data from different parts of the organization and unified data format [20].

Electric vehicle (EV) batteries are storages of Cat. B that may respond to grid conges-
tions by adapting the active power consumption of the corresponding charging stations [22].
Sophisticated state-of-art coordination schemes consider the electricity price [14,23-25],
the grid constraints [13,14,23-27], the needs of the EV owners [23-25], the grid loss [13,14],
and the CO2 emissions [26] to specify the control signals for the distributed EVCSs. These
strategies involve high modeling efforts to guarantee compliance to the grid constraints
and provoke massive data exchanges, imposing formidable communication challenges.

Within the Austrian flagship project, ‘Power System Cognification (PoSyCo)’ [28] are
developed—among many others—algorithms that manage congestions at LV level by the
centralized coordination of EVCSs. The focus of this study is set on easy-to-implement but
suboptimal solutions that bypass the modeling, monitoring, and communication challenges
associated with the state-of-art coordination schemes. New algorithms are developed and
simulated on a real urban LV grid that detect congestions based on sparse measurements
without requiring state estimation and establishes coordination without requiring network
models. The communication requirements are reduced to their minimum.
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Section 2 presents the proposed method for the detection of congestions, the algo-
rithms for the coordination of the EVCSs, and the test setup used to simulate the introduced
concepts. The simulation results are discussed in detail in Section 3 with a focus on the
detection accuracy, LV grid behavior, and battery charging times. The results are discussed
in Section 4 and conclusions are drawn in Section 5. Appendix A lists all abbreviations and
variables used in the paper.

2. Materials and Methods

Algorithms for the coordination of EVCSs that mitigate enduring overload of LV
equipment are presented and simulated in this study. They rely on the sparse measurement-
based detection of feeder and distribution transformer (DTR) congestions. To analyze the
impact of the algorithms on the behavior of LV grids and on the charging time of the EV
batteries, load flow simulations are conducted in a power system model using appropriate
software tools. For simplicity, the coordination algorithms and the congestion detection
methods are presented for balanced LV grids; their application in unbalanced systems
requires minor modifications.

2.1. Sparse Measurement-Based Detection of Feeder Congestions

The detection of feeder congestions is essentially aggravated by the presence of
distributed generation. In the past, when the power flows were of unidirectional character,
the maximal line segment loading appeared always in the foremost segments, i.e. the
line segments connected directly at distribution substation. Nowadays, the distributed
injections may provoke the maximum loading somewhere along the feeders, making
the detection of congestions exclusively based on distribution substation measurements
impracticable.

2.1.1. Mathematical Formulation

European LV grids are typically of a radial structure, and the CPs are connected
somewhere along the feeders [29]. The detailed structure of an LV grid with F feeders is
schematized in Figure 1a. To each feeder, f are connected Ny customer plants that may
inject and absorb active and reactive power. Currents with different magnitudes flow
through each line segment, provoking the maximum line loading somewhere along the
feeders. The calculation of each line segment’s loading in close-to-real-time is possible only
when state estimation is applied.

CP;; CP; CP;3

MV

(b)

Figure 1. Structure of low voltage grids: (a) detailed; (b) simplified.

Another option to detect congestions is to estimate the maximum line loading by
neglecting the detailed structure of the low voltage feeders. This concept is illustrated
in Figure 1b, wherein each feeder is represented by the -symbol, indicating that their
detailed structure is not relevant for the calculation procedure. The power balance of each
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feeder according to Equations (1a) and (1b), in which injections are counted with a positive
and absorptions with a negative algebraic sign, builds the basis of the concept.

PYe+ AP+ Y PSP =0 (1a)

N
QY +AQr + Q5 +) 7, QFf =0 (1b)
where Pm QS’C are the active and reactive power flows at feeder beginning (src ... source);

PJE:ZP , Q 7 are the active and reactive power contributions of CP i; APf, AQ ¢ are the active
and reactive power losses occurring in the series impedances of all line segments; and Qj(

is the reactive power produced by the shunt capacitances of all line segments. In total,
the injected active and reactive power always equals the absorbed active and reactive
power. To calculate the worst case for the line segment loading, the following assumptions
are made:

1.  The aggregate active (Pl”) and reactive power injection (Q ), defined in Equations
(2a) and (2b), flows through the same line segment of the feeder.
2. This line segment is subject to the lowest feeder voltage (ll}m”).

3.  This line segment has the lowest thermal limit current (I}h’mi") of all line segments.
Pin — Pjs}rc,in + Zf\]fl PfCZP m’ (2a)
Q _ erc,m + Qf + ZZ . QCP m’ (Zb)

where ijrc in QS rein Pfclp " and QCP " are determined by Equations (3a)-(3d).

Pyl =0, forPy® < 0;and Py = PY*, forP{* > 0, (3a)
Pe™" =0, forPEf < 0; and Pg"" = PEJ, forPEf >0, (3b)
QSTC li’l — 0 forQSVC < 0 and QSTC l}'l QS}’C forQSVC (3C)
QF;" =0, forQF! < 0; and QF" = QFF, forQJ?f > 0. (3d)

Equations (4a) and (4b) allows for estimating the maximum line segment loading
(Loading}?“") of the feeder f.

Sj{rc,in _ \/(p;rc,in) (erc m) (4a)
Loading?mx _ Ssrc m/(\f mm Ith mm) (4b)

The estimated maximum line segment loading and the measurement of the active
power at feeder beginning are used to specify the feeder related congestion flag (CFy),
which indicates whether a potential congestion is detected (true) or not (false). It is set to
true, when conditions (5a) and (5b) are satisfied, and otherwise to false.

Loading}””x > Loading?m”, (5a)
P{c >0, (5b)
where Loadin g?mit is the limit of the line segment loading, specified by the grid operator.

Condition (5b) roots on the assumption that the feeder is sufficiently dimensioned to
cope with the installed PV rating, so that upstream (from feeder end to distribution
substation) active power flows do not cause an exceedance of the specified loading limit.
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This assumption is justified by the following considerations: Due to the spatial proximity
of CPs connected to one LV grid, their PV systems always inject simultaneously. The
resulting upstream active power flows cannot be reliably reduced by demand response, as
the availability of the necessary resources (e.g., EVs connected to EVCSs whose battery is
not fully charged) is not guaranteed. The reduction of the PV infeed itself means a waste of
renewable energy that should be avoided in any case. Therefore, the only way to allow
the full PV injection while avoiding violations of the defined loading limit is to sufficiently
dimension the feeder.

2.1.2. Application to Real LV Grid

When applying the algorithm to coordinate the EVCSs connected to a real low voltage
grid, several data must be acquired to enable the estimation of the maximum line segment
loading. As shown below, this data is derived from the grid data, measurements, and
estimations.

Jthmin Derived from grid data
pIrein Qe and i Derived from measurements
CP,in CP,in .
P, M and QY Estimated
i Qi Qf

e Grid Data

Low voltage feeders typically consist of main and side strands. The side strands
usually connect one CP to the main strand, which establishes the connection of all side
strands to the distribution substation. The side strands are typically of minor cross-section
(e.g., 50 mm?) than the main ones (e.g., 150 mm?), and thus possess lower thermal limit
current. While the side strands transmit only the power contributions of the directly
connected CP, the main strand is loaded by the power contributions of many CPs, Figure 2.

Distribution re———-- kil s .
substatior === Main stran

- ~

:
]
L]
Vs Side strands
:
]

I_@_}_______ I SRR & SRR & A CP connection points
L]

* L)

' DIR ! \ «— Power flow

.......

Figure 2. Current flows through a low voltage (LV) feeder with main and side strands.

Consequently, reducing the simultaneity of the CP power contributions by using
coordinated electric vehicle charging cannot unload the side strands but only the main ones.
Therefore, as specified in Equation (6), the minimal thermal limit current is determined by
considering only the line segments of the main strands.

Ith,main

= min( il ), (6)

lm

h,min
i
f

where I}hl’;”“i" is the thermal limit current of the line segment [,,;, which is part of the main

strands of feeder f.
e  Measurements

The number of measurement devices should be kept as low as possible to reduce
the associated capital expenditures. Figure 3 illustrates the suggested placement of the
measurement devices on one representative real low voltage feeder. The active and reactive
power flowing into the feeder and the voltage at the secondary bus of the DTR are measured
within the distribution substation. In addition, the voltages are measured close to the feeder
end. When the feeder is branched and has several ends, more voltage measurements may
be necessary.
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Figure 3. Suggested placement of measurement devices on one representative real LV feeder.

The active and reactive power injected by the distribution substation is directly derived
from the corresponding power measurements using Equations (3a) and (3c). At a low
voltage level, the CPs are typically distributed more or less homogeneously along the
feeders, and their power contributions lie within the same order of magnitude. All PV
systems inject active power simultaneously. As long as no bulk producers (e.g., excessively
rated PV system) or consumers (e.g., garage with many EVCSs) are connected in the central
portion of the feeder, the voltage usually increases or decreases monotonically along each
feeder. In this case, measuring the voltages at the feeder beginning and end is sufficient
to capture the minimal voltage value. When bulk producers or consumers are involved,
the voltage at their connection points should be measured additionally. As in Equation (7),
the minimal feeder voltage is derived by selecting the minimal value of the corresponding
measurements.

u;nin = min (mjin(llf,j), ubr R), )
where Uy ; is the voltage measurement j at feeder f; and UBRTR is the voltage at the
secondary bus bar of the DTR.

e  Estimations

The reactive power injected by a shunt capacitance depends on the square of the
voltage. Therefore, the amount of reactive power produced by cables and overhead lines at
the low voltage level is very small. Hence, it is estimated to be zero, Equation (8).

Q; ~0 8)

Each CP may include several devices that contribute active and reactive power, in-
cluding consuming devices, producers, and storages. On this basis, Equations (9a) and (9b)
presents the total active and reactive power contributions of a CP. Its estimation is very
difficult and presents the major uncertainty of the proposed method to detect congestions
in the LV level.

PEl = PP + Pff + P3 (9a)

Qfi = QP + Qi+ Qs ©b)

where P}?f”, Q? ¢¢ are the aggregate active and reactive power contributions of all consum-
ing devices; PP/ i Q}”l are the aggregate power contributions of all producers; and P;fi, stffi
are the aggregate power contributions of all storages included in the regarded CP. The cus-
tomers switch on and off the consuming devices according to their needs, making it almost
impossible to forecast the related power contributions for a single CP. Modern consuming
devices, such as switch-mode power supply devices without a power factor correction, low
power adjustable speed drives, as well as compact fluorescent lamps and light-emitting
diodes behave capacitively [30], thus injecting small amounts of reactive power when they
are in use. Active power is only absorbed but not injected. Producers connected at the CP
level, which are mainly PV systems, may inject active and inject or absorb reactive power.
Their active power production depends on the weather conditions, while their reactive

power contribution is determined by the applied control strategy, such as constant reactive
power, constant power factor, cos¢(P), and Q(U) control [31]. These control strategies are
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primarily used to mitigate violations of the upper voltage limit in the LV level. Therefore,
the constant reactive power, constant power factor, and cosg(P) controls are set to provoke
an inductive behavior of the PV inverter. Q(U) is the only control strategy that leads to
capacitive behavior for low feeder voltages. Usually, the customers have to register their
PV systems, so that the grid operator knows the installed PV rating, and thus the maxi-
mal possible active power injection (P})/ “%%) of each PV system. When Volt/var control
is accomplished by using Q(U) control, the maximal possible reactive power injection
(Qj;;’max) is also known because the grid operator specifies the exact control characteristic.
The storage may inject or absorb active power, and in some cases, the corresponding
inverters have the capability to contribute reactive power. When no storages of Cat. A are
installed (e.g., stationary batteries), the storage component does not inject any active power.
Although the authors of some studies suggest operating EVCSs with a non-unity power
factor [32,33], their reactive power contribution is usually controlled to be zero. To estimate
the maximum power injections of CPs, all consumptions are set to zero and all productions
are set to the maximal expected values. Following the above-outlined considerations, and
neglecting the reactive power production of modern consuming devices, the maximal CP
power injections can be estimated by Equations (10a)—-(10c).

PCP,in ~ PPr
| i Py
Q?I; ™ Q}JVZ When Q(U) control is applied

QJ?I: i~ 0 Otherwise

Numerous sophisticated strategies exist to estimate the active power contribution
of a PV system that use either models of PV systems and forecasts of the meteorological
data (mainly irradiance and temperature), or statistical methods and machine learning
techniques [34]. In any case, the active power production should rather be over- than
underestimated to guarantee the functionality of the proposed congestion detection method.
The estimation of the reactive power contribution of Q(U) controlled PV systems is hardly
possible without using exact feeder models and state estimation, as it depends on the local
feeder voltage. Therefore, although it is very conservative, the use of the maximal possible
value according to the specified control characteristic is suggested, Equation (11).

Q;:’Ii’,in ~ Q}”ri,max (1 1)

2.2. Detection of DTR Congestions

The loading of the DTR (Loadin ¢PTR) is calculated based on the measurements in the
distribution substation using Equation (12).

g [T G

where SPTR i the rated apparent power of the DTR. When conditions (13a) and (13b) are

satisfied, the DTR-related congestion flag (CFpTR) is set to true, and otherwise to false.
LoadingP™® > Loadinglimit (13a)
Yo PFe>0 (13b)
where Loadingli# is the limit of the DTR loading, specified by the grid operator.

2.3. Coordination Algorithms

The developed coordination strategy involves two components: the central controller
and the distributed EVCSs. It is designed to prevent enduring overload of LV grid equip-
ment based on sparse measurements and a simple communication infrastructure, which
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allows transmitting one Boolean value from the central controller to all EVCSs connected at
the same feeder (unidirectional). State estimation is not required. Both the central controller
and the distributed EVCSs are intended to execute algorithms.

Figure 4a shows the algorithm ‘specify permissions’ that is executed by the central
controller. It specifies one Boolean control signal per feeder—denoted as feeder permission
—that indicates whether the EVCSs connected to the corresponding feeder shall charge with
reduced (false) or full power (true). The distribution system operator (DSO) configures
the algorithm, i.e. sets the loading limits of the DTR and the line segments, which shall
not be exceeded during grid operation. The algorithm is executed periodically, e.g., each
5th minute, to impose low requirements on the associated communication infrastructure.
As the first step, the DTR is checked for congestion as described in Section 2.2. When the
DTR-related congestion flag is true, all feeder permissions are set to false and are sent out
to the EVCSs. Otherwise, each feeder is consecutively checked for congestions according
to the procedure described in Section 2.1. If the feeder-related congestion flag is true,
the corresponding feeder permission is set to false, and vice versa. When all feeders are
checked for congestions, all feeder permissions are sent out to the EVCSs.

Central controller Set int | chargi §
Start (specify permissions) RECIIEs cTarEie z
(each 5% minute) power restriction to — =
Start (e.g. each the maximum value 2 EJ
second) ==y
° 3
. ]
Check for congestion Set internal charging S =
of the DTR power restriction to > E
the minimum value = g
=
2
Set —
yes | permissions of
all feeders to .
false Start (e.g. each Set internal charging
6 second) power restriction to
the maximum value
Send 2 £
f=0 permissions Se
to EVCSs Set internal charging =M
power restriction to ‘c K]
the minimum value hn oy
~ =
3 =3
[r=r-1 )
Restart timer
(r=0
A 4
Check for congestion
of feeder f
Start (e.g. each Set internal charging B
second) power restriction to &
Set permission the minimum value 2 _5
of feeder fto 2%
no 2
true S =
Permission is ol @
yes o=
- =
. Set internal charging = g
Set permission of » power restriction to g
feeder fto false the maximum value =
(a) (b)

Figure 4. Overview of the coordination algorithms executed by different devices: (a) central controller; (b) different options
for the distributed electric vehicle charging stations (EVCSs).

Each EVCS periodically (e.g., each second) executes an algorithm to finally set the
internal charging power restriction depending on the actual value of the corresponding
feeder permission. The execution period must be shorter than that of the central controller
and may be set very short as no further communication is required. Three different options
for this algorithm are shown in Figure 4b: reduce until next permission, reduce for 30 min,
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and reduce until the end of charging. The impact of each option on the behavior of the LV
grid is analyzed separately in this study.

e  Reduce until next permission

The EVCSs update their internal charging power restrictions each time new permis-
sions are received.

e  Reduce for 30 min

Option 2 allows charging with maximal power only when the permission is true for at
least 30 minutes.

e  Reduce until end of charging

This algorithm firstly checks if an EV is currently connected to the EVCS. If this is the
case, and a false permission is received, the charging power restriction is reduced to the
minimal value until the EV is disconnected.

2.4. Test Setup

To verify their functionality, the algorithms for the sparse measurement-based detec-
tion of congestions and the coordination of EVCSs are simulated in a real urban LV grid.
The used simulation software and the power system model are described below.

2.4.1. Simulation Software

The developed algorithms are analyzed based on load flow simulations in a combined
LV grid and CP model. The power system model is implemented, and the load flow (LF)
calculations are conducted in PSS®SINCAL 16.0, while the algorithms are implemented in
MATLAB R2019b. Both tools are connected through the COM-interface.

2.4.2. Power System Model

The scope of this study is set on LV and CP levels. Therefore, both levels are included
in the used power system model. As the focus is set on the algorithms for congestion
management, and Volt/var control has to be implemented prior to congestion management
(see Section 1), the Q(U) control strategy is implemented in the PV systems of the CP
model. Despite its poor performance compared to more effective control strategies [35,36],
it maintains feeder voltages within the acceptable range (£10% around nominal voltage)
in the analyzed LV grid due to its relatively short feeders.

e Low voltage grid

Figure 5a shows the simplified one-line diagram of the LV grid model with the
locations of the P-, Q- and U-measurements. Only the main strands are shown, but not the
feeder laterals. It represents a real urban grid with a cable share of 81% that connects 91
residential CPs through six feeders. The 20 kV /0.4 kV distribution transformer is rated
with 630 kVA and has its tap changer fixed in mid-position. The slack node with the voltage
u;?riTrE is located at the DTR primary bus bar. In this grid, it is not practicable to install the
voltage measurement devices, which are owned and operated by the DSO, at the feeder
ends, as CPs are connected at these points. Therefore, they are placed at the backmost
distribution cabinet or tower.
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Figure 5. Power system model: (a) simplified one-line diagram of the LV grid; (b) customer plants (CP) structure.

Table 1 gives more detailed data for each feeder of the LV grid model.

Table 1. Feeder-related data of the LV grid model.

Feeder = Cable Share in % Maximal‘Feeder Total Line Length Number of Connected CPs
Length in km inkm In Total With EVCS and PV System
1 51.92 0.49 1.040 26 10
2 100 0.15 0.205 4 3
3 100 0.43 0.810 18 9
4 93.55 0.61 1.550 23 15
5 100 0.27 0.490 7 3
6 61.36 0.61 0.880 13 6

e  Customer plants

Figure 5b shows the structure of the CP model with index i connected at the feeder
with index f. It includes three components: the device (Dev), producer (Pr), and storage
(St) model, representing the household appliances, the PV system, and the EV battery,
respectively. The latter ones are optional as the PV and EVCS penetrations are set to
approximately 50%, i.e. 46 CPs include a PV system and an EVCS. Asymmetry is not

considered. The Dev-model’s active (Pfo”) and reactive power (Q? ¢7) contributions depend

on the CP supply voltage (I,chffJ ), Equations (14a) and (14b). Therein, ZIP-coefficients
from [37] are used; and power contributions at nominal voltage are defined by load profiles.

CP,pu 2 CP,pu
PREY(t) = ,%ifl’,f’i(t)~<0.96~<uf,ip (t)) —1.17-uf,l.” (t)+1.21) (14a)

2
QPev (1) = QB L (1): <6.28- (uff’ "’“(t)) — 106U " (1) —|—4.88> (14b)

where Pz‘jﬁ, £ ngenzi’ 5,i are the active and reactive power contributions of the Dev-model
for nominal supply voltage; U}:fp " is the normalized supply voltage of the CP; and t is
the instant of time. The voltage-independent active power injections of the Pr-models are
defined by one common load profile. Meanwhile, their reactive power contributions are

determined by the common Q(U)-characteristic suggested as default in [9]. The maximum
Pr,max

active (Pf: %%) and reactive power (Q fi ) contributions of the Pr-model are set according
to Equations (15a) and (15b).

P}’j'm“x =5kW (15a)

Q"™ = 0.4843-P; ;™™ (15b)

The factor in Equation (15b) is set to derive the maximal reactive power contribution
from the maximal active power injection by the power factor of 0.9. The voltage-dependent
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active power consumption (P;ti) of the St-model of the CP is determined by Equation (16a);
ZIP-coefficients from [38] are used. The corresponding reactive power contribution is set to
zero. Equation (16b) is used to calculate the actual state-of-charge (SoC;ti) of the EV battery.

PEL(t) = PS! - (t)- (—0.02- (UCP'*’”(t))Z(t) +0.03-USTP (1) + 0.99) (16a)

nom, f,i fi A
St,
SoCfii(t) = SoCyj(t — At) + At-PFi(t — At) /EZ{™™ (16b)
where P)fotm £i is the active power consumption of the St-model for nominal supply voltage;

ESti,max

At is the resolution of the load profiles; and = 40 kWh is the storage capacity of the

EV battery. The battery is charged whenever condition (17) is satisfied.
SoCSt(t) < 9% and ¢ > 151" )

St, start
f)

battery, specified in the scenario definition. When charging, Equations (18a) and (18b)

determines the corresponding active power consumption at nominal supply voltage, and

otherwise, it is set to zero.

where t is the instant of time in which the corresponding EVCS starts to charge the

11 kW When the EVCS — internal charging restriction is set to maximal power (18a)

5 kW When the EVCS — internal charging restriction is set to minimal power (18b)

The EVCS-internal charging restriction is set by coordination algorithms described
in Section 2.3. When no coordination is applied, all EVCSs charge with 11 kW at nominal
supply voltage. The total power injections of the CP are determined by Equations (19a)
and (19b).

PEF (1) = PEi(t) — PRfY(t) — Pi(t) (19a)

QFF (1) = QFi(t) — Q7 (1) (19b)
e  Scenario definition

The scenarios, which are the input data of the model, greatly affect the calculated
behavior of the LV grid in the presence and in absence of the EVCS coordination. To
obtain robust results that allow us to draw general conclusions, three different scenarios
are defined. The scenarios differ from each other regarding the instants of time, in which
the EVCSs start to charge the corresponding batteries. The slack voltage of UEH-TWIZ{ =1lpu
and the load profiles shown in Figure 6 are used in all scenarios. The load profiles of the
Dev- and Pr-models are created with the tools described in [39,40], respectively, and have
a resolution of one minute. For the Dev-model of each CP are used individual profiles;
these profiles account for the temporary capacitive behavior, which is provoked by modern
consuming devices. Figure 6a shows exemplary profiles that are used for one of the CPs.
Due to the spatial proximity of all CPs connected to one LV grid, the same load profile is
used for all Pr-models. This profile is characterized by spikes that are provoked by clouds.
The proposed concept for the sparse measurement-based detection of congestions requires
an estimate of the PV systems’ active power injections (see Equation (10a)). The estimation,
which is used in the simulations with EVCS coordination, is shown in grey and dashed
lines in Figure 6b.
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Figure 6. Load profiles of different CP components: (a) device (Dev)-model; (b) producer (Pr)-model.

In each CP, the charging process is started at an individual instant of time. Three
different scenarios are considered: ‘Simultaneous charging in the evening’; ‘Simultaneous
charging in the morning’; and ‘Charging throughout the day’. In the former two scenarios,
the instants of time in which the EVCSs start charging are defined according to a normal
distribution with the mean value at 6 p.m. and 9 a.m., respectively, and the standard
deviation of 1 h. In the latter scenario, they are defined by a uniform distribution. Initially,
the State-of-Charge (SoC) of each EV battery is set to 25%. Each of the three scenarios
is simulated for the case without coordination, and for the three different coordination
options shown in Figure 4b. Table 2 overviews all conducted simulations.

Table 2. Overview of all conducted simulations.

Scenario

Coordination Algorithm

Central Controller Distributed EVCSs
None None
Simultaneous charging in the evening ] o Reduce until next permission
Specify permissions Reduce for 30 min
Reduce until end of charging
None None
Simultaneous charging in the morning Reduce until next permission
Specify permissions Reduce for 30 min

Reduce until end of charging

Charging throughout the day

None None

Reduce until next permission

Specify permissions Reduce for 30 min
Reduce until end of charging

3. Results
The simulation results are used to analyze the performance of the algorithms in two
steps: firstly, the accuracy of the sparse measurement-based detection of feeder congestion
is assessed in absence of EVCS coordination. Secondly, the impact of the three different
coordination options on the behavior of the LV grid is investigated in detail. The energy
losses AE of the LV grid, i.e. of the DTR and all line segments, and the average charging
time per EV (T,y¢)—calculated according to Equations (20a) and (20b)—are considered in
both steps.
i
AE = At Y, (APPTR(1) + 1, AP (1)) (20a)

Tang = (ZVe vacs) /NEVCS (20b)

where APPTR is the active power loss of the DTR; APIH”e is the active power loss of line
segment with index [; TEVCS is the timespan that the EVCS with index e requires to fully



Smart Cities 2021, 4

29

50C (%)

100
80
60
40
20

0

charge the corresponding battery; NEVCS = 46 is the number of EVCSs connected to the
LV grid.

3.1. Sparse Measurement-Based Detection of Feeder Congestions

The accuracy of the sparse measurement-based detection of feeder congestions is
assessed for each scenario separately. Thereby, the loading limit of each feeder’s line
segments is set to 60%, Equation (21).

Loading?m” =60%, Vf (21)

According to Equation (22), the detection accuracy is calculated for each feeder by
dividing the number of instants of time (N/ f)’ in which the feeder-related congestion

flag is set correctly, by the total number of simulated instants of time (N}, , = 1440).

accumcyf = Nzorrect, f/Nfotul (22)

As shown in Equation (10a), the PV injection into each feeder must be estimated
to enable the sparse measurement-based detection of congestions. To assess the impact
of the estimation accuracy on the detection accuracy, two different cases are considered:
estimated and exact values of Pﬁ "(t) (see Figure 6b).

3.1.1. Simultaneous Charging in the Evening

Figure 7 shows the simulation results for the scenario ‘Simultaneous charging in the
evening’ without any coordination. The uncoordinated charging with 11 kW per EVCS
leads to linear increasing SoCs of the EV batteries between 16:10 and 23:40, Figure 7a.
The intensive consumption provokes high loadings of the DTR and all line segments,
Figure 7b. They exceed the specified limit between 18:16 and 20:02, while the maximum
value appears at 18:46. The resulting grid state at the moment of maximal loading is
illustrated in Figure 7c. The voltage profiles of all feeders are plotted on the y-axis, while
the line segment loading is presented by color shades from green for 0% loading to red for
100% loading. The diagram shows that no violations of the lower voltage limit and the
nominal loading limit appear. The energy losses and the average charging time amount to
56.65 kWh and 161 min, respectively.
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Figure 7. Simulation results for the scenario ‘Simultaneous charging in the evening’ without any coordination: (a) SoCs of
all EV batteries; (b) equipment loading; (c) grid state at 18:46.

To investigate the behavior of the sparse measurement-based approach to detect feeder
congestions, the line segment loadings are shown separately for each feeder in Figure 8.
Furthermore, the corresponding congestion flag is shown in orange solid lines for estimated
values of Pff’ ’(t), and in dashed grey lines for the exact ones. In both cases, congestions are
detected only for feeders 1, 3, and 4. The inaccurate estimation of the PV injection impacts
the congestion flag of feeder 4, while no differences occur for the other feeders.
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Figure 8. Line segment loadings and congestion flag of different feeders for the scenario ‘Simultaneous charging in the
evening’ without any coordination.

SoC (%)
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For feeder 1, the congestion flag is true between 18:09 and 19:50, while the configured
loading limit is exceeded from 18:26 to 19:20. This corresponds to a detection accuracy
of 92.92%. Regarding feeder 3, congestions are detected between 18:18 and 20:53, and
at 20:59, although no limit violations appear at all. However, an accuracy of 89.11% is
achieved in this case. Feeder 4 exceeds the configured loading limit between 18:16 and
19:55, while congestions are detected from 13:59 to 14:08, at 14:36, and from 17:09 to 21:27,
yielding an accuracy of 81.26% when the PV injection is estimated. The exact knowledge of
the PV production eliminates the incorrect detections in the early afternoon, improving
the detection accuracy to 82.03%. The limit compliance of feeders 2, 5, and 6 is correctly
detected with an accuracy of 100%.

3.1.2. Simultaneous Charging in the Morning

The simulation results for the scenario ‘Simultaneous charging in the morning” without
any coordination are shown in Figure 9. As shown in Figure 9a, the batteries are charged
with 11 kW between 7:17 and 14:44, causing one line segment to violate the configured
loading limit at 10:33, Figure 9b. The resulting grid state diagram at the moment of maximal
loading confirms compliance to the lower voltage and nominal loading limits, Figure 9¢. In
this scenario, energy losses of 22.28 kWh occur, while the EV batteries are fully charged
within 161 min on average.
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Figure 9. Simulation results for the scenario ‘Simultaneous charging in the morning” without any coordination: (a) SoCs of
all EV batteries; (b) equipment loading; (c) grid state at 10:33.

The line segment loadings and the congestion flag are shown separately for each
feeder in Figure 10. As in the above-discussed scenario, congestions are detected for
feeders 1, 3, and 4, although violations of the configured loading limit appear only in
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feeder 4. Meanwhile, the limit compliance of the other feeders is correctly detected with an
accuracy of 100%, independently of the used PV estimation accuracy.
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Figure 10. Line segment loadings and congestion flag of different feeders for the scenario ‘Simultaneous charging in the
morning” without any coordination.

When the PV production is estimated, the congestion flag related to feeder 1 alternates
between true and false from 9:00 to 13:03, resulting in a detection accuracy of 91.46%. The
use of the exact PV injections significantly shortens the interval with alternating congestion
flags to less than two hours, i.e. from 9:25 to 11:23. This increases the detection accuracy to
97.57%. Congestion of feeder 3 is wrongly detected between 8:32 and 12:51, at 12:55, and
from 13:00 to 13:04, when estimating the PV production. Due to these incorrect detections,
the corresponding accuracy amounts to 81.54%. The use of the exact PV injections tightens
the timespan of the wrong detection, setting the congestion flag to true between 9:20
and 12:01, at 12:14, and from 12:21 to 12:25, leading to a detection accuracy of 88.27%.
Regarding feeder 4 for estimated PV production, the congestion flag is true from 7:57 to
12:51 and subsequently alternates until 14:36, reaching the low detection accuracy value of
77.17%. When the exact PV injections are known and fed into the detection algorithm, the
alternating is avoided, and the detection accuracy is increased to 79.67%.

3.1.3. Charging throughout the Day

Figure 11 shows the simulation results for the scenario ‘Charging throughout the day’
without any coordination. The EVCS charge with constant power between 6:30 and 2:29,
increasing the SoC of all EV batteries linearly, Figure 11a. Due to the relatively homogenous
loading of the grid, the lower voltage limit and the configured and nominal loading limits
are satisfied, Figure 11b,c. The maximum line segment loading of 40.26% is reached at
16:47. Here, the energy losses and the average charging time reach 21.31 kWh and 161 min,
respectively.

Figure 12 shows the line segment loadings and the feeder-related congestion flag
for each feeder separately. Although the configured limit is not violated by any line
segment in this scenario, congestions are detected for feeders 3 and 4 when the PV pro-
duction is estimated. By using the exact PV injections, the incorrect detections related
to feeder 3 are completely eliminated. The limit compliance of the other feeders is—for
both, estimated and exact PV production—correctly captured by the proposed congestion
detection method.
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Figure 11. Simulation results for the scenario ‘Charging throughout the day’ without any coordination: (a) SoCs of all EV
batteries; (b) equipment loading; (c) grid state at 16:47.
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Figure 12. Line segment loadings and congestion flag of different feeders for the scenario ‘Charging throughout the day’

without any coordination.

The congestion flags of feeders 3 and 4 alternate many times when the PV production
is estimated. For feeder 3, this is the case between 10:29 and 14:49, yielding a detection
accuracy of 89.45%. For feeder 4 and estimated PV injections, the alternating takes place
from 8:06 to 13:50, and from 18:40 to 19:04. Furthermore, congestion is wrongly detected
between 13:50 and 18:40, yielding an accuracy of 73.07%. The use of the exact PV production
improves the detection accuracy to 87.30%, as the alternating in the early afternoon is
avoided, and the timespan of sustained congestion detection is significantly shortened.

3.2. Coordination Algorithms

The impact of the coordination algorithms described in Section 3 on the behavior of
the LV grid and the SoC of the EV batteries is investigated for each scenario separately.
The central controller specifies and sends out permissions each 5th minute, while the load
flow simulations are conducted in one-minute time steps. For the sparse measurement-
based detection of congestions, which builds the basis of the coordination algorithms, the
estimated PV production according to Figure 6b is used. The loading limits of the DTR and
the feeders are configured to 60%, Equations (23a) and (23b).

limit

Loadingptr = 60% (23a)
Loading{™" = 60%, V/f (23b)
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Reduce until next permission

3.2.1. Simultaneous Charging in the Evening

Figure 13 shows the loadings of the DTR and all line segments as well as the SoCs of all
EV batteries for the scenario ‘Simultaneous charging in the evening’ with coordination and
different algorithms at the EVCS level. Updating the internal charging power restrictions of
EVCS each time new permissions are received provokes fluctuating power consumptions,
which increase the SoCs of the corresponding EV batteries with an alternating gradient
(Figure 13a, at the bottom). As the consequence, the LV equipment loading oscillates in
the evening hours, causing numerous short-term violations of the configured DTR and
feeder loading limits between 18:26 and 20:09 (Figure 13a, at the top). The corresponding
energy losses and the average charging time per EV amount to 44.54 kWh and 233.43 min,
respectively.
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Figure 13. LV equipment loading and SoCs of all EV batteries for the scenario ‘Simultaneous charging in the evening’ with
coordination and different algorithms in EVCS level: (a) reduce until next permission; (b) reduce for 30 min; (c) reduce until

end of charging.

If charging with maximal power is allowed only when the permission is true for at least
30 minutes, the related power consumptions fluctuate slowly, leading to low-frequency
oscillations of the LV equipment loading, Figure 13b. Four loading peaks occur that violate
the configured loading limits. In this case, the energy losses and average charging time
reach 39.38 kWh and 273.89 min, respectively. In Figure 13c, where the receipt of false
permission reduces the power until the EV battery is fully charged, the loading limits are
satisfied throughout the whole day. Energy losses are reduced to 37.80 kWh by prolonging
the average charging time to 285.50 min.

3.2.2. Simultaneous Charging in the Morning

The loadings of the DTR and all line segments, as well as the SoCs of all EV batteries
for the scenario ‘Simultaneous charging in the morning’ with coordination and different al-
gorithms in the EVCS level, are shown in Figure 14. All algorithms eliminate the short-term
violation of the configured loading limit that occurs without any coordination, Figure 9b.
As in the previously described scenario, the application of the EVCS-internal algorithm ‘Re-
duce until next permission” provokes significant oscillations of the DTR and line segment
loadings around noon, Figure 14a. The EV batteries are charged with fluctuating power
between 7:17 and 16:41 with an average charging time of 248.11 min, leading to energy
losses of 16.15 kWh within the grid.
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Figure 14. LV equipment loading and SoCs of all EV batteries for the scenario ‘Simultaneous charging in the morning’ with
coordination and different algorithms in EVCS level: (a) reduce until next permission; (b) reduce for 30 min; (c) reduce until

end of charging.

In Figure 14b, where the charging power is reduced for 30 min whenever false permis-
sion is received, the gradient of the SoC-curves changes less often than in Figure 14a. The
oscillation of the equipment loading has a lower frequency, and some spikes have a higher
magnitude. All charging processes are terminated at 16:51, yielding an average charging
time of 279.74 min, and energy losses of 15.19 kWh. When the algorithm ‘Reduce until
end of charging’ is applied, the charging power of each EVCS and thus the gradient of the
corresponding SoC-curve changes one time at most, thus no oscillation of the equipment
loading occurs, Figure 14c. In this case, the average charging time is increased to 287.04 min,
and the losses are decreased to 14.76 kWh.

3.2.3. Charging throughout the Day

Figure 15 shows the loadings of the DTR and all line segments as well as the SoCs of all
EV batteries for the scenario ‘Charging throughout the day’ with coordination and different
algorithms at the EVCS level. Although the configured loading limits are not violated
when no coordination is applied (see Figure 11b), all algorithms reduce the charging power
of some EVCSs. Figure 15a shows significant oscillations of the DTR and line segment
loadings, as well as SoC-curves with fast-changing gradients. The average charging time
per EV battery and the energy losses amount to 183.41 min and 21.00 kWh in this case.

Considerably fewer spikes of the equipment loadings occur when a false permission
reduces the charging power for 30 min, Figure 15b. The charging power changes less often,
increasing the average charging time to 213.24 min, and reducing the losses to 20.31 kWh.
Reducing the power for the complete charging process as soon as a false permission is
received eliminates the loading oscillations, Figure 15¢c. The result is an average charging
time of 233.59 min and energy losses of 19.63 kWh.
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Figure 15. LV equipment loading and SoCs of all EV batteries for the scenario ‘Charging throughout the day’ with
coordination and different algorithms in EVCS level: (a) reduce until next permission; (b) reduce for 30 min; (c) reduce until

end of charging.

4. Discussion

The simulation results provide deep insights into the performances of both the method
for the sparse measurement-based detection of feeder congestions and the coordination
algorithms.

4.1. Sparse Measurement-Based Detection of Feeder Congestions

In the simulated cases, the proposed method for the sparse measurement-based de-
tection of feeder congestions reliably identifies all overload situations. However, the
worst-case assumptions made for the feeder structure (see Section 2.1.1) and the reactive
power contribution of the PV systems (see Equation (11)) provoke a too conservative
assessment of the grid state. As a consequence, overloads are detected in some situa-
tions in which actually no congestions are present, impairing the accuracy of the concept.
Table 3 summarizes the detection accuracy values for the simulated scenarios without any
coordination and for estimated and exact PV production. The proposed method detects
congestions in low voltage feeders with the minimal accuracy of 73.07%. This value can be
increased to 79.67% by improving the estimation of PV production.

One-hundred percent accuracy is reached for feeders 2, 5, and 6; they differ from
the other feeders by their relatively low number of connected CPs with EVCS and PV
systems (see Table 1). Feeder 4, which connects the most CPs and has the greatest total line
length, yields the worst detection accuracy on average. However, no clear relation between
the detection accuracy and the feeder properties—including cable share, maximal feeder
length, total line length, the total number of connected CPs, and a number of connected
CPs with EVCS and PV systems—can be observed from the simulation results. While
improving the estimation of the PV production also improves the detection accuracy, no
clear trend prevails for the dependency between detection accuracy and the time and
simultaneity of EV charging.
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Table 3. Accuracy of the sparse measurement-based detection of feeder congestions.

Detection Accuracy by the Feeder in %

PV Production Scenario
1 2 3 4 5 6
Simultaneous charging in the evening 92.92 100 89.11 81.26 100 100
Estimated Simultaneous charging in the morning 91.46 100 81.54 77.17 100 100
Charging throughout the day 100 100 89.45 73.07 100 100
Simultaneous charging in the evening 92.92 100 89.11 82.03 100 100
Exact Simultaneous charging in the morning 97.57 100 88.27 79.67 100 100
Charging throughout the day 100 100 100 87.30 100 100
4.2. CoordinationAalgorithms
The presented algorithms for the coordination of EVCSs modify the loading of the LV
equipment by manipulating the SoC-curves of the EV batteries. In further consequence,
this affects the energy losses of the grid and the average charging time per battery. As
the permissions are specified without conducting any load flow simulations, their impact
on the resulting system state is unknown in advance, giving the concept a “try-out and
observe” character. In principle, this strategy is applicable as lines and transformers endure
short-term violations of their thermal limits without sustaining significant deterioration.
The overall system behavior greatly differs between the investigated EVCS-internal al-
gorithms and the simulated scenarios. The energy losses and the average charging time
in all simulated setups are overviewed in Table 4. Each coordination algorithm prolongs
the EV battery charging on average, which reduces the associated grid losses in further
consequence.
Table 4. Energy losses in the LV grid and average charging time per EV battery.
. Coordination Algorithm Energy Loss Average Charging
Scenario . . R . .
Central Controller Distributed EVCSs in kWh Time in min
None None 56.65 161.00
Simgltaneous charging Reduce until next permission 44.54 233.43
in the evening Specify permissions Reduce for 30 min 39.38 273.89
Reduce until end of charging 37.80 285.50
None None 22.28 161.00
Siml.lltaneous cl'}arging Reduce until next permission 16.15 248.11
in the morning Specify permissions Reduce for 30 min 15.19 279.74
Reduce until end of charging 14.76 287.04
None None 21.31 161.00
Charging throughout Reduce until next permission 21.00 183.41
the day Specify permissions Reduce for 30 min 20.31 213.24
Reduce until end of charging 19.63 233.59

Updating the EVCS-internal charging power restrictions each time new permissions
are received provokes severe oscillations of the charging power and the LV equipment
loading in all simulated scenarios. This behavior is to be interpreted as a large number of
trials, which are observed to be inappropriate by the central controller in its next algorithm
execution. Due to numerous intervals in which the EVCSs charge with maximal power, the
resulting average charging time is—compared to the other algorithm options—relatively
low, while the energy losses are relatively high. The number of trials is significantly
decreased when a delay of 30 minutes is implemented in the algorithm, reducing the
frequency of the oscillations. This prolongs the periods of charging with minimal power,
thus increasing the average charging time and reducing the associated losses. When the
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charging power is reduced until the end of the charging process as soon as dictated by the
central controller, the oscillations are completely avoided. The maximal average charging
time and the lowest energy loss is calculated for this case.

The algorithms ‘reduce until next permission” and ‘reduce for 30 min” are not sufficient
to eliminate the violations of the configured loading limits when the customers simultane-
ously charge their EV batteries in the evening hours. If the simultaneity is relatively low
and no limit violations appear at all, all algorithms reduce the charging power of at least
some EVCSs unnecessarily. Reducing the power consumption until the corresponding
battery is fully charged is the only option that establishes compliance to the configured
loading limits in all simulated cases.

4.3. Applicability of the Concept

The state-of-art high-performance coordination schemes require sufficient numbers
of sensors and detailed models of the low voltage feeders to conduct load flow calcula-
tions or to execute the DSSE. Furthermore, they impose considerable requirements on
the communication infrastructure. In contrast, the presented solution is suboptimal but
easy-to-implement and broadly applicable. It can be implemented for each LV grid with
relatively low effort, regardless of its detailed structure. After grid expansion and rein-
forcement, no complex adaptation of the algorithm is required to maintain its functionality.
Furthermore, the decisions of the algorithm can be documented and included in the rein-
forcement planning process: a large number of charging power reductions indicates the
necessity of feeder reinforcement.

5. Conclusions

The proposed method for the sparse measurement-based detection of feeder conges-
tions reliably identifies all overloads. Due to the worst-case assumptions underlying the
concept, the assessment of the grid state is too conservative. Therefore, overloads are
detected in some situations where actually no congestions are present. However, in the
conducted simulations, the detection accuracy ranges from 73.07% to 100% when the PV
production is estimated, and from 79.67% to 100% when it is well known.

The investigated coordination algorithms differently affect the LV equipment loading
and energy losses, and the charging times of the electric vehicle batteries. All of them
increase the charging times on average and decrease the associated grid losses. Waiving
state estimation and load flow calculations to specify the charging permissions makes
the proposed solution easy-to-implement but suboptimal: the use of the too conservative
approach to detect feeder congestions may lead to an unnecessary reduction of the charging
power; the “try out and observe” character may cause temporary violations of the config-
ured loading limits, which may oscillate when the charging stations adapt their charging
power according to the actual permission without significant delay. The most reliable but
also conservative approach under consideration is to reduce the power absorbed by the
electric vehicle charging station until the corresponding battery is fully charged as soon as
congestion of the supplying feeder is detected.

The introduced solution is easy-to-implement and broadly applicable. It can be
applied to any low voltage grid—regardless of its detailed structure—with relatively low
effort on modeling and monitoring. No complex adaptations of the algorithms are required
after grid reinforcement and expansion.
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Appendix A
Table Al lists the used abbreviations and the corresponding full forms.

Table A1. Abbreviations and corresponding full forms.

cp Customer Plant EVCS Electric Vehicle Charging Station
DER Distributed energy resource LF Load flow

Dev Device LV Low voltage

DSO Distribution system operator OLTC  On-load tap changer

DSSE Distribution system state estimation Pr Producer

DTR Distribution transformer PV Photovoltaic

EV Electric vehicle St Storage

Table A2 lists the nomenclature of the used variables.

Table A2. Nomenclature of variables.

psre, erc
£ =f

K off
APs, DOy
c

I%{l Qin

L{m,in f

Itg,min

DTR
prim

DTR
usec

src,in src,in
P 7 Q g

PCP in QCP ,in
Nf

F

Loadin g}"”"
CFy A
gsrein
Loadinglf"m”
Ith main

f]m
Uy,

Dev Dev
f i’ Q
PPr QPr

PPV max QPr ,max

LoadingPTR
CFprr
- olimit
Loadingyi's
Dev QDev
nam Lfi7 <nom,f,i

Active and reactive power flows at the beginning of feeder f.
Active and reactive power contributions of CP i connected to feeder f.

Active and reactive power losses in the series impedances of all line segments of feeder f.
Reactive power production of the shunt capacitances of all line segments of feeder f.

Aggregate active and reactive power injections into feeder f.
Minimal voltage of feeder f.

Minimal thermal limit current of all line segments of feeder f.
Voltage at the primary bus bar of the DTR.

Voltage at the secondary bus bar of the DTR.

Active and reactive power injections at the beginning of feeder f.
Active and reactive power injections of CP i connected to feeder f.
Number of customer plants connected to feeder f.

Number of feeders.
Estimated value of the maximum line segment loading of feeder f.

Congestion flag related to feeder f.

Apparent power injection at the beginning of feeder f.

Limit of the line segment loading of feeder f.

Thermal limit current of line segment I,;;, which is part of the main strands of feeder f.

Voltage measurement j at feeder f.

Aggregate active and reactive power contributions of all consuming devices included in CP i connected to
feeder f.

Aggregate active and reactive power contributions of all producers included in CP i connected to feeder f.
Aggregate active and reactive power contributions of all storages included in CP i connected to feeder f.
Maximal active and reactive power injections of the producer included in CP i connected to feeder f.
Rated apparent power of the distribution transformer.

Loading of the distribution transformer.

Congestion flag related to the distribution transformer.

Limit of the distribution transformer loading.

Active and reactive power contributions of the device model included in CP i connected to feeder f for
nominal supply voltage.

Normalized supply voltage of CP i connected to feeder f.

Supply voltage of CP i connected to feeder f.

State-of-charge of the electric vehicle battery included in CP i connected to feeder f.
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Table A2. Cont.

Active power contribution of the storage model included in CP i connected to feeder f for nominal supply

pSt )
nom,f i voltage.
At Resolution of the load profiles.
EStmax Storage capacity of the electric vehicle battery included in CP i connected to feeder f.

t
(St start Instant of time in which the charging process of the electric vehicle battery included in CP i connected to

Instant of time.

feeder f is started.

AE Energy loss of the complete low voltage grid.
Tay Average charging time per electric vehicle battery.
AP%TR Active power loss of the distribution transformer.
Apline Active power loss of the line segment I.
TLZ:“{/CS Charging time of electric vehicle charging station e.
NEVES Number of electric vehicle charging stations.
correct,f Number of instants of time in which the congestion flag related to feeder f is correctly set.
Ntto tal Number of simulated instants of time.
accuracyy Detection accuracy related to feeder f.
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