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Abstract: Smart Cities (or Cities 2.0) are an evolution in citizen habitation. In such cities, trans-
port commuting is changing rapidly with the proliferation of contemporary vehicular technology.
New models of vehicle ride sharing systems are changing the way citizens commute in their daily
movement schedule. The use of a private vehicle per single passenger transportation is no longer
viable in sustainable Smart Cities (SC) because of the vehicles’ resource allocation and urban pollution.
The current research on car ride sharing systems is widely expanding in a range of contemporary
technologies, however, without covering a multidisciplinary approach. In this paper, the focus is on
performing a multidisciplinary research on car riding systems taking into consideration personalized
user mobility behavior by providing next destination prediction as well as a recommender system
based on riders’ personalized information. Specifically, it proposes a predictive vehicle ride sharing
system for commuting, which has impact on the SC green ecosystem. The adopted system also
provides a recommendation to citizens to select the persons they would like to commute with. An Ar-
tificial Intelligence (Al)-enabled weighted pattern matching model is used to assess user movement
behavior in SC and provide the best predicted recommendation list of commuting users. Citizens are
then able to engage a current trip to next destination with the more suitable user provided by the list.
An experimented is conducted with real data from the municipality of New Philadelphia, in SC of
Athens, Greece, to implement the proposed system and observe certain user movement behavior.
The results are promising for the incorporation of the adopted system to other SCs.

Keywords: smart cities; vehicle ride sharing; user commuting; prediction; recommendation; artifi-

cial intelligence

1. Introduction

Smart Cities (or Cities 2.0) are the future of citizen habitation. The Internet of Things
(IoT) evangelize a new era of transport commuting, which is changing rapidly with the
proliferation of contemporary vehicular technology. Vehicle ride sharing systems are
changing the way citizens commute in their daily movement schedule by adopting new
models of transportation scheduling. Innovation is mainly focused on the principle that
a private vehicle can be used to commute more than one passenger in sustainable Smart
Cities (SC). Such utility can overcome the vehicles’ resource allocation and urban pollution
by car ride sharing.

SC is a sustainable environment, which should be efficiently faced. Specifically, cyber
resilience and incident response are emerging issues in SC. IoT can address cyber resilience
and support digital forensic incident response aspects towards a green ecosystem [1].
Efficient and integrated SC is discussed in [2], where the authors present a research network
for sustainable SC to develop a methodology for strategic planning. Such planning enables
cities of certain region to achieve sustainable solutions for their citizens combining strengths
from participating research groups and collaborating institutions. Digital systems as
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a service are proposed in [3], where authors treat SC infrastructure issue as a viable
solution for citizens. Digitalization is used in every aspect of daily experience in SC to
achieve the independence of the physical infrastructure. Specifically, priority is given to
well-designed digital solutions towards a sustainable ecosystem.

IoT is the backbone of SC emergence in new era evangelizing the use of sensors and
actuators to everyday life. Sustainable SC are based on advances in [oT technology where
certain challenges and approaches are emerged. Addressing the exponential growth of
contemporary urbanization and population IoT is key for outlining innovations applied
to SC infrastructure [4]. IoT also enables the incorporation of disruptive technologies in
SC where current trends and challenges can be examined in more depth [5]. The benefits
of urbanization create emerged challenges related to limited resources and infrastructure.
Such problems are faced by contemporary technologies, which generate changes in key
SC sectors to be further handled by disruptive technologies. However, IoT potentiality
to SC ecosystem requires citizens” consent to provide advanced services. In such cases,
ethics and law requirements should be carefully examined to ensure citizens’ privacy and
address data security concerns [6].

Vehicular technology is an advanced solution to leverage intelligent transportation
systems towards smart vehicles, which exploits crowdsourcing potentiality. Specifically,
vehicular social networks can use current SC infrastructure to support mobile, spatial, and
passive sensing crowdsourcing techniques. Such technology can improve connectivity and
higher throughput where smart vehicles can exploit with embedded sensors and actuators
to provide innovative distributed processing techniques for efficient transportation in
SC [7]. Software-Defined Networking (SDN) provides the necessary technology to achieve
a vehicle routing protocol for improving rush hour delay in SC environments. SDN
technology can offer an overview of the examined network to control vehicle transport
application specifications. It enables vehicles to be part of a challenging SC infrastructure,
which handles delays in everyday transport [8]. The monitoring of vehicle speed in SC is
important for the city ecosystem since it proves a context, where drivers are aware of their
behavior as well to the impact it has to other vehicle drivers” and pedestrian’s safety [9].
Such monitoring is feasible due to contemporary crowdsensing-based technologies, which
allow citizens to use their smartphones for large-scale data collection and further processing
to provide a safe SC green ecosystem.

Electric Refuse Collection Vehicles (ERCV) are also incorporated in sustainable SC
infrastructure to achieve zero-emission municipality services. Such ERCV use a customized
battery capacity to enable energy efficient refuse collection, thus providing a green ecosys-
tem [10]. The online and dynamic prediction of actual passengers’ transport with rail
transit systems is significant for sustainable SC infrastructure. Specifically, to achieve
such an effort, the authors in [11] propose the use of deep learning methods to predict
efficiently the urban rail transit passenger flow. The system can predict the passenger
flow of rail stations during peaks in the week as well as during the limited usage of rail in
weekends. Ride hailing is a transport behavior emerging in SC, which affects the mobility
choices of public transit as well as ownership of private vehicles. Such behavior leads to
the adoption of public transit trips, which changes daily life and transport practices in
contemporary SC [12].

A public transport commute system, which is based on mobility recommendations
is presented in [13]. Specifically, the authors introduce daily life in certain sustainable
SC by focusing on the optimization of transport due to public transport systems. Such
a system incorporates every SC public transport like electric bus, public bicycles and electric
scooters. The key feature of the system is its ability to recommend a public transport based
on citizens” mobility behavior. Interconnected public spaces as areas where citizens use
contemporary smart bus commute technology can provide transport services to elderly and
impaired users. Such services are able to increase social inclusiveness and provide mobility
assistance for senior citizens” well-being [14]. Social commute can be expanded to other
forms of vehicular transportation such as taxi commuting. In such a system, the mining of
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citizens’ mobile patterns is significant to provide a personalized transport service. Dealing
with taxi routing trips incorporates certain citizen mobility distribution rules of pick-up and
drop-off SC locations, which provide accurate information of the origin and the destination
of the commute [15].

An activity-based ride matching (ABRM) system exploits user behavior to provide
optimal matching ride requests with ride offers, [16]. The possible reaching destination
is achieved with the incorporation of alternative destinations in cases where intended
activity can be obtained. A sustainable shared mobility car riding system is proposed for
commute, aiming to reduce traffic at rush hours in SCs [17]. Multimodality is examined
in [18] where the authors propose a car riding system modelling and solving to assist
daily commute of many modes of transport in cities. Context aware technology supports
an Autonomous Vehicle (AV) infrastructure for providing congestion-aware ride sharing
in SCs [19]. Such a system aims to catalyze car ride sharing ubiquity by incorporating
an efficient disruptive technology, which computes optimal travel plans based on traffic
load generated by multimodal means of transportation.

Dynamic scheduling is analyzed in conjunction with topology dependence for achiev-
ing the online demands of a car riding system during daily commute in rural and urban
areas [20]. The authors study the effects of several underlying traffic conditions on the
system’s performance to provide an optimal solution. The authors in [21] propose an
eco-mobility on demand car ride sharing system applied on a fleet of vehicles to elimi-
nate fuel consumption. Their research focuses on Connected Autonomous Vehicles (CAV)
technology exploiting mobility on demand for a data driven model to provide fleet con-
trol. Operational policies are examined in [22], where the authors focus on occasional
ride sharing with regards to mobility on demand services in SCs. In [23], the authors
study the effects of privacy regulations on dynamic car riding sharing systems, where they
experiment with spatiotemporal data optimization to provide an optimal privacy-based
approach for commute in sustainable cities. Pricing options are studied in [24], where
the authors present a joint pricing and matching architecture to enable cost efficient ride
sharing systems in green ecosystems.

The Uber marketplace is presented in [25], where the authors propose a matching
policy for riders and drivers as well as batch matching policy to serve increased ride sharing
demand in the SC. Both policies are optimized based on historical data to reduce riders
waiting time. Uber’s shared mobility system is also examined in [26], where the authors
focus on ride sharing services available for AV technology. Ride hailing is also considered
as a commute option, which focuses mainly on vehicle distance traveled in rural and urban
areas. Uber-Pool is considered in [27], where the research exploits the data analyses of car
ride sharing systems with regards to obtained service time and detour guarantees provided
by taxi policies. Operational policies in dynamic environments are studied in [28], where
the authors focus on analyzing Uber’s mobility services. The research focuses mainly on
trip pattern matching and searching efficiency to provide detailed knowledge on emerged
Uber’s operational policies.

Dynamic routing strategies are researched in [29], where the focus is on designing
a scalable matching system for exploiting online routing to face car ride sharing demands.
Such a system is evaluated by assessing the prediction accuracy of the proposed routes,
which are available to riders. An electric vehicles (EV) car ride sharing system is evaluated
in [30], where the authors focus on providing efficient data driven on demand prediction
accuracy. A car ride sharing system for commuting in SCs is proposed, in [31], where
human behavior characteristics are evaluated to propose a recommender system. Such
a system also exploits the prediction accuracy of routing trips selected by riders. A rec-
ommender system is examined in [32], which uses an expansive search-based model to
provide advanced ride sharing services in SCs’ daily commute. A multipath planning
system for car ride sharing services is proposed in [33], where the authors provide a rec-
ommendation system, which is evaluated with dynamic optimization processes. Shortest
path clustering is used in [34], to enhance the spatial data mining of a high-capacity car
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ride sharing system, which incorporates a recommender system for efficient commute in
sustainable cities.

Current research on car ride sharing systems is widely expanding in a range of con-
temporary technologies. These approaches focus mainly on certain research areas of SC
commuting rather than covering a multidisciplinary approach. In this paper, the focus is
on performing a multidisciplinary research on car riding systems taking into consideration
personalized user mobility behavior, which is further optimized to serve a population
of riders. Location prediction is also part of the research effort, which is evaluated with
prediction accuracy on selected destinations in SCs. The efficiency of the provided com-
mute choices is also evaluated by the incorporation of a recommender system based on
personalized riders’ information. Specifically, this paper presents research on smart ve-
hicle commuting systems and proposes a predictive vehicle ride sharing system, which
has a positive impact on SCs’ green and sustainable environment. The adopted system
also provides a recommendation capability to citizens to select the persons they would
like to commute with. An Artificial Intelligence (Al)-enabled weighted pattern matching
model is used to assess user movement behavior in SC and provide the best predicted
recommendation list of commuting users. Citizens are then able to engage a current trip
to next destination with the more suitable user provided by the list. An experiment is
conducted with real data from the municipality of New Philadelphia, in SC of Athens,
Greece, to implement the proposed system and observe certain user movement behavior.
The results are promising for the incorporation of the adopted system to other SCs.

2. Materials and Methods
2.1. System Architecture Overview

The proposed system is based on a certain architecture. The system collects users’ daily
trips in the SC and preforms profiling according to the citizens’ movement preferences. For
example, a user on certain day starts her daily commute from home early in the morning
then reach school to drop-off her children, subsequently go to work and stay there until
afternoon. After work, she picks-up kids from the school and is directed to the super market,
while at the end of the working day she returns back to home. During this daily trajectory
user follows a predefined movement which is based on certain profiling preferences.

Subsequently, the system is able to track each movement of the trajectory and capture
valuable information, which can be used to analyze the user’s profile. Specifically, on
a daily basis, it captures the location of the user’s movement in the SC. Such process
encodes implicitly time as a sequence of consecutive historic places where the user has
visited in the near past during her daily movement trajectory. However, the system stores
each user’s trajectory and annotates it with certain day temporal information. Concretely,
this process is repeated for every user commute in the city, forming a detailed knowledge
base of the users” movements in the SC.

Concretely, there is an app which uses information of the previous two tiers to provide
a recommendation system based on user predicted future location within her daily schedule.
The system app is able to locate the user in the SC coverage area and according to stochastic
information to infer, this predicts the location the user is going to visit next according to
a certain trajectory. In addition, to assess a commute the system traverses the knowledge
base to find other users who have similar movement trajectories and the same predicted
destination compared to the pivot user. Then, the system recommends a list of other users
who can share the same trip with the pivot user, to take on a shared commute to the same
predicted destination with the same vehicle in the SC. The architectural overview of the
proposed system is presented in Figure 1.
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Figure 1. Proposed system’s architecture: (1) System contains user’s daily trips and provide movement profiling; (2) Subse-

quently, system implicitly annotates time per day of week and handles the system’s knowledge base; (3) Concretely, system

provides prediction and recommendation of similar users’ trajectories to support a shared vehicle commute.

2.2. Al-Enabled Weighted Pattern Matching Model

The system’s back-end intelligence is based on an Al-enabled weighted pattern match-
ing model. Such a model can take as input the current location of a pivot user invoke the
stochastic historic places (i.e., historic window size m) she has visited in the near past and
predict the future location of the user (i.e., prediction window size ). Time is encoded
implicitly with regards to the sequentially modeling of the represented ordered historic
places the user has visited, thus a user cannot get to work early in the morning if she does
not leave first her home.

However, note that each user’s movement is assigned to a certain day temporal
information of movement activity. This consecutive representation of visited places forms
a user’s movement trajectory. Vehicle ride sharing is feasible since the model searches the
knowledge base for other users located nearly to pivot user’s location with similar historic
visited behavior per certain day of week. In addition, per certain returned user the model
is able to check the future location after the current location.

If the future location of a user (i.e., predicted next location) is similar to the pivot user’s
next location then the user is a candidate to be added to the recommendation list. It holds
that similarity between two separate users’ trajectories is inferred taking into consideration
the spatial historic similarity threshold, y, which assesses the similarity of the historic
locations except of the current location. In addition, the prediction similarity threshold, 9,
assesses the similarity of the current and the future prediction locations. Historic similarity
threshold, y, is more relaxed compared with prediction similarity threshold, 9, since the
history information of the trajectory may vary a little between two trajectories. However,
this is not the case with the prediction similarity threshold, ¢, which is less relaxed since
it is required that the current and future prediction commute locations should be similar
enough in order the model to be more accurate. So, generally, it holds that:

d<p @™
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Both similarity thresholds are set experimentally to assure that the compared trajec-
tories are similar enough to considered as a match for the adopted model. When both
similarity thresholds comparison holds for the whole examined trajectory of a user and the
pivot user’s trajectory, then that user’s trajectory is finally added to the recommendation
list. The proposed model returns a list of recommended users (i.e., number of returned
recommendations in defined as k), where the pivot user can choose to have a ride sharing
in the SC. The characteristic of the shared commute users is that they travel towards to the
same direction of the predicted location. The algorithm of the proposed model is presented
in Table 1.

Table 1. Prediction and recommendation algorithm of the proposed ride sharing system.

# Prediction and Recommendation Algorithm

1 Input: KB/ /knowledge base

2 i/ /examined instance

3 d//day of the week

4 m/ /historic window size

5 1/ /prediction window size

6 u/ /spatial historic similarity threshold

7 ¢/ /spatial prediction similarity threshold

8 k/ /recommendation list size

9 Output: N/ /returned recommendation list

10 Begin

11 N <= Null / /returned recommendation list is empty

12 k < read() / /initialize recommendation list size

13 i < read() / /read the examined instance from user mobile app

14 j < read(KB) / /read the first instance of the KB

15 While (j # KB(EoF)) Do/ /traverse KB

16 If ((d(i) = 4d(j)) AND (i(m) — j(m) <9) AND (i(l) — (j(I) < ¢)) Then
17 / /if current and predicted locations of i, j are similar w.r.t. ¢ similarity for certain day
18 For (n € [0, m — 1]) Do/ /traverse from first to last historic location of the trajectory
19 If (i(n) — j(n) < u) Then//step by step historic comparison

20 @ < @ + 1/ /historic similarity flag increases

21 End If

22 End For

23 If (¢ = n) Then

24 / /if historic similarity condition w.r.t. ;1 holds proceed to recommendation list step
25 If (size(N) < k) Then/ /if size of N is less than or equal to k

26 N <= N +j//recommendation list is expanded

27 Else

28 sort(N)//sort recommendations in ascending order of similarity
29 return(N)/ /return recommendation list and exit

30 End If

31 End If

32 End If

33 End While

34 End

2.3. Evaluation Method and Metrics
2.3.1. 10-Fold Cross Validation Evaluation Method

The model is evaluated with 10-fold cross validation method, which is a commonly
used evaluation method for assessing machine learning classifiers’” efficiency. In such
a method, the aim is that all instances of the examined dataset will be used in both states
for training set and testing set. The training set and testing set are formed by the initial
dataset by dividing it to 10 equal sized sets. In a loop of 10 iterations in each iteration 9 of
the equal sized sets are used for forming the training set and the one remaining set is used
to form the testing set. To avoid overfitting each instance cannot belong at the same time
to both the training and testing set. Instead, during this iterative process at each separate
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loop an instance can be part of either the training set, or the testing set. Note that since all
the instances are used during the evaluation this is not a random process.

2.3.2. Prediction Accuracy Evaluation Metric

Prediction accuracy is an evaluation metric, which is used for assessing the prediction
effectiveness of the proposed model with regards to the prediction dimension. Specifically,
prediction accuracy, 4, is defined as follows:

B tp + tn

@

where t), are the correctly classified positive instances, ¢, are the correctly classified negative
instances, f, are the falsely classified positive instances, and f, are the falsely classified
negative instances. It holds that a € [0, 1].

2.3.3. Recommendation MAP@N Evaluation Metric

Precision@k is an evaluation metric that is used to assess the precision efficiency of the
proposed model with regards to the recommendation dimension. Specifically, precision@k,
p(k), is defined as follows:

t,@k

p(k) = 1@k 1 f,@k 3)

where t,@k are the correctly classified positive instances, and f,@k are the falsely clas-
sified positive instances at k recommendations, respectively. In addition, the term, &,
denotes the returned number of predicted recommendations per examined instance, such
as k = t,@k + f,@k. As such, Equation (3) is formed as:

plk) = @

It holds that p(k) € [0,1]. However, p(k) is not that accurate when generalize to
a N number of recommended instances for evaluation. In this case, AveragePrecision@N,
ap@N, is used, which is defined as follows:

1 N
ap@N = K— Z )-rel (k 5)

where rel (k) is an indicator, which expresses that k" instance was relevant with regards to
recommendation, i.e., rel(k) = 1 ornot, i.e., rel (k) = 0. In addition, |KB|, is the total number
of instances and N is the number of recommended instances. It holds that ap@N € [0, 1].

However, ap@N is referred to a single user’s instance. In case there is a need to expand
the range of ap@N to the total number of users, the MeanAveragePrecision@N, map@N,
evaluation metric should be defined as follows:

LIyl |
map@N = — map@ )-rel(k (6)
PeN = iy L (map®), = |U\Z|I<B\2”

where u is a certain user and |U]| is the total number of users. It holds that map@N € [0, 1].

3. Results
3.1. Experimental Parameters

To assess the efficiency of the research effort, the proposed system is experimented on
with real data provided by citizens” movement trajectories observed in the coverage area of
New Philadelphia, which is a municipality of the SC of Athens, Greece. The dataset has a size
of |[KB| = 2958 instances containing GPS location information [35]. The experimental dataset
is produced by the concurrent movement trajectories of |[U| = 100 users for d = 7 days per
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week, in a total period of w € [1, 8] weeks, within the coverage area of the municipality of New
Philadelphia. The adopted dataset is visualized in Figure 2. |U]| is the number of the users
created the experimental dataset, while |KB| is the size of the dataset in GPS instances that was
created by the users. Thus, |U| and |KB| are totally different quantities. w is the number of the
weeks, which means that the adopted dataset covers a total period of two months. Specifically,
the collected data contain information from 9 November to 9 January 2009. This means that
there are not much seasonal data in the examined dataset to exploit stochastic user behavior
at a seasonal level. However, there are daily, weekly, and monthly user movement patterns,
which are exploited in the performed experiments in Section 3.2. Raw data are collected from
the Open Street Maps open-source website. This website provides free available datasets for
research and industrial purposes. It also provides a user-friendly Application Programming
Interface (API) for prosperous users who would like to access the provided datasets. However,
note that all the provide datasets are created from users who have upload them to support the
academic and industrial community for further use. Such datasets have certain structure. The
experimental dataset it is used in this paper has the following Extensible Markup Language
(XML) structure as depicted in Figure 3.
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Figure 2. Adopted dataset visualized from the municipality of New Philadelphia in the SC of
Athens, Greece.
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<?xml version="1.0" encoding="UTF-8"72>
<gpx version="1.1" creator="OSMTrack"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://www.topografix.com/GPX/1/1"
xsi:schemaLocation="http://www.topografix.com/GPX/1/1
http://www.topografix.com/GPX/1/1/gpx.xsd">
<trk>
<trkseg>
<trkpt lat="38.04860471c667"
lon="23.7390732¢66667">
<ele>200.0</ele>
<time>2009-01-09T19:44:342</time>
</trkpt>
<trkpt lat="38.048368683333"
lon="23.739266383333">
<ele>1€60.0</ele>
<time>2009-01-09T19:44:482</time>
</trkpt>
<trkpt l1lat="38.048368683333"
lon="23.739395133333">
<ele>158.0</ele>
<time>2009-01-09T19:44:592</time>
</trkpt>
<trkpt lat="38.048357950000"
lon="23.739416583333">
<ele>158.0</ele>
<time>2009-01-09T19:44:592</time>
</trkpt>
<trkpt 1lat="38.048347233333"
lon="23.,739480966667">
<ele>157.0</ele>
<time>2009-01-09T19:45:002</time>
</trkpt>
<trkpt lat="38.048336500000"
lon="23.739502416667">
<ele>157.0</ele>
<time>2009-01-09T19:45:012</time>
</trkpt>

Figure 3. Open Street Maps experimental dataset XML structure.

GPS traces have length of 8 decimal digits which is equal of sensitivity of 10 me-
ters. The minimum latitude of the dataset is 38.04582595 and the minimum longitude is
23.73619793. In addition, the maximum latitude is 38.05432318 while the maximum longi-
tude is 23.74390125. Such GPS coordinates form a coverage area of 0.64 square kilometers.
The coverage area of New Philadelphia is 2.85 square kilometers. The adopted dataset
covers almost 1/4.5 of the coverage area of the municipality. The experimental parameters
of the adopted dataset are presented in Table 2.

Table 2. Adopted dataset experimental parameters.

Parameter Value
GPS traces length 8 decimal digits
Sensitivity 10 meters
Minimum latitude 38.04582595
Minimum longitude 23.73619793
Maximum latitude 38.05432318
Maximum longitude 23.74390125
Coverage area 0.64 square kilometers

Regarding the model, the historic places visited by the user have length of m places
(e.g., where historic window size m should be defined experimentally in Section 3.2.1),
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while one more place is used to depict the future place (i.e., prediction window size
I = 1). It holds that the prediction similarity threshold, which measures the similarity
of two examined trajectories w.r.t current and future prediction GPS locations is set to
¢ = 0.00000001, (i.e., prediction similarity threshold has sensitivity of 10 meters, which
means that it exploits locations with the same city block) [36]. In addition, the historic
similarity threshold, which measures the similarity of two examined trajectories w.r.t.
historic GPS location is set to # = 0.000001, (i.e., historic similarity threshold has sensitivity
of 100 meters, which means it exploits locations between neighboring city blocks). The
user population of the available users required by the system to be operational is defined
to be |U| = 100 users (i.e., total amount of users). The total number of instances is equal to
the adopted dataset size, which is |[KB| = 2958 instances. When a prediction is achieved
the number of the recommended users’, which have similar trajectories with the pivot user,
is denoted with N (e.g., returned recommendation list should be defined experimentally in
Section 3.2.2). Experimental parameters of the proposed model are presented in Table 3.

Table 3. Proposed model experimental parameters.

Parameter Value
) 1 GPS predicted location
9 0.00000001 (10 m)
U 0.000001 (100 m)
|u| 100 users totally
|KB| 2958 instances

3.2. Experiments
3.2.1. Prediction Accuracy

Prediction accuracy, 4, is calculated based on a 10-fold cross validation evaluation
method for 1000 iterations based on a user population of U = 100 users for d = 7 days per
week, in a total period of w € [1,8] weeks, and dataset size of 2958 instances containing
spatial GPS coordinates. Prediction accuracy, a4, depends on the value of historic window
size m. To define which value of m is optimal for the current experiment it is tried several
values of m € [1,10]. It is found that for value m = 6 proposed system achieves more
efficient accuracy than the other values of m. Prediction accuracy results for the optimal
value of historic window size in presented in Figure 4.

.
e

L

1 1 | | | | | |

2 3 4 5 6 7 8 9 10
Historic window size (m)

Figure 4. Prediction accuracy results for optimal value of historic window size.
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To define in which the value prediction accuracy a reaches its optimal value, research
effort is experimented with 10-fold cross validation evaluation method for 1000 iterations
based on a user population of U = 100 users for d = 7 days per week, in a total period
of w € [1,8] weeks, and dataset size of 2958 instances containing spatial GPS coordinates.
It is observed that a is incremental and converges to value a = 0.9168 after w = 4 week,
which means that the adopted system has achieved its higher level of efficiency after the
fourth week of experimental evaluation. The prediction accuracy results for optimal system
convergence on certain week are presented in Figure 5.
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Figure 5. Prediction accuracy results for optimal system convergence on certain week.

3.2.2. Recommendation MAP@N

MAP@N, map@N, where N € [1,10] are the returned user’s recommendations, which
are also calculated based on 10-fold cross validation for 1000 iterations run on a user
population of U = 100 users for d = 7 days per week, in a total period of w € [1,8]
weeks, and a dataset size of 2958 instances containing spatial GPS coordinates. Specifically,
MAP@N, map@N, is incremental and converges to value map@N = 0.8234 for value of
N = 5 recommended users which means that after this value of N = 5 recommended users
there is not much effect on the system recommendation performance. MAP@N result for
optimal value of recommended users are presented in Figure 6.
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Figure 6. MAP@N result for optimal value of recommended users.
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4. Discussion
4.1. Discussion on the Results

The results are based on certain decision of adopted experimental parameters. Such
a decision is rational according to common sense for the proposed model and experimental
setup. Specifically, the experiments assess the efficiency of prediction accuracy, 4, and
map@N, based on calculated based on 10-fold cross validation for 1000 iterations run
on a user population of U = 100 users for d = 7 days per week, in a total period of
w € [1,8] weeks, and dataset size of 2958 instances containing spatial GPS coordinates. It is
experimentally found that the optimal value for historic window size is m = 6. This value
means that the proposed model is able to converge to an efficient value of prediction
accuracy, a, assessing the last m = 6 GPS locations of the users’ movement. A lower value
of m means that the system cannot reach a mature decision since the number of historic
locations are few, thus, it is not able to infer a certain user movement pattern. Instead,
in case m has a higher value the system also cannot achieve an efficient value since it is
not able to capture certain user movement behavior from different GPS places but rather
merges them inelegantly.

Having settled to a certain value of historic window size m = 6 it is observed how
prediction accuracy, 4, increments through the adopted experimental setup and converges
to a certain value of a = 0.9168 after w = 4 week of the system evaluation. Actually,
the prediction accuracy starts from values near to zero since in the beginning of the
evaluation phase there is not enough knowledge to assess the system’s effectiveness.
However, as time passes more data are gathered and forming a much richer knowledge
base. This knowledge base follows an incremental way of maturity till the value of w = 4
week. After this value there is no need to train the system since it is already intelligent to
assess certain user movement. By forcing the system to be trained more than w = 4 week
might result in the unfortunate state of overfitting which would deteriorate the efficiency
of the system.

Previous experiments evaluated the prediction accuracy, 4, of the system with regards
to the efficiency that it adopts new instances in order to perform better predictions of
the next future location, where the user is going to visit during her daily trip. However,
prediction evaluation metrics are not able to assess the effectiveness of the recommendation
results, which is the precision of the recommended users proposed by the adopted system.
To evaluate the precision of the system, it incorporated the MAP@N, map@N, recommen-
dation evaluation metric. This metric defines the optimal number of recommended users
the system returns to the pivot user who invokes the proposed system. MAP@N achieves
optimal value map@N = 0.8234 for N = 5 recommended users, which means that for less
recommended users the pivot user cannot find a match to ride share a certain commute,
while for more recommended users the pivot user does not variate her behavior. This
stability of the pivot user behavior after N = 5 recommended users explains why the
system converges to a certain map@N = 0.8234 value.

4.2. Comparison with Other Research Efforts

The proposed system focuses on multidisciplinary research in the field of car ride-
sharing systems. The next destination prediction is evaluated through prediction accuracy,
a, of the adopted classification model as well as, map@N, recommendation evaluation
metric. System is based on optimal personalized information of users commute in SCs.
Comparing observed results with other research efforts in next destination prediction,
such as [29-31], the adopted research effort reaches better values for, a, prediction accuracy
evaluation metric. Specifically, the proposed system achieves a = 0.9168, while effort
in [29] achieves a = 0.9028. In addition, the system in [30] achieves a = 0.9097, while ef-
fort in [31] achieves a = 0.9125. Concretely, comparing results with research in other
recommender systems, such as [32-34], the proposed system reaches optimal values for,
map@N, recommendation evaluation metric. Subsequently, the adopted system achieves
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map@N = 0.8234, while effort in [32] achieves map@N = 0.8113. In addition, system in [33]
achieves map@N = 0.8204, while effort in [34] achieves map@N = 0.8079.

Strengths of the proposed approach are the analyses of user mobility behavior towards
a sustainable way of transport in rural and urban environments. Such personalized user
behavior enables a context-aware car riding system, which faces commute in contemporary
green ecosystems. The exact timing for online riders picks up and drop off in areas of
interest in the SC is achieved by dynamic scheduling of the proposed system. Concretely its
ability to provide online dynamic routing destinations towards next location ride sharing
prediction is an advantage of the adopted system. The proposed approach provides its
services with free of charge policy, which means that riders are not required to pay for
the commute.

The weaknesses of the proposed system are that the adopted approach does not
studies multimodal means of transport like other research approaches. Since during the
commuting process there is sensitive information that is shared between drivers and riders,
compliance with privacy regulations is crucial. However, the proposed system does not
cover such a utility in the current stage of research. In addition, current research effort
is not tuned to support its efficiency in cases of EV as well as AV and CAV commuting
environments. Operational policies are not taken into consideration during this research
since it is a separate research area which is not covered by the data provided in this effort.

Compared with Uber-Pool, in [25-28], proposed research effort does not serve mul-
tiuser demands. Specifically, Uber batch matching is not provided by the adopted system.
However, it supports single users commute services like Uber while it exploits personalized
riders” information. The next step of the proposed effort is to incorporate social context
as well as social mobility context to provide a more social car ride sharing environment
in SCs commute. In addition, the aim is to provide a mobile application where riders
can collect desired commutes with drivers that they have common interests with. Such
a mobile application will not require pricing options, like Uber does, but it will be a free of
charge service for every citizen who wishes to commute in SCs environments.

5. Conclusions

The current research effort focuses on smart vehicle commuting systems. It proposed
a predictive vehicle ride sharing system, which has impact to SC green and sustainable
environment. The adopted system also provides a recommendation capability to citizens
to select the persons they would like to commute with. It analyzes each user’s mobility
behavior as part of a sustainable commuting transport in SCs. The proposed system focuses
on providing personalized services by incorporating user mobility context as part of the
online scheduling and dynamic routing processes. A free of charge policy is adopted in
contrast with Uber pricing, which enables riders to use the research effort in their daily
commute in SCs without paying a trip fee. Subsequently, the research effort outperforms
other approaches with regards to 4 and map@N system evaluation performance metrics.

Future research directions are to focus on expanding the user mobility context by incor-
porating social and social mobility context to provide riders and drivers a trip where they
can share common interests thus make every day commuting in the SC a self-satisfaction
experience. Concretely, it is aims to research such social satisfaction in cases of joint car
riding trips where more than a single passenger will share the same vehicle. In such
cases, research should be done towards examining group integrated satisfaction with the
incorporation of clustering techniques applied to pervasive green environments.
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