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Abstract: Urbanization, the corresponding road traffic, and increasing e-grocery markets require 
efficient and at the same time eco-friendly transport solutions. In contrast to traditional food 
procurement at local grocery stores, e-grocery, i.e., online ordered goods, are transported directly 
to end customers. We develop and discuss an optimization approach to assist the planning of e-
grocery deliveries in smart cities introducing a new last mile concept for the urban food supply 
chain. To supply city dwellers with their ordered products, a network of refrigerated grocery lockers 
is optimized to temporarily store the corresponding goods within urban areas. Customers either 
collect their orders by themselves or the products are delivered with electric cargo bicycles (ECBs). 
We propose a multi-echelon optimization model that minimizes the overall costs while 
consecutively determining optimal grocery locker locations, van routes from a depot to opened 
lockers, and ECB routes from lockers to customers. With our approach, we present an advanced 
concept for grocery deliveries in urban areas to shorten last mile distances, enhancing sustainable 
transportation by avoiding road traffic and emissions. Therefore, the concept is described as a smart 
transport system. 

Keywords: e-grocery; last mile delivery; city logistics; sustainability; location routing problem; 
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1. Introduction 

The progressing urbanization leads to an increasing demand for all kinds of goods in cities over 
the entire world. In addition, e-commerce grows steadily, resulting in a rising number of delivery 
activities and increasing road traffic on the last mile to satisfy customer needs [1]. Politicians aim for 
a mitigation of global warming by enacting appropriate laws to reduce the emissions of greenhouse 
gases. As an example, the European Commission defines the objectives of excluding conventionally 
powered vehicles by 2050 and achieving “essentially CO2-free city logistics in major urban centres by 
2030” [2] (p. 9). Recent discussions are about national emission ceilings for different pollutants (PM10, 
NOX, etc.) to increase the air quality for inhabitants. If such limits are exceeded, city authorities are 
forced to ban certain vehicles from urban traffic. For example, those driving bans can cover outdated 
diesel cars (e.g., Hamburg in 2018), vehicles with even/uneven-numbered registration plates (e.g., 
Paris in 2016), and similar actions. Despite potential vehicle bans, city dwellers need to be supplied 
with various goods. As one result, the number of electric cars, light-duty vans, and other transport 
vehicles, such as cargo bi- and tricycles, is rising in urban areas. 

As one part of e-commerce, the delivery of online ordered groceries to end-customers (e-grocery) 
is a steadily increasing market. Sorted by the market size, Figure 1 shows the e-grocery channel share 
for selected countries in 2018 and 2023 (forecast) illustrating the substantial rise of this industry. 
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Today, China has by far the largest online grocery market size with $50.9 bn, followed by the United 
States with $23.9 bn. In 2023, South Korea is expected to have the highest e-grocery share worldwide 
(14.2%). In Europe, e-grocery is mainly done in the Western countries, whereas the United Kingdom 
exhibits the biggest European market size ($14.6 bn), resulting in a share of 6.0% in 2018 [3]. 

 
Figure 1. Share of e-grocery by country in 2018 and 2023 [3]. 

At present, our society is becoming increasingly aware of environmental, economic and social 
sustainability [4]. Regarding the context of smart cities, logistics concepts using alternative low-
emission delivery vehicles and modern information and communication technologies (ICT) are 
understood as smart transport systems that improve urban traffic as well as the inhabitants’ quality 
of life [5]. Concerning sustainable ways of home deliveries in urban areas, new logistics concepts are 
mainly tested in the parcel industry. For instance, UPS places micro depots at locations within cities 
to conduct last mile deliveries (LMD) with electric cargo bicycles (ECBs) and on foot resulting in a 
reduction of the inner-urban road traffic [6]. Besides supply-sided changes in the home delivery 
process, the parcel recipient can be integrated in the last mile of the supply chain. As an example, 
pickup points can be established where customers collect their ordered goods by themselves [7]. In 
both cases, the last mile is shortened to deploy eco-friendly transport vehicles while remaining 
effective and profitable. However, concepts that balance economic profit, environmental protection 
and social wellbeing are rather rare in today’s e-grocery industry. To tackle the interconnected 
challenges of increasing urbanization, the related rising grocery demand and the need for more 
sustainable transportation concepts, we investigate the following research question: 

How can an optimization model support the efficient design of a sustainable logistics concept 
for last mile deliveries of online ordered groceries? 

To address this question, we present a novel logistics concept that shortens the last mile to the 
customers by operating an urban network of refrigerated grocery lockers. On the one hand, these 
decentral transshipment points enable customers to pick up their orders themselves. On the other 
hand, home deliveries of e-grocery providers can be conducted by means of ECB. As a result, the 
conventionally driven distances as well as the corresponding emissions can be reduced compared to 
a traditional delivery. To determine the grocery locker locations, the routes from the grocery lockers 
to the customers, as well as the routes from a depot to the grocery lockers, we propose a multi-echelon 
optimization model minimizing costs over three consecutive stages: we present (1) a Location 
Routing Problem (LRP), (2) a Vehicle Routing Problem (VRP) with time windows, and (3) a VRP 
considering multiple products, compartments, time windows and split delivery. The three problems 
are implemented in a modelling software to permit the application of use cases and sensitivity 
analyses. Exemplary benchmarks are provided to demonstrate the functionality of the developed 
model, which addresses (e-)grocery retailers, parcel delivery services and city authorities. 
Afterwards, we discuss the proposed approach and draw conclusions. 
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2. Theoretical Background 

Along with the trend of urbanization itself, the increased consumption habits of people are a 
major problem for the environment within cities. These habits are intensified by the prospering e-
commerce as city dwellers order required goods online and make use of parcel delivery services 
directly to their homes or to pickup points [8]. For people, this means the possibility of shopping 
independent of business hours or location, significant time savings, greater flexibility, a larger 
product variety and ICT-related tracking of shipments. Such services are no longer limited to non-
perishable goods as groceries are also available online nowadays. Groceries include food and 
household items as well as other fast-moving consumer goods. The mentioned deliveries are part of 
the domain city logistics which is defined as “the process for totally optimising the logistics and 
transport activities by private companies in urban areas while considering the traffic environment, 
traffic congestion and energy savings within the framework of a market economy” [9]. 

Enabled through digitalization and its increased possibilities offered by the application of 
modern ICT, the proposed logistics concept can be depicted as an e-grocery delivery concept 
contributing to the development of smart cities. Smart cities are known as urban development policy 
in applying different kinds of ICT to city infrastructures connecting people, services, things and data 
[10]. The overall goal is to improve the inhabitants’ lives and in consequence urban growth based on 
data, connectivity and resulting knowledge flows. For the term ‘smart city’, there is no general 
agreement on an exact definition. Yet, six core elements are widely accepted in literature: smart 
governance, smart economy, smart people, smart living, smart environment, and smart mobility [11]. 
The proposed logistics concept mainly contributes to smart mobility as “logistics” and 
“infrastructures” are related aspects of this component [11]. Following Rehm et al. [12], crucial 
success factors for the use of smart mobility concepts are, besides others, unlimited participation for 
consumers, cost-efficiency and low emissions. Therefore, the proposed e-grocery concept aims at 
achieving long-term sustainability in a smart city context, while it can be classified as a smart 
transport system [5,13]. 

Grocery delivery services are offered by a growing number of food retailers evolving from a 
typical single-channel to a multi- or even omni-channel retailer, or by pure online players [14]. Thus, 
a distinction is made between the picking process (in-store, fulfilment center, or warehouses) as well 
as the delivery process. The virtual shopping basket of a website gets delivered as a package to the 
front door or at specialized pickup points [7]. Thereby, the e-grocery suppliers either have their own 
fleets for regional delivery or ship nationwide via parcel delivery services. Delivery with an own fleet 
has the advantages of a specialized vehicle fleet complying with different temperature requirements 
and offering small time windows but the disadvantages of local narrowness [7]. As one result, some 
(online) providers are not delivering any refrigerated food, making additional grocery shopping 
necessary. As already presented in Figure 1, the e-grocery share is rather small, but these values will 
continue to increase in the coming years. This depends heavily on the costs and the service 
experiences of the customers regarding punctual delivery within the desired time windows, 
correctness, completeness, and quality of the ordered goods [14]. 

The delivery of goods to customers is defined as last mile distribution, which is the final section 
and the most cost-intensive part of the supply chain [15]. As a result, there is a growing interest in 
solutions that comprise optimization approaches. Van Audenhove et al. [16] identify four different 
areas of action (1. regulatory, 2. infrastructure, 3. incentives, 4. technology) to reduce the traffic 
induced by urban logistics. To achieve a positive effect, it is not enough to electrify the fleets, as road 
traffic is not avoided [16]. New business models are entering the market, with most of them piloted 
within projects. Within the parcel sector, some of the providers rely on solutions that consist of a 
network of a distinct number of inner-city micro-depots. Customers are then supplied from these 
locations or can pick up their goods there. This concept is now also used by suppliers in the e-grocery 
sector who make use of specialized collection points [17]. The subject of this paper is the planning of 
a network consisting of refrigerated grocery lockers where customers can either collect their goods 
themselves or the goods are delivered via ECB. 
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In scientific literature, the topic of e-grocery has not been intensively investigated so far. 
Overviews of relevant research topics are presented by Martín et al. [18] as well as Mkansi et al. [19]. 
Among others, the aspects of “logistics”, “concepts”, “delivery”, and “consequences” are listed as 
main topics of e-grocery research [18]. Various studies examine the strategic planning of multi- and 
omni-channel systems for grocery distribution, e.g., [7,14,20]. Market and provider analyses, price 
dispersions, as well as customers’ perceptions of e-grocery retail are also conducted, e.g., [17,21,22]. 
In contrast with traditional grocery planning, route-related operations regarding e-grocery deliveries 
to end-customers are quite rare. Fikar [23] presents a decision support system to investigate food 
losses by an agent-based simulation to estimate delays and inefficiencies within e-grocery deliveries. 
As a result, inventory and transport strategies are presented, highlighting the trade-off between food 
quality and travelled distances. A similar approach is presented by Waitz et al. [24]. The resulting 
decision support system allows users to jointly evaluate the influence of altering service offers and 
logistics processes. Regarding VRP optimization in the field of e-grocery operations, several 
mathematical models and heuristic solution approaches address food quality in terms of perishability 
depending on routing decisions, e.g., [25,26]. Emeç et al. [27] present an optimization model as well 
as a heuristic for an e-grocery delivery routing problem. Their approach is based on a distribution 
network where premium goods are acquired from a set of external retailers at multiple locations and 
then delivered to the customers in a single visit. The generation of an urban e-grocery network 
consisting of inner-city depots in form of refrigerated grocery lockers is part of the LRP optimization 
approach of Leyerer et al. [28]. Customers can collect their ordered goods by themselves or have them 
supplied by ECB. The approach serves as a basis for this paper and is improved in terms of an 
enhanced optimization method (3-echelon vs. 2-echelon) and corresponding assumptions, the 
consideration of an adjustable share of self-collection customers modelled directly within the 
mathematical models, a more realistic computational study, as well as a comparison of the proposed 
concept to conventional delivery of online ordered groceries. A general overview of scientific VRP 
and LRP approaches is presented by Eksioglu et al. [29], stating the extensive body of various 
applications in this field. As a rather novel research topic, the 2-echelon VRP has gained considerable 
attention in recent years. A wide range of 2-echelon optimization approaches (heuristic and exact 
methods) is presented in the context of city logistics, e.g., [30–32]. However, very few articles cover a 
multi-echelon approach combined with heterogeneous vehicle fleets, including the use of ECBs, in 
the field of city logistics. In this context, Enthoven et al. [33] present an example of a 2-echelon VRP 
with two delivery options. On the one hand, parcels are delivered in a van from a depot to parcel 
stations, from where customers can pick up their parcels themselves. On the other hand, vans deliver 
parcels to satellite depots in urban areas, from where the parcels are then delivered by ECB on the 
last mile to the customers. Especially with regard to the presented approach, no literature combines 
LMD in a multi-echelon optimization approach in connection with ECB deliveries and self-collection 
by customers at grocery lockers in the context of e-grocery. 

In general, the last mile distribution of e-groceries is still less focused. In their literature review, 
Mkansi et al. [19] recommend intermodal transportation with bicycles, electric cars, and vans, as well 
as the integration of customers within the delivery processes to address the problems of road traffic, 
congestion and potential legal fines. By combining an eco-friendly and road traffic avoiding fleet 
together with an intelligent infrastructure in the form of refrigerated lockers to a new last mile 
concept, we tackle the present research gap. 

3. Optimization Approach 

3.1. Logistics Concept for Urban E-Grocery Operations 

To supply a demand area with groceries, we propose a network of refrigerated grocery lockers 
to enable deliveries with ECBs and customer self-collection. We aim at determining optimal grocery 
locker locations, optimized routes for direct locker-to-customer deliveries and optimized routes for 
the locker supply from a central depot. Regarding location decisions, the consideration of the 
vehicles’ mileage provides better long-term results compared to a sole facility location problem [34]. 
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Therefore, we formulate an LRP for the grocery locker location optimization in the first stage. 
Afterwards, the optimal ECB routes are determined with a VRP with time windows (VRPTW). To 
reduce the problem’s complexity, van route optimization is executed in another separate model. 
Figure 2 illustrates the described logistics concept and our corresponding 3-stage optimization 
approach. As “logistics” and “infrastructures” are related aspects of smart mobility, the concept 
contributes to the smart city domain [11]. 

 
Figure 2. Overview of the proposed e-grocery logistics concept. 

In a first step, a specific LRP based on the warehouse-LRP formulation of Perl and Daskin [35] 
determines the optimal number, sizes and locations of grocery lockers among the sets of available 
locker types and potential locker locations. The wide range of groceries implies different 
requirements concerning the cooling and dimensions of the ordered products. Hence, different locker 
types (e.g., temperature zones frozen, refrigerated, and dry) and sizes need to be considered. In 
addition, the first model allocates customers to established grocery lockers. Those customers can 
either pick up their ordered products themselves or request a delivery by means of ECB. In both 
cases, the grocery lockers serve as temporary storage space. For those customers who favor home 
delivery, the grocery lockers enable eco-friendly LMD, as ECBs can be used for the rather small 
distances from the lockers to the customers. To consider the grocery locker supply in the first stage, 
the van routes from the depot are included at this network generation phase. The LRP addresses the 
tactical decision level (e.g., monthly evaluation of locker network planning) and minimizes the sum 
of locker operating and transport costs. 

In a second step, the ECB routes from the opened grocery locker locations to the customers who 
demand home delivery are determined daily, minimizing the transport costs which are linear related 
to the total travel distance of the utilized ECB. In view of an ECB’s limited capacity, the distance from 
the grocery lockers to the customers must be restrictable to comply with cooling chain requirements 
by use of cooling boxes. As usual for e-grocery home deliveries, time windows for all customers must 
be considered.  

In a third step, the grocery lockers are supplied with the ordered products each day, taking the 
unequal product requirements and incompatibilities into account, e.g., frozen food must not be stored 
together with dry goods. Time windows must also be considered to ensure punctual locker supply. 
For this purpose, we develop an adjusted VRP, derived from the formulation of El Fallahi et al. [36]. 
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Routing decisions for the grocery locker supply are modelled in an operational context considering 
compartmentalized vehicles originating from the central depot, product-compartment 
incompatibilities, time window constraints and split-deliveries (SP-VRPMPCTW) to minimize 
transportation costs. Split deliveries do not have a negative impact on the quality of service in the 
given context where no customer needs to be present to receive the goods [37]. As the distance and 
costs of the vans which supply the grocery lockers are already included in the first step, the van tours 
are updated in the third stage to account for detailed routing decisions considering the described 
conditions. 

To enable efficient and eco-friendly e-grocery deliveries, we formulate three consecutive mixed 
integer linear programs (MILP). The underlying assumptions, notations, and mathematical problem 
formulations for the three models are given in the following section. 

3.2. Multi-Echelon Optimization Model 

Before the notation is explained, we present the underlying assumptions of our optimization 
approach: 

• Customer locations are given and characterized by a distinct demand level for the different 
product types. This demand must be fulfilled while the product types differ in terms of 
cooling chain requirements, which have to be met within the whole delivery process. 

• Potential locations for grocery lockers are given. Regarding their storage capacity, grocery 
lockers vary in terms of dimensions resulting in a set of different locker sizes. Further, these 
lockers are subdivided into compartments to store each product type at its appropriate 
bearing temperature. Operation is secured by an existing electricity connection and a screen 
for storage as well as collection processes. Each established grocery locker has a power 
socket for ECB recharging. For the establishment of a grocery locker operating costs incur 
varying according to location.  

• If the ordered products are not picked up by the customers, the goods are delivered by a 
given number of ECBs with identical specifications. Each trip starts and ends at the same 
grocery locker. Different product types are delivered simultaneously to supply each 
customer only one time. As the storage capacity of an ECB is limited, resulting trips can be 
restricted in terms of length to meet the cooling chain requirements by use of cooling boxes. 

• The grocery lockers are supplied with the desired goods from a given depot. All trips start 
and end at the same depot where all offered groceries are stored in a sufficient amount.  

• The transport vehicles for the grocery locker supply, further referred to as vans, are given 
and identical in its specifications. The load area is subdivided into the number of product 
types which are stored in special compartments complying with cooling chain restrictions. 
The supply of different grocery lockers can be served in different tours, as partial supply is 
not a critical element. For the timely delivery of groceries to customers, the grocery locker 
supply is restricted through time windows for the latest storage with requested goods. 

In the following, the multi-echelon optimization approach is presented. After stating the 
underlying notations including sets, parameters, and decision variables for each optimization stage, 
the corresponding mathematical models are introduced and explained. 
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Stage 1: LRP 

First, Table 1 contains the applied indices, parameters, and decision variables of the Location Routing 
Problem (LRP). 

Table 1. Applied indices, parameters, and decision variables of the LRP. 

Notation Description 
Indices: 𝑔,ℎ, 𝑙 ∈ 𝑁 ∪𝑀 

 𝑁𝑜𝑑𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝐿𝑅𝑃   𝑗 ∈ 𝐽 𝑆𝑒𝑡 𝑜𝑓 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑔𝑟𝑜𝑐𝑒𝑟𝑦 𝑙𝑜𝑐𝑘𝑒𝑟 𝑠𝑖𝑧𝑒𝑠  𝑚 ∈ 𝑀 𝑆𝑒𝑡 𝑜𝑓 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑙𝑜𝑐𝑘𝑒𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠  𝑛 ∈ 𝑁 𝑆𝑒𝑡 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑛𝑜𝑑𝑒𝑠  𝑝 ∈ 𝑃 𝑆𝑒𝑡 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑡𝑦𝑝𝑒𝑠  𝜃 𝐷𝑒𝑝𝑜𝑡  
Parameters: 𝑐  

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑎 𝑣𝑎𝑛  𝑑  𝐷𝑒𝑚𝑎𝑛𝑑 𝑎𝑡 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑛𝑜𝑑𝑒 𝑛 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑡𝑦𝑝𝑒 𝑝  𝐹  𝐶𝑜𝑠𝑡𝑠 𝑓𝑜𝑟 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑎 𝑔𝑟𝑜𝑐𝑒𝑟𝑦 𝑙𝑜𝑐𝑘𝑒𝑟 𝑤𝑖𝑡ℎ 𝑠𝑖𝑧𝑒 𝑗 𝑎𝑡 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑚  𝑄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑔𝑟𝑜𝑐𝑒𝑟𝑦 𝑙𝑜𝑐𝑘𝑒𝑟 𝑠𝑖𝑧𝑒 𝑗 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑡𝑦𝑝𝑒 𝑝  𝛼 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎 𝑔𝑟𝑜𝑐𝑒𝑟𝑦 𝑙𝑜𝑐𝑘𝑒𝑟 𝑎𝑛𝑑 𝑖𝑡𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠  ∆  𝑇𝑟𝑎𝑣𝑒𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎𝑛 𝐸𝐶𝐵 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝑔 𝑎𝑛𝑑 ℎ   ∆  𝑇𝑟𝑎𝑣𝑒𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎 𝑣𝑎𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝜃 𝑎𝑛𝑑 𝑚   ∆  𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎 𝑣𝑎𝑛 𝑡𝑜𝑢𝑟  
Variables: 𝑜  

 1, 𝑖𝑓 𝑙𝑜𝑐𝑘𝑒𝑟 𝑠𝑖𝑧𝑒 𝑗 𝑖𝑠 𝑜𝑝𝑒𝑛𝑒𝑑 𝑎𝑡 𝑙𝑜𝑐𝑘𝑒𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑚;   0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  𝑦  1, 𝑖𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑛 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑙𝑜𝑐𝑘𝑒𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑚;   0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

𝑀𝑖𝑛 = 𝐹 ∙ 𝑜 + ∆ ∙ 𝑐 ∙ 𝑜  (1) 

∆ ∙ 𝑦 ≤ 𝛼          ∀ 𝑛,𝑚 (2) 𝑦 = 1          ∀ 𝑛 (3) 

𝑜 ≥ 𝑦           ∀ 𝑛,𝑚 (4) 

𝑜 ≤ 1          ∀ 𝑚 (5) 

𝑑 ∙ 𝑦 ≤ 𝑄 ∙ 𝑜          ∀ 𝑚,𝑝 (6) 

𝑜 ∈ 0,1           ∀ 𝑗,𝑚 (7) 𝑦 ∈ 0,1           ∀ 𝑛,𝑚 (8) 

The objective function in (1) minimizes the accumulated costs of operating grocery lockers and 
supplying those with the requested products from the depot location. By including the van costs in 
the first stage, the location decisions can be optimized regarding the overall costs [38]. In (2), the 
distance between an opened grocery locker and its assigned customers is restricted to be smaller than 
a predetermined distance. This formulation serves two purposes: for the case of self-collection by 
customers, the space around an opened locker with a radius α represents the area of customer 
responsibility, constituting the intended service level. Further, the α in constraint (2) is used to keep 
the travel distance by ECB low so that the cooling chain requirements can be met using cooling boxes. 
As a result, a low (high) 𝛼-value leads to a dense (sparse) network of grocery lockers. Constraint (3) 
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guarantees that each customer is assigned to exactly one opened grocery locker. Constraint (4) 
ensures that at each recommended locker location, a grocery locker must be established to serve the 
assigned customers. Constraint (5) imposes the establishment of only one locker per potential grocery 
locker location across all possible locker sizes. Constraint (6) is necessary for multiple issues: first, the 
cumulated demand of customers must not exceed the capacity of their assigned grocery locker; 
second, it ensures that no customer is assigned to a non-existent locker; third, the grocery locker 
location and its size are chosen based on the existing demand level. Equations (7) and (8) define the 
variables’ value ranges. 

Stage 2: VRPTW 

Table 2 contains the notation including indices, parameters, and decision variables of the Vehicle 
Routing Problem with Time Windows (VRPTW). 

Table 2. Applied indices, parameters, and decision variables of the VRPTW. 

Notation Description 
Indices: 𝑔,ℎ, 𝑙 ∈ 𝑁 

 𝑁𝑜𝑑𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑉𝑅𝑃𝑇𝑊 𝑗 ∈ 𝐽 𝑆𝑒𝑡 𝑜𝑓 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑔𝑟𝑜𝑐𝑒𝑟𝑦 𝑙𝑜𝑐𝑘𝑒𝑟 𝑠𝑖𝑧𝑒𝑠 𝑘 ∈ 𝐾 𝑆𝑒𝑡 𝑜𝑓 𝐸𝐶𝐵 𝑡𝑜𝑢𝑟𝑠 𝑛 ∈ 𝑁 𝑆𝑒𝑡 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑛𝑜𝑑𝑒𝑠  𝑝 ∈ 𝑃 𝑆𝑒𝑡 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑡𝑦𝑝𝑒𝑠 𝑠,𝜎 ∈ 𝑆 𝑆𝑒𝑡 𝑜𝑓 𝑜𝑝𝑒𝑛𝑒𝑑 𝑔𝑟𝑜𝑐𝑒𝑟𝑦 𝑙𝑜𝑐𝑘𝑒𝑟𝑠 𝛽,𝜙 ∈ Ω⊆ 𝑁 𝑆𝑒𝑡 𝑜𝑓 ℎ𝑜𝑚𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝜂 ∈ Π ⊆ 𝑁 𝑆𝑒𝑡 𝑜𝑓 𝑠𝑒𝑙𝑓 − 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 
Parameters: 𝑐  

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑎𝑛 𝐸𝐶𝐵 𝑑  𝐷𝑒𝑚𝑎𝑛𝑑 𝑜𝑓 ℎ𝑜𝑚𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝛽 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑡𝑦𝑝𝑒 𝑝 𝑑  𝐷𝑒𝑚𝑎𝑛𝑑 𝑜𝑓 𝑠𝑒𝑙𝑓 −𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝜂 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑡𝑦𝑝𝑒 𝑝 𝑠𝑡𝑜𝑟𝑒𝑑 𝑎𝑡 𝑔𝑟𝑜𝑐𝑒𝑟𝑦 𝑙𝑜𝑐𝑘𝑒𝑟 𝑠  ℳ 𝑆𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜  𝑂𝑝𝑒𝑛𝑒𝑑 𝑔𝑟𝑜𝑐𝑒𝑟𝑦 𝑙𝑜𝑐𝑘𝑒𝑟 𝑠 𝑤𝑖𝑡ℎ 𝑙𝑜𝑐𝑘𝑒𝑟 𝑠𝑖𝑧𝑒 𝑗 𝑄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑎𝑛 𝐸𝐶𝐵 𝑄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑔𝑟𝑜𝑐𝑒𝑟𝑦 𝑙𝑜𝑐𝑘𝑒𝑟 𝑠𝑖𝑧𝑒 𝑗 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑡𝑦𝑝𝑒 𝑝 𝑇  𝑆𝑡𝑎𝑟𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑓𝑜𝑟 𝑠𝑢𝑝𝑝𝑙𝑦𝑖𝑛𝑔 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝛽  𝑇  𝐸𝑛𝑑 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑓𝑜𝑟 𝑠𝑢𝑝𝑝𝑙𝑦𝑖𝑛𝑔 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝛽  ∆  𝑇𝑟𝑎𝑣𝑒𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎𝑛 𝐸𝐶𝐵 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝑔 𝑎𝑛𝑑 ℎ  ∆  𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎𝑛 𝐸𝐶𝐵 𝑡𝑜𝑢𝑟 𝛿  𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎𝑛 𝐸𝐶𝐵 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝑔 𝑎𝑛𝑑 ℎ  𝜏 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝜆 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑡𝑦𝑝𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑜𝑓 𝑡ℎ𝑒 𝐸𝐶𝐵  
Variables: 𝑡  

 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 𝑎𝑡 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝛽 𝑖𝑛 𝐸𝐶𝐵 𝑡𝑜𝑢𝑟 𝑘 𝑢  𝑙 ∈ 𝑁;   𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑡𝑜 𝑝𝑟𝑒𝑣𝑒𝑛𝑡 𝑠ℎ𝑜𝑟𝑡 𝑡𝑟𝑖𝑝𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠  𝑥   1, 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑔 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝑛𝑜𝑑𝑒 ℎ 𝑖𝑛 𝐸𝐶𝐵 𝑡𝑜𝑢𝑟 𝑘;   0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑦  1, 𝑖𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝛽 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑙𝑜𝑐𝑘𝑒𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑠;   0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑀𝑖𝑛 = ∆ ∙ 𝑐 ∙ 𝑥  (9) 

𝑥 = 1          ∀ 𝛽 (10) 

𝑥 − 𝑥 = 0          ∀ ℎ, 𝑘 (11) 
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𝑥 ≤ 1          ∀ 𝑘 (12) 

𝑢 − 𝑢 + |Ω| ∙ 𝑥 ≤ |Ω| − 1          ∀ 𝑙 ∈ Ω,𝛽, 𝑘 (13) 𝑑 ∙ 𝑥 ≤ 𝑄           ∀ 𝑘 (14) 

∆ ∙ 𝑥 ≤ ∆           ∀ 𝑘 (15) 

𝑑 ∙ 𝑦 + 𝑑 ≤ 𝑄 ∗ 𝑜           ∀ 𝑝, 𝑠 (16) 

𝑥 + 𝑥 − 𝑦 ≤ 1          ∀ 𝛽, 𝑠, 𝑘 (17) 

𝑦 = 1          ∀ 𝛽 (18) 

𝑡 ≥ 𝑇           ∀ 𝛽, 𝑘 (19) 𝑡 + 𝜏 ≤ 𝑇           ∀ 𝛽, 𝑘 (20) 𝑡 + 𝑑 ∙ 𝑥 ∙ 𝜆 + 𝛿 − 1 − 𝑥 ∙ℳ ≤ 𝑡           ∀ 𝑔,𝛽, 𝑘 (21) 

𝑡 + 𝜏 + 𝛿 − 1 − 𝑥 ∙ℳ ≤ 𝑡           ∀ 𝑔,ℎ, 𝑘;𝑔 ≠ ℎ (22) 𝑥 ∈ 0,1           ∀ 𝑔,ℎ, 𝑘 (23) 𝑦 ∈ 0,1           ∀ 𝛽, 𝑠 (24) 

The objective function (9) minimizes the total transport costs of the ECB visiting the customers 
who demand home delivery. Transport costs are linear to the ECB’s travel distance, thereby as many 
customers as possible are combined into tours to minimize the mileage. Constraint (10) ensures that 
each customer node is included in exactly one ECB tour. Representing the usual tour flow, constraint 
(11) guarantees that an ECB visiting a customer location must also leave it. Each executed ECB tour 
must be assigned to one grocery locker preventing split deliveries from multiple locations (12). 
Constraint (13) represents the subtour elimination to prevent short trips between customer nodes. 
Constraint (14) ensures the adherence to the ECB’s available capacity, which must be considered at 
each ECB tour. With (15), an ECB tour length can be restricted with the parameter ∆ . This is 
important because of the assumption that ECBs do not have an onboard cooling system. Thus, cooling 
chain requirements must be met using cooling boxes equipped on the ECB. Constraint (16) illustrates 
the capacity utilization of each established grocery locker, which must exceed the assigned demand 
arising from both the home delivery customers as well as the self-collection customers. Whereas 𝑜  
is a decision variable in the first optimization stage, its values serve as input parameters in this second 
optimization step renamed and introduced as 𝑜 . Constraint (17) guarantees that customers and ECB 
tours are assigned to the appropriate grocery locker preventing deliveries from other locations. 
Constraint (18) ensures that each customer is assigned to exactly one grocery locker location. 
Constraints (19) – (22) constitute the temporal conditions for the customers who demand home 
delivery. Constraints (19) and (20) ensure a punctual supply for each customer, so that the arrival of 
the assigned ECB occurs after the respective time window’s start and before the time window’s end 
considering the service time 𝜏. When supplying the first customer on each ECB tour, the arising 
handling time for the loading of the ECB as well as the resulting travel time must be considered to 
ensure a punctual delivery within the corresponding time window (21). As the handling time does 
not occur for the subsequent customers on each tour, considering the travel and service time is 
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appropriate to comply with the time windows (22). Constraints (23) and (24) define the decision 
variables’ value ranges. 

Stage 3: SP-VRPMPCTW 

Table 3 contains the notation including indices, parameters and decision variables of the Split 
Delivery Vehicle Routing Problem with Multiple Products Compartments and Time Windows (SP-
VRPMPCTW). 

Table 3. Applied indices, parameters and decision variables of the SP-VRPMPCTW. 

Notation Description 
Indices: 𝑎, 𝑏, 𝑟 ∈ 𝜃 ∪ 𝑆 

 𝑁𝑜𝑑𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑆𝑃 − 𝑉𝑅𝑃𝑀𝑃𝐶𝑇𝑊 𝑝 ∈ 𝑃 𝑆𝑒𝑡 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑡𝑦𝑝𝑒𝑠 𝑠,𝜎 ∈ 𝑆 𝑆𝑒𝑡 𝑜𝑓 𝑜𝑝𝑒𝑛𝑒𝑑 𝑔𝑟𝑜𝑐𝑒𝑟𝑦 𝑙𝑜𝑐𝑘𝑒𝑟𝑠 𝑣 ∈ 𝑉 𝑆𝑒𝑡 𝑜𝑓 𝑣𝑎𝑛 𝑡𝑜𝑢𝑟𝑠 𝜃 𝐷𝑒𝑝𝑜𝑡  
Parameters: 𝑐  

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑎 𝑣𝑎𝑛 ℳ 𝑆𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑣𝑎𝑛 𝑡𝑜𝑢𝑟 𝑣 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑡𝑦𝑝𝑒 𝑝 𝑞  𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑡𝑦𝑝𝑒 𝑝 𝑎𝑡 𝑜𝑝𝑒𝑛𝑒𝑑 𝑔𝑟𝑜𝑐𝑒𝑟𝑦 𝑙𝑜𝑐𝑘𝑒𝑟 𝑠 𝑇  𝑆𝑡𝑎𝑟𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑓𝑜𝑟 𝑠𝑡𝑜𝑤𝑖𝑛𝑔 𝑎𝑡 𝑛𝑜𝑑𝑒 𝑎 𝑇  𝐸𝑛𝑑 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑓𝑜𝑟 𝑠𝑡𝑜𝑤𝑖𝑛𝑔 𝑎𝑡 𝑛𝑜𝑑𝑒 𝑎 ∆  𝑇𝑟𝑎𝑣𝑒𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎 𝑣𝑎𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝑎 𝑎𝑛𝑑 𝑏  ∆  𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎 𝑣𝑎𝑛 − 𝑡𝑜𝑢𝑟  𝛿  𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎 𝑣𝑎𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝑎 𝑎𝑛𝑑 𝑏  𝛾 
  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑡𝑦𝑝𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑜𝑓 𝑡ℎ𝑒  𝑔𝑟𝑜𝑐𝑒𝑟𝑦 𝑙𝑜𝑐𝑘𝑒𝑟𝑠 𝜋 A𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑡𝑦𝑝𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑛𝑠 
Variables: 𝑡  

 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 𝑎𝑡 𝑛𝑜𝑑𝑒 𝑎 𝑖𝑛 𝑣𝑎𝑛 𝑡𝑜𝑢𝑟 𝑣 𝑢  𝑟 ∈ 𝑆;   𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑡𝑜 𝑝𝑟𝑒𝑣𝑒𝑛𝑡 𝑠ℎ𝑜𝑟𝑡 𝑡𝑟𝑖𝑝𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑔𝑟𝑜𝑐𝑒𝑟𝑦 𝑙𝑜𝑐𝑘𝑒𝑟𝑠 𝑥  1, 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑎 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝑛𝑜𝑑𝑒 𝑏 𝑖𝑛 𝑣𝑎𝑛 𝑡𝑜𝑢𝑟 𝑣;   0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑧  1, 𝑖𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑡𝑦𝑝𝑒 𝑝 𝑖𝑠 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑡𝑜 𝑜𝑝𝑒𝑛𝑒𝑑 𝑙𝑜𝑐𝑘𝑒𝑟 𝑠 𝑖𝑛 𝑣𝑎𝑛 𝑡𝑜𝑢𝑟 𝑣;   0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑀𝑖𝑛 = ∆ ∙ 𝑐 ∙ 𝑥  (25) 

𝑥 ≤ 1          ∀ 𝑠, 𝑣 (26) 

𝑥 − 𝑥 = 0          ∀ 𝑠, 𝑣 (27) 

𝑢 − 𝑢 + |𝑆| ∙ 𝑥 ≤ |𝑆| − 1          ∀ 𝑟 ∈ 𝑆, 𝑠,𝑣 (28) 𝑧 ≤ 𝑥           ∀ 𝑠, 𝑣,𝑝 (29) 

𝑧 ≤ 1          ∀ 𝑠,𝑝 (30) 

𝑞 ≤ 𝑧 ∙ℳ          ∀ 𝑠,𝑝 (31) 

𝑧 ∙ 𝑞 ≤ 𝑄           ∀ 𝑣,𝑝 (32) 
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∆ ∙ 𝑥 ≤ ∆           ∀ 𝑣 (33) 

𝑡 ≥ 𝑇           ∀ 𝑎, 𝑣 (34) 𝑡 + 𝑞 ∙ 𝑧 ∙ 𝛾 ≤ 𝑇           ∀ 𝑎, 𝑣 (35) 

𝑡 + 𝑞 ∙ 𝑧 ∙ 𝜋 + 𝛿 − 1 − 𝑥 ∙ℳ ≤ 𝑡           ∀ 𝑠, 𝑣 (36) 

𝑡 + 𝑞 ∙ 𝑧 ∗ 𝛾 + 𝛿 − 1 − 𝑥 ∙ℳ ≤ 𝑡           ∀ 𝑎, 𝑏, 𝑣;𝑎 ≠ 𝑏 (37) 

𝑥 ∈ 0,1           ∀ 𝑎, 𝑏, 𝑣 (38) 𝑧 ∈ 0,1           ∀ 𝑠, 𝑣,𝑝 (39) 

The objective function (25) minimizes the total transport costs, which incur for the supply of the 
opened grocery lockers by vans. As in the second optimization stage, the transport costs are linear to 
the travel distance. Constraint (26) states that every locker is visited at most once within a vehicle’s 
tour. According to the developed VRPTW, constraint (27) ensures the tour flow of the vans and 
constraint (28) represents the subtour elimination to prevent short trips. Constraint (29) ensures the 
delivery of products in existing tours and (30) guarantees that the locker supply with one product 
type cannot take more than one tour. However, the established locker locations generally can be 
supplied by more than one vehicle, because split deliveries are allowed in the third stage (31). 
Constraint (32) imposes that the van’s load of a particular product type must not exceed the 
associated compartment’s capacity. With (33), the tour length of a van can be restricted by parameter  ∆  (33). Constraints (34) – (37) secure the time-window compliance of the grocery lockers. The 
earliest arrival time for a locker is secured by constraint (34) and the latest department time including 
the handling time for the storage of groceries is set by constraint (35). Constraint (36) describes that 
the earliest arrival time at the first grocery locker must exceed the departure time at the depot plus 
the handling time for van storage and the driving time between both locations. Similar to (36), 
constraint (37) defines the earliest arrival time at a subsequent grocery locker that must exceed the 
arrival time at a previous locker plus the handling time for grocery locker storage and the driving 
time between both lockers. Equations (38) and (39) define the decision variables’ value ranges. 

4. Computational Study 

To evaluate our developed multi-echelon optimization approach for an exemplary day, we 
provide benchmark calculations based on the city of Hannover (Germany). Hannover is a medium-
sized city with more than 500,000 inhabitants living in an area of around 20,413 hectares (≙50,442 
acres). Regarding transport-relevant infrastructures, the number of public car charging stations 
(currently approximately 40) and unattended parcel pickup points (currently approximately 50) is 
continuously growing, reflecting the increasing relevance of electric vehicles and alternative LMD 
concepts. 

To perform benchmarks for crucial model parameters, it is necessary to define an initial set of 
all input values at the beginning, varying selected parameters for each calculation ceteris paribus. 
The corresponding data setup is presented in Figure 3. It depicts the locations of 25 potential grocery 
lockers (marked by triangles), 100 customer locations (represented by dots), as well as the depot 
which is placed about 26 km outside the city area. The potential grocery locker locations are the result 
of data collection from available open spaces and suitable locations for the necessary infrastructure 
(tendered commercial sites, public parking lots, and parking lots of supermarkets). Regarding the 
definition of the customer locations, empirical data of a nationwide operating provider for e-grocery 
were evaluated and serve as average demand for an exemplary day. The heatmap presented in 
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Figure 3 shows the interpolated demand based on the data. Regarding the 100 customer locations, a 
sampling was drawn from the database of residential buildings in the investigation area based on the 
average daily e-grocery demand (heatmap). The 100 customer locations thus represent actual 
residential building positions. 

 

Figure 3. Considered investigation area including relevant locations and interpolated average demand. 

The initial case comprises 100 customers with an equally divided share of 50 home delivery and 
50 self-collection customers resulting in a ratio of 50% each. Customer locations are characterized by 
a distinct demand level for three product types (frozen, refrigerated, and dry products). For each 
customer, we define a demand between one and six bags (0–1 bag of frozen products; 0–2 bags of 
refrigerated products; 1–3 bags of dry products). This demand must be fulfilled and customers have 
to be served within individual time windows between 6 a.m. and 8 p.m. As usual in e-grocery 
delivery, the goods are packed in standardized transport cases such as boxes or bags. Hence, the 
capacity specifications of the transport vehicles, as well as the different locker sizes, are indicated as 
limit of storable bags. Regarding grocery locker concepts, there already exist several systems and 
suppliers of compartmentalized pickup points, such as emmasbox or BentoBox [39]. We assume three 
possible locker sizes with the associated operating costs: small (50 bags; 10 €/day), medium (100 bags; 
19 €/day) and large (150 bags; 27 €/day). The maximum distance between customer and locker 
locations is set to 1.25 km. Time windows for the planned delivery of grocery lockers are between 3 
a.m. and 6 a.m. A utilized ECB is expected to transport up to 20 bags per trip and causes average 
travel costs of 0.1 €/km. Further, each ECB tour must not exceed 30 km due to cooling chain 
requirements. As described above, travel times as well as driving distances between all relevant 
nodes (depot, grocery lockers, customers) are automatically generated considering actual traffic 
conditions by using the Google Distance Matrix API for both deliveries to grocery lockers by vans and 
deliveries to customers by ECB. For the van route distances and travel durations a query was made 
every full hour during the time window for the planned delivery of grocery lockers between 3 a.m. 
and 6 a.m. The average travel times for this period was then determined from the corresponding 
travel times. The same procedure was applied for the ECB routes in the corresponding timeframe 
from 6 a.m. to 8 p.m. with the travel mode of bicycling. A service time of 10 min per customer and a 
handling time for grocery storage of lockers and the loading of vans and ECBs of 15 s per bag is 
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applied. The vans for the grocery locker supply have a determined range of 300 km/day and cause 
average travel costs of 0.3 €/km. The benchmarks represent a selection of input variations calculated 
using the three described MILP, which are considered useful to explain the functionalities and 
interdependencies. 

The following benchmarks were calculated with the described parameter settings and the results 
are presented in the tables below. They show the output variables with a decisive effect on the costs 
and the network structure. The locker network and the corresponding costs result from the first 
optimization stage, the ECB distance with corresponding costs from the second, and the van distance 
as well as the corresponding costs result from the third optimization stage. The total costs result from 
the multi-echelon optimization as the sum of all consecutive stages. The benchmarks were calculated 
by implementing the developed multi-echelon approach into the modelling software GAMS (General 
Algebraic Modeling System) 24.5.6 using the solver IBM ILOG CPLEX 12.6.1 and a standard computer 
(Intel Core i5-6200U CPU 2.30 GHz, 8 GB RAM, Windows 10, 64-bit). 

First, we vary the ratio of home delivery and self-collection customers to demonstrate the 
resulting scale effects on the decision variables. Depending on the characteristics, a customer set of 
the same size is either more cost-intensive or more cost-effective to supply. The composition of 
customers in the following Table 4 varies between 100% home delivery combined with 0% self-
collection and vice versa. 

Table 4. Benchmark results for different ratios of home delivery and self-collection. 

Home 
del./Self-

Coll. 
(%) 

Number of Lockers Distance Costs 

Small 
(#) 

Medium 
(#) 

Large 
(#) 

∑ 
(#) 

ECB 
(km/day) 

Vans 
(km/day) 

Grocery 
Locker 
(€/day) 

ECB 
Travel. 
(€/day) 

Van 
Travel. 
(€/day) 

∑ 
(€/day

) 
100/0 4 4 0 8 111.8 212.65 116.00 11.18 63.79 190.98 
75/25 4 4 0 8 64.36 212.65 116.00 6.44 63.79 186.23 
50/50 4 4 0 8 38.81 212.65 116.00 3.88 63.79 183.68 
25/75 4 4 0 8 18.55 212.65 116.00 1.85 63.79 181.65 
0/100 4 4 0 8 0.00 212.65 116.00 0.00 63.79 179.79 

An increased customer share with a demand for home delivery influences the process of LMD. 
With a higher proportion of home delivery, deliveries are primarily made by the supplier. With a 
higher proportion of self-collection, the last mile is covered by the customers. Whereas home delivery 
causes LMD, self-collection does not require the necessary LMD by the e-grocery supplier. 
Accordingly, with a share of 100 customers with self-collection demand (100%), there is no ECB tour 
and no distance driven. Considering the scenario of rising home delivery demand starting from a 
demand of 0%, the number of ECB tours and mileage increase steadily. The changing ratio does not 
affect the locker network, or the van tours because self-collection customers generate the same 
capacity and transport needs at the grocery lockers as home delivery customers do. Although an 
increase in the proportion of customers with a home delivery demand has a significant effect on the 
ECB distance travelled, the impact on total costs is marginal. If the distance travelled by the ECB rises 
from 0 km/day (0% home delivery) to 111.82 km/day (100% home delivery), the total costs rise from 
179.79 €/day to 190.98 €/day by only 6.22%. With every increase of 25% points in the share of home 
delivery customers, the total costs increase on average by 1.5%. Starting from a 0% share of home 
delivery customers, the total ECB distance rises by an average of 27.95 km/day with each 25%-pts 
increase. The computing times solving the three model stages consecutively vary, depending on the 
preset optimization gap, the maximum computing time and the parameter setting. In our case, the 
first model stage (LRP) is almost instantly solved with a relative gap of 0%. The optimization of the 
second stage (VRPTW) was stopped after one hour and the solutions entail a relative gap of at least 
22%. The third stage (SP-VRPMPCTW) was stopped after one hour and relative gaps of at least 36% 
were the result.  

In addition, the parameter 𝛼 (maximum distance between a grocery locker and its assigned 
customers) is a crucial factor for the network generation of grocery lockers as already evidenced by 
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Iwan et al. [40] for parcel delivery services. Table 5 illustrates the resulting decision variable outputs 
for the applied 𝛼-values between 0.5 and 2.0 km. 

Table 5. Benchmark results for different distances from lockers to customers. 

Max. 
Distance 

(km) 

Number of Lockers Distance Costs 

Small 
(#) 

Medium 
(#) 

Large 
(#) 

∑ 
(#) 

ECB  
(km/day) 

Vans 
(km/day) 

Grocery 
Locker 
(€/day) 

ECB 
Travel. 
(€/day) 

Van 
Travel. 
(€/day) 

∑ 
(€/day) 

0.50 25 0 0 25 24.30 225.56 250.00 2.43 67.67 320.10 
0.75 19 0 0 19 32.55 223.87 190.00 3.26 67.17 260.42 
1.25 4 4 0 8 38.81 212.65 116.00 3.88 63.79 183.68 
1.75 2 0 3 5 43.82 209.89 101.00 4.38 62.97 168.35 
2.00 0 1 3 4 50.95 202.32 100.00 5.09 60.70 165.79 

The results show that distance restrictions with lower 𝛼 -values increase the number of 
established grocery lockers, the number of ECB tours and overall costs. With the lowest implied α-
value of 0.5 km, the total costs are 320.10 €/day with 25 opened lockers and resulting locker costs of 
250.00 €/day, demonstrating that the number of opened grocery lockers must be minimized from an 
economic perspective. On the other hand, the total distance travelled by ECBs is shortened by 
opening more grocery lockers, which contributes to a reduction of last mile traffic in urban areas. 
However, van distances rise when deploying additional lockers. When opening 25 grocery lockers 
(250.00 €/day, with 𝛼 = 0.5 km), only small ones are used. Establishing eight lockers (𝛼 = 1.25 km), a 
mixed setup of four small and four medium versions is optimal. With only four grocery lockers in 
total (𝛼  = 2.0 km), one medium and three large versions are recommended which are placed at 
centralized locations within the investigation area. The locker network and the total costs do not 
change above a certain α-value (here: 2.0 km), as in the underlying case all customers can be supplied 
within the radius of the set of minimally required lockers. Investigating the relative optimization 
gaps, the first model stage (LRP) is almost instantly solved with a relative gap of 0%. The gaps of the 
second stage depend on the number of established grocery lockers. With 25 locker locations (𝛼 = 
0.5km), the result is a relatively low gap of 27% because the number of customers per tour and locker 
is small as 50 home delivery customers are assigned to 25 grocery lockers. With rising maximum 
distance between customers and grocery lockers, increasing gaps are noticed due to higher 
complexity. In contrast, the gaps of the third stage are higher at lower α-values. Here, the problem 
complexity rises with a higher number of grocery lockers as there exist more potential routes 
compared to the cases with a high 𝛼. 

In addition to the presented benchmark calculations on different network structures of the 
proposed logistics concept, the results can be compared to a conventional delivery of online ordered 
groceries. In that case, the products are delivered directly from the depot to the customer locations 
using delivery vans. To ensure appropriate comparability with the presented benchmarks, the third 
model stage is used to calculate results for a conventional delivery. Instead of the opened grocery 
lockers, the vans visit the customer locations directly. Apart from the prevention of split deliveries, 
all other constraints and input parameters remain identical. The following Table 6 contrasts the 
economic and ecological effects of two scenarios of the proposed logistics concept with the effects of 
a conventional delivery. 
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Table 6. Comparison of new logistics concept with conventional e-grocery delivery. 

Scenario 
Conventional Delivery  

of Groceries 

New Logistics Concept  
(100% Home Delivery; 

0% Self-Collection; 𝜶 = 1.25 km) 

New Logistics Concept  
(50% Home Delivery; 
50% Self-Collection; 𝜶 = 2.0 km) 

Number  
of lockers 

small (#) 0 4 0 
medium (#) 0 4 1 
large (#) 0 0 3 
∑ (#) 0 8 4 

Travel distance 
ECB (km/day) 0 111.82 50.95 
Van (km/day) 293.27 212.65 202.32 

Local emissions (kgCO2/day) 56.31 40.83 38.85 
Space requirement (m2) 0 48 44 
Costs (€/day) 87.97 190.98 165.79 

Regarding the conventional home delivery, the supply of 100 customers causes a van travel 
distance of 293.27 km/day and total costs of 87.97 €/day. The local CO2 emissions of each scenario are 
calculated assuming an emission factor of 192 gCO2 per driven van kilometer. Compared to the 
conventional delivery, the following differences occur: the proposed logistics concept, with 100% 
home delivery, 0% self-collection, and α = 1.25 km, causes additional costs of 103.01 €/day (+117.1%), 
requires additional 48 m2 of space (four small grocery lockers with 4 m2 and four medium grocery 
lockers with 8 m2), but reduces the van distances by 80.62 km/day (−27.5%). The scenario with 50% 
home delivery, 50% self-collection, and 𝛼 = 2.0 km leads to additional costs of 77.82 €/day (+88.5%), 
requires 44 m2 more space (one medium grocery locker with 8 m2 and three large grocery lockers with 
12 m2), but reduces the travel distance of the vans by 90.95 km/day (−31.0%). As a result, the proposed 
logistics concept requires more space and leads to increased operating costs. Yet, the travel distances 
of the vans and the associated emissions can be significantly reduced. When assessing the travel 
distances and the resulting emissions, the self-collection customers’ mode of transport must be 
considered. 

5. Discussion, Contributions, and Limitations 

The proposed logistics concept contributes to enhanced sustainability in smart cities. The 
developed multi-echelon optimization approach enables efficient planning of the smart transport 
system. First, environmental sustainability is addressed. As illustrated by the comparison of the 
proposed logistics concept with the conventional delivery of online ordered groceries, negative LMD-
related externalities of urban road traffic and corresponding vehicle emissions can be reduced. The 
extent of emissions savings depends on the grocery locker network density, the distance from the 
depot to the city, and the transport mode of the customers picking up their ordered goods. Since no 
driving license is required, the use of ECBs enlarges the set of potential employees contributing to 
the social dimension of sustainability. In addition, the possibility of self-collection by customers can 
increase people’s awareness of eco-friendly goods transportation. By implementing a maximum 
distance between a grocery locker and its assigned customers, the density of the grocery locker 
network can be controlled, which is a decisive factor in customer acceptance as well as their mode of 
transport. 

With the proposed logistics concept, we address the identified research gap by Mkansi et al. [19] 
who recommend intermodal transportation and the integration of customers within the delivery 
processes to address the problems of road traffic, congestion, and potential legal fines. The developed 
MILP supports e-grocery retailers, parcel delivery services, and city authorities in finding 
appropriate solutions for the efficient and sustainable distribution of goods in urban areas. However, 
these stakeholders pursue different objectives. While city authorities usually prioritize the 
environmental and social dimensions of sustainability (e.g., minimizing the amount of harmful 
emissions and the number of road accidents), retailers and delivery services are efficiency-driven and 
need to minimize costs to achieve a profitable business [41]. By applying the proposed concept, 
alternative low-emission delivery vehicles and modern ICT are incorporated as a smart transport 
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system to counteract the described conflict of objectives. Further, city authorities can financially 
support retailers and delivery services by setting up special purpose areas to promote the use of 
pickup and transshipment points. 

Nevertheless, there are limitations and enhancement opportunities to be considered. The 
optimization approach is based on several assumptions to simplify real-world conditions. As 
companies are mainly profit-driven, minimizing costs constitutes the objective of the developed 
problem formulation. To focus even more on environmental sustainability, the routing can be 
executed regarding emission minimization [42]. Due to the high amount of decision variables and 
constraints, we choose a multi-echelon optimization approach to divide the planning process into 
sub-problems to reduce the overall complexity of the model. However, comparatively long 
computing times occur because LRP and VRP are nondeterministic polynomial-time (NP) hard 
combinatorial optimization problems [43]. To be practicable, results must be available within a few 
hours to enable the optimization of the next working days’ operation. The presented implementation 
can handle moderate problem sizes which are realistic for medium-sized cities concerning today’s e-
grocery share. To reduce high computing times and to enable the fast solution of large instances, a 
heuristic or metaheuristic approach should be implemented for the proposed multi-echelon 
optimization model. Beyond that, the model’s appropriate time horizon must be evaluated in detail. 
Depending on spatial demand fluctuations and varying demand levels, it must be examined whether 
it is preferable to change the actual grocery locker locations on a monthly, weekly, or even daily basis. 
Our approach to circumventing the problem of varying demand levels was to compute a daily 
average from a data series of one month. To resolve this issue in a more realistic manner, variable 
demands must be considered in future works. A possible way to incorporate variable demand levels 
in a model is shown by Musolino et al. [41]. Further, the optimization problem can become unfeasible 
in the different stages. For instance, the 𝛼-value can be set too low, so that one or more customers are 
located out of the potential locker locations’ range. Regarding the estimation of driving distances and 
travel times, alternative approaches could be chosen which do not base on the applied Google Distance 
Matrix API. As a potential extension, the user of the model could choose whether the average traffic 
situation at a certain time or the current traffic situation should be the basis for calculating the 
distances as well as the travel times between the given nodes. 

Further research on e-grocery distribution problems using a network of pickup points and 
electric vehicles must concentrate on location selection regarding economic aspects. Taking these into 
account, a sparse distribution network is suggested based on the operating costs of lockers as a 
decisive factor. On the other hand, a dense network is crucial for the customer acceptance regarding 
self-collection. For the parcel industry, the study of Iwan et al. [40] identifies locations close to 
customers’ homes and on their way to work as most favorable. Similarly, customer acceptance for 
the e-grocery sector must be investigated as well. In general, the applied parameter values in the 
computational study, especially the cost factors, must be assessed by an industry expert. To finally 
analyze its added value and downsides, the proposed logistics concept and the optimization 
approach should be validated in a field test. 

6. Conclusions and Outlook 

We develop and present a multi-echelon optimization model to give computer-assisted 
recommendations for optimal grocery locker positioning in urban areas as well as the corresponding 
transport vehicle deployment. On the one hand, refrigerated grocery lockers serve as pickup points 
for customers to collect their ordered goods. On the other hand, the lockers enable home deliveries 
by ECB as the last mile distances to customers are significantly reduced. With the proposed logistics 
concept, we address the research gap identified by Mkansi et al. [19] while further integrating social 
and environmental sustainability with the main objective of cost minimization. As a result, road 
traffic is avoided and emissions are decreased. The social dimension is addressed by giving 
customers the opportunity to participate in eco-friendly goods transportation. Further, the number 
of potential employees is increased. 
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With our approach, we address e-grocery retailers, parcel delivery services and city authorities 
who should implement more sustainable concepts for the urban last mile distribution. We provide 
benchmarks to evaluate the created MILP and to demonstrate its applicability. Results indicate that 
increasing the service level (decreasing the grocery locker radius) leads to higher costs, whereby the 
operation of grocery lockers as well as the touring of vans constitute the main cost elements. Future 
research must focus on a refinement of the underlying mathematical models and on the development 
or rather an adaptation of suitable heuristic framework in the discussed ways. We suggest a field test 
of the proposed logistics concept to ensure further validation. If the approach proves to be 
advantageous compared to present business practices, it should be fine-tuned and applied on a large 
scale. By integrating economic, social, and environmental aspects, the described logistics concept 
contributes to the city logistics domain and fosters society’s shift towards sustainable operating 
modes. 

Author Contributions: Conceptualization, M.L. and M.-O.S.; methodology, M.-O.S.; software, M.L. and M.-O.S.; 
validation, M.L., M.H. and M.-O.S.; formal analysis, M.L., M.H. and M.-O.S.; writing—original draft, M.L., 
M.-O.S. and M.H.; writing—review and editing, M.H.B.; visualization, M.L. and M.H.; supervision, M.H.B.; 
project administration, M.L. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Van Duin, R.; De Goffau, W.; Wiegmans, B.; Tavasszy, L.; Saes, M. Improving Home Delivery Efficiency by 
Using Principles of Address Intelligence for B2C Deliveries. Transp. Res. Procedia 2016, 12, 14–25, 
doi:10.1016/j.trpro.2016.02.006. 

2. European Commission. White Paper on Transport - Roadmap to a Single European Transport Area - 
Towards a Competitive and Resource-Efficient Transport System; Publications Office of the European 
Union: Luxemburg, Luxemburg, 2011. Available online: https://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:52011DC0144&from=EN (accessed 15 March 2020) 

3. Leading Global Online Grocery Markets to Create a $227bn Growth Opportunity by 2023. Available online: 
https://www.igd.com/about-us/media/press-releases/press-release/t/leading-global-online-grocery-
markets-to-create-a-227bn-growth-opportunity-by-2023/i/20396 (assessed 18 March 2020). 

4. Dedrick, J. Green IS: Concepts and Issues for Information Systems Research. Commun. Assoc. Inf. Syst. 2010, 
27, 173–184, doi:10.17705/1CAIS.02711. 

5. Lombardi, P.; Giordano, S.; Farouh, H.; Yousef, W. Modelling the Smart City Performance. Innov. Eur. J. 
Soc. Sci. Res. 2012, 25(2), 137–149, doi:10.1080/13511610.2012.660325. 

6. UPS Launches Sustainable Deliveries in Frankfurt. Available online: 
https://pressroom.ups.com/pressroom/ContentDetailsViewer.page?ConceptType=PressReleases&id=1511
885876172-705 (accessed 18 March 2020). 

7. Hübner, A.; Kuhn, H.; Wollenburg, J. Last Mile Fulfilment and Distribution in Omni-Channel Grocery 
Retailing: A Strategic Planning Framework. Int. J. Retail Distrib. Manag. 2016, 44(3), 228–247, 
doi:10.1108/IJRDM-11-2014-0154. 

8. Savelsberg, M.; Van Woensel, T. 50th Anniversary Invited Article—City Logistics: Challenges and 
Opportunities. Transp. Sci. 2016, 50(2), 579–590, doi:10.1287/trsc.2016.0675. 

9. Taniguchi, E.; Thompson, R.G.; Yamada, T.; van Duin, R. City Logistics: Network Modelling and Intelligent 
Transport Systems; Pergamon: Oxford Great Britain, 2001. 

10. Khatoun, R.; Zeadally, S. Smart Cities: Concepts, Architectures, Research Opportunities. Commun. Acm 
2016, 59(8), 46–57, doi:10.1145/2858789. 

11. Albino, V.; Berardi, U.; Dangelico, R.M. Smart Cities: Definitions, Dimensions, Performance, and Initiatives. 
J. Urban Technol. 2015, 22(1), 3–21, doi:10.1080/10630732.2014.942092. 

12. Rehm, S.; Faber, A.; Goel, L. Visualizing Platform Hubs of Smart City Mobility Business Ecosystems. 
Proceedings of the 38th International Conference on Information Systems, Seoul, South Korea, 10–13 
October 2017. 



Smart Cities 2020, 3, 31 602  

13. Ahvenniemi, H.; Huovila, A.; Pinto-Seppä, I.; Airaksinen, M. What are the Differences Between Sustainable 
and Smart Cities? Cities 2017, 60, 234–245, doi:10.1016/j.cities.2016.09.009. 

14. Wollenburg, J.; Hübner, A.; Kuhn, H.; Trautrims, A. From Bricks-and-Mortar to Bricks-and-Clicks: 
Logistics Networks in Omni-Channel Grocery Retailing. Int. J. Retail Distrib. Manag. 2018, 48(4), 415–438, 
doi:10.1108/IJPDLM-10-2016-0290. 

15. Gevaers, R.; Van de Voorde, E.; Vanelslander, T. Characteristics of Innovations in Last-Mile Logistics - 
Using Best Practices, Case Studies and Making the Link with Green and Sustainable Logistics. Proceedings 
of the European Transport Conference, Leiden, Netherlands, 5–7.October.2009. 

16. Van Audenhove, F.-J.; De Jongh, S.; Durance, M. Urban Logistics: How to Unlock Value from Last Mile Delivery 
for Cities, Transporters and Retailers; Arthur, D. Little: Brussels, Belgium, 2015. Available online: 
https://www.adlittle.com/sites/default/files/viewpoints/ADL_Urban_Logistics.pdf (accessed 8 March 
2020) 

17. Seidel, S.; Mareï, N.; Blanquart, C. Innovations in E-Grocery and Logistics Solutions for Cities. Transp. Res. 
Procedia 2016, 12, 825–835, doi:10.1016/j.trpro.2016.02.035. 

18. Martín, J.C.; Pagliara, F.; Román, C. The Research Topics on E-Grocery: Trends and Existing Gaps. 
Sustainability 2019, 11(2), 1–15, doi:10.3390/su11020321. 

19. Mkansi, M.; Eresia-Eke, C.; Emmanuel-Ebikake, O. E-Grocery Challenges and Remedies: Global Market 
Leaders Perspective. Cogent Bus. Manag. 2018, 5, 1–28, doi:10.1080/23311975.2018.1459338. 

20. Holzapfel, A.; Hübner, A.; Kuhn, H.; Sternbeck, M.G. Delivery Pattern and Transportation Planning in 
Grocery Retailing. Eur. J. Oper. Res. 2016, 252(1), 54–68, doi:10.1016/j.ejor.2015.12.036. 

21. Fedoseeva, S.; Herrmann, R.; Nickolaus, K. Was the Economics of Information Approach Wrong all the 
Way? Evidence from German Grocery R(E)tailing. J. Bus. Res. 2017, 80, 63–72, 
doi:10.1016/j.jbusres.2017.07.006. 

22. Seitz, C.; Pokrivčák, J.; Tóth, M.; Plevný, M. Online Grocery Retailing in Germany: An Explorative Analysis. 
J. Bus. Econ. Manag. 2017, 18(6), 1243–1263, doi:10.3846/16111699.2017.1410218. 

23. Fikar, C. A Decision Support System to Investigate Food Losses in E-Grocery Deliveries. Comput. Ind. Eng. 
2018, 117, 282–290, doi:10.1016/j.cie.2018.02.014. 

24. Waitz, M.; Mild, A.; Fikar, C. A Decision Support System for Efficient Last-Mile Distribution of Fresh Fruits 
and Vegetables as Part of E-Grocery Operations. Proceedings of the 51st Hawaii International Conference 
on System Sciences, Maui, USA, 3–6.01.2018. 

25. Amorim, P.; Almada-Lobo, B. The Impact of Food Perishability Issues in the Vehicle Routing Problem. 
Comput. Ind. Eng. 2014, 67, 223–233, doi:10.1016/j.cie.2013.11.006. 

26. Hsu, C.-I.; Chen, W.T. Optimizing Fleet Size and Delivery Scheduling for Multi-Temperature Food 
Distribution. Appl. Math. Model. 2014, 38(3), 1077–1091, doi:10.1016/j.apm.2013.07.036. 

27. Emeç, U.; Çatay, B.; Bozkaya, B. An Adaptive Large Neighborhood Search for an E-Grocery Delivery 
Routing Problem. Comput. Ind. Eng. 2016, 69, 109–125, doi:10.1016/j.cor.2015.11.008. 

28. Leyerer, M.; Sonneberg, M.-O.; Breitner, M.H. Decision Support for Urban E-Grocery Operations. 
Proceedings of the 24th Americas Conference on Information Systems, New Orleans, USA, 16–18.08.2018. 

29. Eksioglu, B.; Vural, A.V.; Reisman, A. The Vehicle Routing Problem. A Taxonomic Review. Comput. Ind. 
Eng. 2009, 5(4), 1472–1483, doi:10.1016/j.cie.2009.05.009. 

30. Hemmelmayr, V.C.; Cordeau, J.-F.; Crainic, T.G. An Adaptive Large Neighborhood Search Heuristic for 
Two-Echelon Vehicle Routing Problems Arising in City Logistics. Comput. Oper. Res. 2012, 39(12), 3215–
3228, doi:10.1016/j.cor.2012.04.007. 

31. Liu, R.; Tao, Y.; Hu, Q.; Xie, X. Simulation-based Optimisation Approach for the Stochastic Two-echelon 
Logistics Problem. Int. J. Prod. Res. 2017, 55(1), 187–201, doi:10.1080/00207543.2016.1201221. 

32. Zhou, L.; Baldacci, R.; Vigo, D.; Wang, X. A Multi-depot Two-echelon Vehicle Routing Problem with 
Delivery Options Arising in the Last Mile Distribution. Eur. J. Oper. Res. 2018, 265(2), 765–778, 
doi:10.1016/j.ejor.2017.08.011. 

33. Enthoven, D.L.J.U.; Jargalsaikhan, B.; Roodbergen, K.J.; uit het Broek, A.J.M.; Schrotenboer, A.H. The Two-
Echelon Vehicle Routing Problem with Covering Options: City Logistics with Cargo Bikes and Parcel 
Lockers. Comput. Oper. Res. 2020, 104919, doi:10.1016/j.cor.2020.104919. 

34. Papadimitriou, D.; Colle, D.; Demeester, P. Mixed Integer Optimization for the Combined Capacitated 
Facility Location-Routing Problem. Ann. Telecommun. 2018, 73(1–2), 37–62, doi:10.1007/s12243-017-0620-5. 



Smart Cities 2020, 3, 31 603  

35. Perl, J.; Daskin, M.S. A Warehouse Location-Routing Problem. Transp. Res. Part B Methodol. 1985, 19(5), 381–
396, doi:10.1016/0191-2615(85)90052-9. 

36. El Fallahi, A.; Prins, C.; Wolfler Calvo, R. A Memetic Algorithm and a Tabu Search for the Multi-
Compartment Vehicle Routing Problem. Comput. Oper. Res. 2018, 35(5), 1725–1741, 
doi:10.1016/j.cor.2006.10.006. 

37. Archetti, C.; Savelsbergh, M.V.P.; Speranza, M.G. Worst-Case Analysis for Split Delivery Vehicle Routing 
Problems. Transp. Sci. 2014, 40, 226–234, doi:10.1287/trsc.1050.0117. 

38. Salhi, S.; Rand, G. The Effect of Ignoring Routes when Locating Depots. Eur. J. Oper. Res. 1989, 39(2), 150–
156, doi:10.1016/0377-2217(89)90188-4. 

39. Dell’Amico, M.; Deloof, W.; Hadjidimitriou, N.S.; Vernet, G.; Schoenewolf, W. CityLog – Sustainability and 
Efficiency of City Logistics: The M-BBX (Modular BentoBox System). Proceedings of the IEEE Forum on 
Integrated and Sustainable Transportation Systems, Vienna, Austria, 29 June –1 July2011. 

40. Iwan, S.; Kijewska, K.; Lemke, J. Analysis of Parcel Lockers’ Efficiency as the Last Mile Delivery Solution – 
The Results of the Research in Poland. Transp. Res. Procedia 2016, 12, 644–655, 
doi:10.1016/j.trpro.2016.02.018. 

41. Musolino, G.; Rindone, C.; Polimeni, A.; Vitetta, A. Planning Urban Distribution Center Location with 
Variable Restocking Demand Scenarios: General Methodology and Testing in a Medium-size Town. Transp. 
Pol. 2019, 80, 157–166, doi:10.1016/j.tranpol.2018.04.006. 

42. Figliozzi, M. Vehicle Routing Problem for Emissions Minimization. Transp. Res. Rec. 2010, 2197, 1–7, 
doi:10.3141/2197-01. 

43. Prodhon, C.; Prins, C. A Survey of Recent Research on Location-Routing Problems. Eur. J. Oper. Res. 2014, 
238(1), 1–17, doi:10.1016/j.ejor.2014.01.005. 
 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


