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Abstract

This study presents a method for deriving closed-form solutions for Lagrange multipliers
in worst-case performance optimization (WCPO) beamforming. By approximating the
array-received signal autocorrelation matrix as a rank-1 Hermitian matrix using the low-
rank approximation theory, analytical expressions for the Lagrange multipliers are derived.
The method was first developed for a single plane wave scenario and then generalized to
multiplane wave cases with an autocorrelation matrix rank of N. Simulations demonstrate
that the proposed Lagrange multiplier formula exhibits a performance comparable to that
of the second-order cone programming (SOCP) method in terms of signal-to-interference-
plus-noise ratio (SINR) and direction-of-arrival (DOA) estimation accuracy, while offering a
significant reduction in computational complexity. The proposed method requires three or-
ders of magnitude less computation time than the SOCP and has a computational efficiency
similar to that of the diagonal loading (DL) technique, outperforming DL in SINR and DOA
estimations. Fourier amplitude spectrum analysis revealed that the beamforming filters
obtained using the proposed method and the SOCP shared frequency distribution struc-
tures similar to the ideal optimal beamformer (MVDR), whereas the DL method exhibited
distinct characteristics. The proposed analytical expressions for the Lagrange multipliers
provide a valuable tool for implementing robust and real-time adaptive beamforming for
practical applications.

Keywords: array signal processing; robust adaptive beamforming; worst case performance
optimization; Lagrange multiplier

1. Introduction
Adaptive beamforming technology has been widely applied in radar, sonar, wire-

less communication, acoustic signal processing, medical imaging, and radio astronomy.
Minimum-variance distortionless response (MVDR) beamforming can achieve optimal
performance by maximizing the signal-to-interference plus-noise ratio (SINR) under ideal
conditions. However, in practical applications, the beamforming performance is signifi-
cantly degraded by various factors, such as array element placement errors, direction-of-
arrival (DOA) estimation errors, mutual coupling of array elements, gain and phase errors
of array sensors, and perturbations in array element positions [1–6]. Over the past three
decades, numerous robust and adaptive beamforming algorithms have been developed for
various applications. Numerous researchers classify these factors into an uncertainty set of
steering vectors and an autocorrelation matrix [7–15]. One of the key research directions
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is the optimization of worst-case performance beamforming, whose mathematical model
is a quadratic programming problem with constraints [1,7–10]. The Lagrange multiplier
method is one approach for solving this problem [11–15]. However, no closed-form solution
is provided for the Lagrange multiplier in this case [11–15]. Reference [12] provides a lower
bound for the Lagrange multiplier λ and uses numerical methods to iteratively determine
an approximate solution to this problem. Owing to the lack of a closed-form solution for
the Lagrange multiplier λ, the second-order conic programming (SOCP) method has been
used to numerically solve the optimization problem [11–13,15]. As numerical iterative
methods require large computing resources and more computing time, it is difficult to
satisfy the requirements of online real-time processing scenarios.

Reference [14] explored the robust Capon beamforming guidance vector estimation
problem and provided an expression for the Lagrange multiplier of the guidance vector.
However, an analysis formula for the Lagrange multiplier for the worst-case performance
optimization has not yet been reported. To date, the solution to the Lagrange multiplier for
the worst-case performance optimization requires time iterations or recursion methods be-
cause there is no analysis formula. Because robust adaptive beamforming works online, it is
necessary to search for a formula for a Lagrange multiplier. This was the motivation for this
study. This study begins by modelling the problem using a planar-wave irradiation array.
Using low-rank approximation theory, the array received signal autocorrelation matrix was
approximated as a rank-1 Hermitian matrix, which allowed the derivation of the analytical
expression for the Lagrange multiplier using matrix inversion formulas. We obtained a
closed formula for the Lagrange multiplier, although it has some limitations. We further
develop a more general closed formula for multiplanewave signals. Computer simulations
demonstrated that these formulas are suitable for optimizing worst-case beamforming in
general scenarios and exhibit excellent performance similar to that of SOCP.

The remainder of this paper is organized as follows: Section 2 describes the worst-case
performance optimization (WCPO) model. In Section 3, we study a single signal impinging
on a sensor array scenario to obtain the Lagrange multiplier solution formula, and then
generalize this method to a multi-signal scenario to obtain the Lagrange multiplier solution
formula in the form of an implicit function. The simulation and analysis of the proposed
Lagrange multiplier solving formula are presented in Section 4. Section 5 deals with
the discussion of the theoretical approximation and simulation results. Finally, Section 6
concludes the study.

Notation: Boldface in lower case letters represent vectors, and boldface in uppercase
letters represent matrices. The notations (·)T and (·)H represent the transpose and conjugate
transpose operators, respectively. tr(·) denotes the trace of a matrix. DL and LSMI are used
interchangeably, as are OPT and MVDR.

2. Mathematical Model of the Problem and Current Results
Let the uniform linear observation array contain N sensor elements with an interval

distance of half the wavelength λ. The desired signal is a narrowband signal in the far field
with an incident angle θ, and the signal received by the array can be expressed as [9,10,15]

x(k) = s(k) + i(k) + n(k), k = 1, 2, . . . (1)

where s(k), i(k), and n(k) denote the desired, interference, and noise signals, respectively.
The noise was assumed to have a white Gaussian distribution with a zero mean and
variance of σ2 = 1. The steering vectors of signals are

a(θi) = [1, exp(−j2π( f0/c)d sin(θi), . . . , exp(−j2π( f0/c)(N − 1)d sin(θi)]
T , i = 1, 2, . . . , I. (2)
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where θi denotes the desired and interference signal, I denotes signal number and f 0 and c
denote the signal frequency and wave velocity, respectively. The design goal of the WCPO
method is to ensure that all steering vectors of the desired signal remain undamped, while
achieving maximum suppression of interference and noise through adaptive beamforming.
The mathematical model is expressed as follows [9,10]:

min
w

wHRw

s.t.
∣∣wH(a + e)

∣∣ ≥ 1, ∀∥e∥ ≤ ε
(3)

where R = 1/M∑M
k=1 x(k)xH(k). M denotes the number of snapshots, w denotes a weight

vector, and a, e, and ε represent the steering vector of the expected signal, the error vector
between the steering vector of the expected signal and that of the received signal, and
upper bound of the 2-norm of the above error, respectively. Equation (3) is a nonlinear,
nonconvex set optimization problem. In [5], the constraint of (3), by contradiction, can be
changed to

∥∥wHa − 1
∥∥2

2 = ε2wHw, which can be further expanded as [11,12]

wH(ε2 I − aaH)w + 2aHw − 1 = 0 (4)

Therefore, the original problem (3) is equivalent to the following convex optimization
problem.

min
w

wHRw s.t.wH(ε2 I − aaH)w + 2aHw − 1 = 0 (5)

The beamforming vector derived from the unconstrained condition of the Lagrange
function is presented in [11] as shown as

w = λ(R + λε2I)
−1

a/(λaH(R + λε2I)
−1

a − 1) (6)

Equation (6) is a function of the Lagrange multiplier, that is, w = w(λ); thus, it is not
the final solution to Equation (3).

To date, most solutions to the worst-case performance optimization formula (3) have
been based on (6) with numerical iterations of λ, and no closed form of the Lagrange
multiplier for this type of problem has been reported yet.

3. Derivation of the Closed Formula for Lagrange Multiplier λ

Theorem 1. Let R ∈ C N×N with rank(R) = N, I be an N-order unit matrix, a be a steering vector,
and ε and λ are real numbers that are not equal to zero, there exists

λ2ε2aH(R + λε2I)
−2

a − 1 = 0 (7)

Proof. Substituting (6) into the constraint equation wH(ε2I − aaH)w + 2wHa − 1 = 0 and
noting that (R + λε2I) is a Hermitian matrix, we obtain

λ2 aH(R + λε2I
)−1(

ε2I − aaH)(R + λε2I
)−1a[

λaH(R + λε2I)−1a − 1
]2 +

2λaH(R + λε2I
)−1a

λaH(R + λε2I)−1a − 1
− 1 = 0 (8)

λ2aH(R + λε2I)−1
(ε2I − aaH)(R + λε2I)−1a + 2λaH(R + λε2I)−1a[λaH(R + λε2I)−1a − 1]

−λ2aH(R + λε2I)−1aaH(R + λε2I)−1a + 2λaH(R + λε2I)−1a − 1 = 0
(9)

Formula (9) is simplified and organized to obtain λ2ε2aH(R + λε2I)−2a − 1 = 0. □
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3.1. One Plane Wave Irradiation

Following the method described in [16] (Chapter 6), we first considered the simplest
scenario with N sensors uniformly distributed with single-plane wave irradiation, and
then the multiplane wave irradiation. In this case, the autocorrelation matrix of the array
receiving signals is a full-rank N-dimensional nonnegative matrix R = 1/M∑M

k=1 x(k)xH(k)
and M represents the number of snapshots. It was assumed that a strong one-plane wave
was irradiated with a small amount of noise. There is only one large eigenvalue of the
signal and the N-1 small eigenvalue generated by white noise, which can be approximated
as a rank-1 Hermitian matrix Rx1 that consists of the eigenvector of the signal because Rx1

is a rank-1 Hermitian matrix in CN×N, there exists a complex vector q ∈ CN, such that
R = qqH.

Lemma 1. Let A∈ CN×N be invertible, b∈ CN×1, c∈ CN×1, and d∈ C. Then

(A + dbcH)
−1

= A−1 − d
1 + dcHA−1b

A−1(bcH)A−1 (10)

Proof. The proof is based on the Sherman-Morrison-Woodbury inverse formula. □

Theorem 2. Let R∈ CN×N with rank(R) = 1, and I be an N-order unit matrix, and ε and λ be real
numbers that are not equal to zero, there exists

(R + λε2I)
−1

= λ−1ε−2I − λ−2ε−4R/(1 + λ−1ε−2tr(R)) (11)

Proof. Let R = qqH because rank(R) = 1. In (11), we denote A = λε2I, d = 1, b = q, and
c = q; then, using Lemma 1, we obtain (11). □

Applying Theorem 2 yields the following formula

(R + λε2I)
−2

= (λε2)
−2

I − 2
(λε2)

−3R

1 + (λε2)−1tr(R)
+

(λε2)
−4R2

(1 + (λε2)−1tr(R))
2 (12)

Substituting (12) into (7) yields

ε2aHa − 2
λ−1ε−4aHRa

1 + λ−1ε−2tr(R)
+

λ−2ε−6aHR2a

[1 + λ−1ε−2tr(R)]
2 = 1 (13)

Reorganizing the expressions yields

ε4
(

aHa − ε2
)
+ 2

[
ε2tr(R)aHa − ε2aHRa − ε4tr(R)

]
λ+R2a + tr2(R)

(
aHa − ε2

)
− 2tr(R)aHRa = 0 (14)

Equation (14) is a quadratic equation with respect to Lagrange multiplier λ, which is
abbreviated as

f (λ) = Aλ2 + 2Bλ+ C = 0 (15)

The root of (15) is the solution of the Lagrange multiplier in (14), as shown in (16):

λ1,2 =
−B ±

√
B2 − AC

A
(16)

The condition for the existence of a real root is ∆ = B2 − AC ≥ 0, where
A = ε4(aHa − ε2), B = ε2(aHa − ε2)tr(R)− ε2aHRa,

C = (aHa − ε2)(tr(R))2 + aHR2a − 2tr(R)aHRa.
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3.2. Multiplane Wave Irradiation

Lemma 2. Let B∈ CN×N be invertible and I∈ CN×N be identity matrix, there exists

(I + B)−1 = I − B(I + B)−1 (17)

Proof. The two sides of (17) multiplied by the (I + B) become true. □

Rewrite (7) into (18) as follows

aH(I + λ−1ε−2R)
−2

a − ε2 = 0 (18)

Application of Lemma 2 to (18) produces

ε4[aHa − ε2]λ2 − 2ε2aHR(I + λ−1ε−2R)
−1

aλ + aHR2(I + λ−1ε−2R)
−2

a = 0 (19)

It can be is abbreviated as

A1λ2 + 2B1λ + C1 = 0 (20)

where A1 = ε4[aHa − ε2], B1 = −ε2aHR(I + λ−1ε−2R)
−1a, C1 = aHR2(I + λ−1ε−2R)

−2a.
We have

λ1,2 =
−B1 ±

√
B2

1 − A1C1

A1
(21)

Note that aHa = N. C1 is positive and B1 is negative because R is a Hermitian
matrix and is not negative-definite. In addition, it was proven that B2

1 − A1C1 ≥ 0 because

R(I + λ−1ε−2R)
−1 is semi-positive. According to the Vedah theorem, A1 must have the

opposite sign as B1, such that λ > 0. A1 > 0 means that ε2 < N.
Although (21) is suitable for multi-signal scenes, it is not applicable because its solution

is recursive. In Section 4, we present our results using Equations (16) and (21), respectively.
For computational simplicity, (16) was used, and the results were compared with those of
the other three methods (DL, SOCP, and ideal MVDR) using simulations. In addition, we
compared the results of (16) and (21).

The results are summarized below.

Theorem 3. Let a(θ) be the assumed steering vector for receiving the desired signal, and the
actual steering vector of receiving the signal be c = a + e , ∥e∥2 = ∥c − a(θ)∥2 ≤ ε2, ε2 > 0
and the autocorrelation matrix of the received signal R = 1/M∑M

k=1 x(k)xH(k), then worst-
case performance optimization problem of min

w
wHRw subject to |w(a+e)| ≥ 1, ∀∥e∥ ≤ ε has

the optimal solution as in the form of w = λ(R + λε2I)−1a/(λaH(R + λε2I)−1a − 1) with
λ1,2 = (−B ±

√
B2 − AC)/A.

In summary, we can calculate the Lagrange multiplier if the upper bound of the
uncertain set ε is given, with other physical quantities determined by the incoming wave
signal parameters and array manifold.

To validate the practical applicability of the derived analytical expressions for Lagrange
multipliers, a series of computer simulations are presented in the following section. These
simulations compare the performance of the proposed method with those of existing
beamforming techniques, highlighting its computational efficiency and robustness.
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4. Computer Simulations
To verify the proposed Lagrange multiplier method, Monte Carlo experiments were

conducted by comparing it with SOCP, diagonal loading (DL), and the ideal condition
with no expected signal in R, which is the received-signal correlation matrix. The results
show that the proposed method matches SOCP in signal-to-noise ratio performance while
significantly reducing computation time, and outperforms the diagonal loading method
despite comparable computation times.

The experimental design was as follows: The basic assumption of the sensor array
is that it is a uniform linear array (ULA) comprising multiple sensors, with each sensor
spaced at half the wavelength. Two interference-plane waves were irradiated onto the array
from different directions. The expected signal was irradiated on the array at an angle of 8◦,
and the actual signal was irradiated at a random angle with incident angles following a
uniform distribution in the interval section [6◦, 10◦]. The reference direction angle was a
normal vector relative to the array line. The interference-to-noise ratio (INR) of the array
was assumed to be 30 dB, and zero-mean unit variance Gaussian white noise was added
to each simulation. The SNR at the end of the input was set to −20, −15, −10, 0, 5, 10, 15,
and 20 dB. The performance criterion for the comparison was the maximum SINR of the
beamforming output. These criteria were used to compare four algorithms: the proposed
Lagrange multiplier method, SOCP algorithm [5], diagonal loading algorithm (LSMI) [2],
and OPT algorithm (MVDR). However, the correlation matrix does not contain such signals.
To ensure a fair comparison, the uncertainty set boundaries in the Lagrange multiplier
method and SOCP algorithm were set to the same size ε = 3.5 [11]. In the LSMI beamformer,
the diagonal loading factor was set to ten times the noise power. The covariance matrix is
estimated using 100 snapshots. Unless otherwise specified, parameter values were used for
each run. A total of 100 Monte Carlo simulations were conducted.

4.1. Anti-Interference Performance and Estimation for Expected Signal

• Anti-interference performance. In this scenario, the expected signal direction was
set to 8◦, whereas the actual incoming wave signal direction randomly obeyed
θ = 8◦ + (rand (.) − 0.5) 4◦. Figure 1 shows that the output SINR varies with the input
SNR. Figure 2 shows the directional gain with respect to the spatial angles. Four
methods were used with arrays of 16 and 32 sensors for the simulations.

 
(a) sensor number = 16 (b) sensor number = 32 

Figure 1. Relationship between output SINR of array and input SNR when the uncertain set radius
was 3.5. The figure was produced using Equation (16).
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As shown in Figure 1a,b, due to the adoption of the WCPO technology, the Lagrange
multiplier and SOCP methods exhibit the same performance, both outperforming the
diagonal loading method. When the number of array sensors increased, the performance
of the diagonal loading method deteriorated with an increase in the input SNR.

• DOA estimation of the expected signal. As shown in Figure 2a,b, the diagonal loading
method has a significantly lower capability for identifying the direction of the incoming
waves than the Lagrange multiplier and SOCP methods. The latter two methods
exhibited nearly identical performances, with a relatively higher gain at 8◦ than at the
other angles. By comparing Figure 2a,b, this phenomenon becomes more pronounced
as the number of sensors increases. This indicates that the two methods using the
WCPO have strong capabilities for resolving the direction of incoming waves.

 
(a) sensor number = 16 (b) sensor number = 32 
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Figure 2. Array angular resolutions of different methods when the uncertain radius is 3.5.

• Comparison of the performance of Equations (16) and (21). To verify the effectiveness
of (16), we perform a simulation using (21) with the same signals and array manifolds
as those used in (16). The simulation results are shown in Figure 3a,b. By comparing
Figures 1a and 3a with Figures 1b and 3b, respectively, they had the same performance
characteristics. In particular, Equation (16) can approximately substitute Equation (21)
for the design of robust adaptive beamforming.

 
(a) sensor number = 16 (b) sensor number = 32 

Figure 3. Relationship between output SINR of array and input SNR when the uncertain set radius
was 3.5. Figure 3a,b was produced using Equation (21) in iteration.
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4.2. Computation-Complexity Analysis

In this subsection, we first perform a computational complexity analysis, and then
conduct a simulation for testing.

Theoretical computational complexities of the three algorithms are as follows:

(1) SOCP employs an interior-point approach with a computational complexity of ap-
proximately O(ln(1/δ)

√
vN3) [17]. The convergence control parameter δ = 10−8. The

parameter v denotes the number of independent variables in the constraints, which is
equal to the number of array elements N in this study. Therefore, the computational
complexity is O(18N3.5).

(2) The computational complexity of the proposed formula was determined using A,
B, and C. The computational complexity of tr(R) is O(N3), and that of aHR2a is
O(2N2 + N). Therefore, the computational loads for B, C, and A are O(2N3 + N2),
O(N3 + 2N2 + N) and O(N), respectively. The complexity of this formula is known
as O(3N3 + 5N2 + N) = O(3N3).

(3) The computational load of LSMI is O(N3) + O(N2) + O(N) = O(N3).

Therefore, the computation complexity of the SOCP is much greater than that of (16)
while the complexity of (16) is three times that of the LSMI. Table 1 presents a numerical
example.

Table 1. Computational complexity comparison of SOCP, LSMI, and Equation (16).

Algorithm Sensor Num. = 16 Sensor Num. = 32 Sensor Num. = 64

Operators/SOCP
Operators/LSMI
Operators/Proposed formula

1. 294,912
2. 4096
3. 13,584

4. 3,336,549
5. 32,768
6. 103,456

7. 37,748,736
8. 262,144
9. 806,976

The simulation is time-consuming. Computer CPU time was used as the standard for
comparing the algorithms. The hardware used for the simulations was a personal computer
with i7-11700 @ 2.50 GHz, 2496 MHz, eight cores, 16 logical processors, and Windows 10.
The algorithms were programmed using MATLAB v2014b, and the SOCP algorithm was
implemented using CVX 2014 in MATLAB. The computation times of the three algorithms
are listed in Table 2. Table 2 indicates that the implementation of the Lagrange multiplier
method for the WCPO and the diagonal loading method has a computation time of the
same order of magnitude; however, the second-order cone method for the WCPO is more
than three orders of magnitude slower than the Lagrange multiplier method.

Table 2. Computer time for various algorithms with different numbers of sensors.

Algorithms SOCP/s LSMI/s Lagrange Multiplier/s

16 sensors 165.09375 0.01563 0.14063
32 sensors 323.03125 0.51563 0.20313
48 sensors 325.10938 0.25000 1.07813
64 sensors 1233.79688 1.48438 1.59375

As shown above, both the Lagrange multiplier multiplexer and SOCP offer significant
advantages in optimizing the WCPO problem for SINR and DOA estimation. However, the
diagonal loading technology performed worse than the other two methods in optimizing
the WCPO performance, particularly in the DOA estimation. In terms of computational
efficiency, the Lagrange multiplier and DL methods have comparable computation times,
which are significantly shorter than those required by SOCP.

Note that differences in the implementation details of these algorithms, such as opti-
mization algorithms and hardware capabilities, can influence their results, although the
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proposed method demonstrates a significant reduction in computational time compared
with the SOCP method. Future studies should aim to standardize these factors for a
fair comparison.

4.3. Feature Analysis and Comparison of Beamformers

To study the characteristic differences between the three algorithms for addressing
the WCPO problem, this section uses the signal spectrum analysis method to study the
amplitude spectrum structures of the three beamformers. The Fourier transforms of the
weight vectors associated with the four beamformers are shown in Figure 4.

Figure 4. FFT feature of the beamforming weight of Lagrange multiplier, SOCP, OPT and LSMI.

As shown in Figure 4, the Fourier amplitude spectra of the beamforming filters ob-
tained by the Lagrange multiplier and SOCP methods have the same frequency distribution
structure as that of the ideal OPT method, and the Fourier amplitude spectrum of the LSMI
(DL) is different.

5. Discussion
In previous sections, we investigated robust adaptive beamforming for WCPO sce-

narios by studying the Lagrange multiplier closure formula. Assuming a high-SNR single-
plane wave incident array, we derive the Lagrange multiplier closure formula in (16).
Subsequently, under the assumption of multiple plane-wave irradiation arrays, we formu-
lated the general Lagrange solution Formula (21) for practical applications. Although the
Lagrange solution Formula (21) for multiplane waves aligns with real-world scenarios, it
requires iterative solving as a function of λ. The single-plane wave Formula (16), derived
through a low-rank approximation, demonstrates lower computational complexity than
the interior point-based SOCP algorithms. Computer simulations revealed that Formula
(16) achieves a performance comparable to that of SCOP algorithms while requiring sig-
nificantly less computation. The simulation results indicate that Equations (16) and (21)
exhibit a similar SINR performance. This demonstrates that Equation (16) can replace Equa-
tion (21) under specific engineering approximations, thereby reducing the computational
demands. Note that the simulation of the solution-seeking problems was conducted on
a personal computer using MATLAB 2014, which may introduce limitations related to
computational and software resources. This issue requires further theoretical analyses and
parallel algorithm validation through simulations.
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6. Conclusions
This study addresses the optimization of the performance in the worst-case scenario

for far-field narrowband signals illuminating a uniform linear array. Starting with a single
plane wave, this study uses low-rank approximation theory to approximate the correlation
matrix of multiple fast snapshots as a rank-1 Hermitian matrix, which can be decomposed
into the outer product of two vectors. This approach provides a closed-form solution for
Lagrange multipliers for studying robust beamforming in the WCPO problem. In practical
scenarios, multiple plane-wave signals (including interference) are observed. We expanded
the closed-form formula to (21), which is suitable for the application conditions, except
for the limitation of implicit functions. In the simulations, one expected signal and two
interference signals were used to test and verify the closed-form solutions with 16 and
32 sensors, respectively. Computer simulations have shown that the results derived from
this assumption can be applied to multiplane-wave problems to a certain extent. The
beamformer obtained by calculating the Lagrange multipliers using this formula exhibits a
similar SINR and incoming wave estimation performance to those produced by the SOCP
method; however, it requires three orders of magnitude fewer computations than the latter.
In addition, the computational time of the former was comparable to that of the DL method,
but its performance surpassed that of the DL method. This method provides a valuable
reference for implementing robust real-time beamforming.
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