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Abstract

This study investigated the transformative potential of Compressive Sensing (CS) for opti-
mizing multimodal biomedical signal fusion in Wireless Body Sensor Networks (WBSN),
specifically targeting challenges in data storage, power consumption, and transmission
bandwidth. Through a Systematic Mapping Study (SMS) and Systematic Literature Review
(SLR) following the PRISMA protocol, significant advancements in adaptive CS algorithms
and multimodal fusion have been achieved. However, this research also identified crucial
gaps in computational efficiency, hardware scalability (particularly concerning the com-
plex and often costly adaptive sensing hardware required for dynamic CS applications),
and noise robustness for one-dimensional biomedical signals (e.g., ECG, EEG, PPG, and
SCG). The findings strongly emphasize the potential of integrating CS with deep rein-
forcement learning and edge computing to develop energy-efficient, real-time healthcare
monitoring systems, paving the way for future innovations in Internet of Medical Things
(IoMT) applications.

Keywords: compressive sensing; biomedical signal; WBSN; SMS; SLR; IoMT

1. Introduction
The rapid advancement of wireless body sensor networks (WBSN) technology has

revolutionized healthcare monitoring applications, enabling the continuous, real-time ac-
quisition of physiological data from patients [1]. One-dimensional (1D) biomedical signals,
such as electrocardiograms (ECG) for heart, photoplethysmogram (PPG) for blood flow,
seismocardiogram (SCG) for heart vibrations, and electroencephalograms (EEG) for brain
waves, are crucial for monitoring and diagnosing health issues [2]. However, the substantial
volume of biomedical signal data collected and transmitted by WBSN devices presents
significant challenges in terms of data storage, power consumption, and transmission
bandwidth. Efficient data compression techniques are essential to address these issues and
facilitate the practical and sustainable deployment of WBSNs [2,3]. Compressive Sensing
(CS) has emerged as a particularly promising approach owing to its ability to efficiently ac-
quire and reconstruct signals using significantly fewer samples than traditional methods [4].
This offers a potential solution for reducing the load on data storage and transmission [5].

One particularly promising technique to address these data challenges is Compressive
Sensing (CS). Unlike traditional Nyquist-Shannon sampling, which requires sampling
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at least twice the highest frequency component of a signal, CS leverages the sparsity or
compressibility of a signal to acquire and reconstruct it from significantly fewer measure-
ments. This paradigm shift means that instead of first acquiring a dense signal and then
compressing it, CS performs both sensing and compression simultaneously during the
acquisition phase. The fundamental principle behind CS relies on two main conditions: the
signal must be sparse or compressible in some transform domain (e.g., wavelet, Fourier),
and the measurement matrix used for acquisition must be incoherent with this sparsity
basis. By exploiting this inherent signal structure, CS offers a powerful framework for
reducing data acquisition time, storage requirements, and transmission bandwidth, mak-
ing it highly suitable for resource-constrained environments like Wireless Body Sensor
Networks (WBSN). Recent research on CS has demonstrated significant advancements in
optimizing compression methods for biomedical signals [2]. Several studies have explored
the use of a dynamic sensing matrix to enhance the compression efficiency of ECG signals
in Internet of Thing (IoT) applications [6]. Furthermore, a self-adaptive compression ra-
tio approach, utilizing Optimized Discrete Cosine Transform (ODCT) reconstruction, has
been proposed for compressing physiological voice data [7]. Deep learning techniques are
increasingly being integrated with CS to improve the performance of biomedical signal
compression and reconstruction. An example is the development of a deep compressive
sensing framework for ECG signals, which employs multiscale feature fusion, along with
squeeze-and-excitation (SE) blocks and modified Inception and Long Short-Term Memory
(LSTM) blocks [8,9]. Despite these developments, the improvement of CS methods that are
more adaptive, efficient, and robust to noise and artifacts in one-dimensional biomedical
signals remains an active area of research [10].

Fusion, or merging of multimodal biomedical signals, is a process that integrates
diverse information from various modalities (different biomedical signal acquisition de-
vices) [3]. Multimodal feature fusion helps to generate more robust and accurate predictions
because information from different modalities (data types) complements each other [2,11].
This approach addresses the limitations of incomplete information obtained from a sin-
gle modality, thereby strengthening the feature representation and enriching information
within a single biomedical signal data stream [12]. Each medical signal has unique charac-
teristics that reflect different aspects of the human body. For instance, heart rate variability
exhibits both low- and high-frequency components, indicating parasympathetic and sym-
pathetic nervous system activities, respectively. Integrating various signals can provide
a more comprehensive and accurate representation than relying solely on a single signal,
leading to richer and more complete understanding. Researchers are increasingly interested
in combining different medical signals (multimodal fusion) to gain more comprehensive
insights, as a single signal type often proves to be insufficient for differentiating diseases
and their symptoms. The appropriate selection of unimodal biomedical signal data and
the chosen multimodal fusion strategy are two crucial components of health and affective
analysis systems, often outperforming unimodal health detection and emotion recognition
systems [13].

Research on multimodal biomedical signal fusion is still in its early stages, yet several
studies have already demonstrated its significance in medical research [14]. However,
fusion algorithms and strategies require further refinement. Biomedical signal research can
not only identify physiological diseases in living beings (humans and animals), but also
psychological conditions, such as mental illness [15]. Emotions are complex phenomena
that have a profound impact on the quality of life, influencing drive, perception, cognition,
creativity, focus, attention, learning, and decision-making [16]. To observe a person’s
mental state, research continues to explore the fusion of bioelectric (such as EEG) and
non-bioelectric signals (such as respiratory acoustic signals or movement data) [17]. This is
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because unimodal approaches are often insufficiently informative and biomedical signal
fusion has been proven to increase diagnostic accuracy. Beyond these medical applications,
multimodal signal fusion can be applied to Body Sensor Networks (BSN) [1]. A real-time
respiration pattern diagnostic system can potentially be developed by fusing sensor data
from lung sounds and cardiograms [18]. BSNs represent a revolutionary technology across
various domains, including healthcare, fitness, smart cities, and numerous other compelling
Internet of Things (IoT) applications, enabling a single device to monitor a vast amount
of user information [19]. Multimodal biomedical signal fusion generates extremely large
datasets, which necessitate effective compression methods [20]. Selecting an appropriate
and effective compression technique for biomedical signal data is a key aspect of the
problem addressed in this study. Furthermore, the integration of deep reinforcement
learning into the compression process is crucial to ensure that no vital information within
biomedical signals is lost [21].

The field of compressive sensing applied to multimodal biomedical signals presents
a broad and promising scope for exploration, encompassing novel multimodal signal
combinations (e.g., integrating electrophysiological signals with motion data), the devel-
opment of adaptive algorithms for heterogeneous and asynchronous data streams, and
the establishment of robust evaluation frameworks for combined datasets. The unique
combinations and characteristics of datasets gathered from diverse modalities will yield
thousands of distinctive dataset variations, each requiring different treatments. This sig-
nificantly increases the probability of discovering novel findings. CS methods still offer
extensive potential for development, especially in optimizing data storage, computation,
and transmission when combined with Deep Reinforcement Learning (DRL) [22–24]. This
study aims to provide future research analysis and identify research gaps in the current
work related to one-dimensional biomedical signal compressive sensing. This analysis was
based on existing methodologies, specifically using a systematic mapping study (SMS) and
systematic literature review (SLR), following the PRISMA protocol [25].

The remainder of this paper is organized as follows: Section 2 outlines the methodol-
ogy employed for the systematic literature review, including the article selection process
and data extraction. Section 3 presents the results of our comprehensive analysis, encom-
passing the systematic classification of methods and a comparative performance evaluation.
Section 4 discusses the key findings, identified research trends, and existing limitations. Fi-
nally, Section 5 concludes the paper and highlights promising directions for future research.

2. Methods
This section details the approach to paper extraction and literature study, encompass-

ing both the Systematic Mapping Study (SMS) and Systematic Literature Review (SLR)
stages [26,27]. As illustrated in Figure 1, the methodology was executed in two distinct
phases: SMS first, followed by SLR. A Systematic Mapping Study (SMS) serves as a quan-
titative method designed to provide a broad overview of a specific research area. This
includes examining publication demographics, identifying key contributors, understanding
research trends, pinpointing promising research topics, and analyzing topic models [28–30].
The insights gained from this SMS serve as crucial inputs for subsequent SLR processes. The
Systematic Literature Review (SLR) involves an in-depth examination of papers identified
as relevant during the SMS phase [31]. This comprehensive methods andto thoroughly
understand various research methodologies and objectives related to the topic of interest,
including exploring performance metrics, identifying existing issues, analyzing proposed
methods, and uncovering potential gaps in previous research concerning compressive
sensing and biomedical signal fusion.
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Figure 1. Research methodology.

The entirety of this systematic literature review, from article metadata collection to data
analysis and visualization, was conducted using a dedicated computational environment
to ensure methodological rigor and reproducibility. Metadata for the selected publica-
tions were systematically obtained from prominent academic databases, including Scopus,
ScienceDirect, and IEEE Xplore. These metadata were downloaded in various formats,
with CSV files primarily utilized for subsequent processing and analysis. For bibliometric
analysis and network visualization, VOSviewer (1.6.20 version) was employed. Further
quantitative analyses, including Latent Dirichlet Allocation (LDA) for topic modeling and
subsequent statistical analyses for trend identification, were performed in Python (3.12.7
version). Key Python libraries utilized included pandas for data handling and manipulation,
gensim for LDA implementation, and scipy for statistical tests. Data visualizations (such as
trend plots) were generated using matplotlib and seaborn. This computational environment
facilitated the systematic and reliable processing of the extensive literature corpus.

A. Systematic Mapping Study (SMS) Method

A Systematic Mapping Study (SMS) was conducted to gain an understanding of
the research landscape surrounding CS and Biomedical Signal Fusion. This included
identifying the latest methods or technologies from prior research and analyzing trends in
topic modelling. The results of the topic model and trend analysis from the SMS process
indicate that CS and Biomedical Signal Fusion constitute a promising research area.

The SMS process is illustrated in Figure 1. The initial stage involved defining the
Topic of Interest and outlining the Research Questions (RQs) for the SMS. In this study,
three research questions were formulated. RQ1: What is the publication population regard-
ing CS and Biomedical Signal Fusion research between 2014 and 2025? RQ2: What areas
are encompassed in this topic? RQ3: What are the trends in this topic within this subject
of interest?

The subsequent stage involved paper searching, study selection, and data extrac-
tion from research databases, utilizing bibliometric analysis and adhering to the PRISMA
protocol (Figure 2). Papers were searched across three prominent research databases: Sci-
enceDirect, Scopus, and IEEE. The search query employed the keywords “Compressive
Sensing Biomedical Signal” or “Compressed Sensing Biomedical Signal”. The study selec-
tion criteria included publications from 2014 to 2025, encompassing conferences, journals,
books, review papers, and book chapters. The query is (title-abs-key (compressive and
sensing and biomedical and signal) or title-abs-key (compressed and sensing and biomedi-
cal and signal)) and pubyear > 2013 and pubyear < 2026 and (limit-to (subjarea, “engi”)
or limit-to (subjarea, “comp”) or limit-to (subjarea, “math”)) and (limit-to (doctype, “ar”)
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or limit-to (doctype, “cp”) or limit-to (doctype, “re”) or limit-to (doctype, “ch”) or limit-to
(doctype, “cr”) or limit-to (doctype, “bk”)).

 

Figure 2. PRISMA protocol.

The articles were obtained from three different sources: 546 articles from Scopus,
626 articles from ScienceDirect, and 275 articles from IEEE. Following the merging of
these results, a manual screening process was performed to remove duplicate titles and
entries that did not contain specified keywords. This resulted in a final dataset comprising
622 articles. The last stage involved performing structured topic modelling and trend
analysis, which are explained in Section 3.

B. Systematic Literature Review (SLR) Method

The subsequent phase of SMS involves conducting a Systematic Literature Review
(SLR). The initial step of the SLR is to define the Research Questions (RQs), which com-
prise of the three questions detailed in Table 1. These RQs guide more in-depth research
pertaining to CS problems in biomedical signals, CS parameter metrics, and biomedical
signal fusion methods. Consequently, the RQs facilitate an evaluation of issues related
to the methods and techniques employed in CS and biomedical signal fusion, ultimately
identifying opportunities for research gaps based on the literature review conducted.

Table 1. RQs for SLR.

Research Question Question

RQ1 What are the issues, methods, and performance metrics of CS?
RQ2 What are the limitations of existing methods in CS?
RQ3 What are the issues of CS metrics method in biomedical signal fusion?

The SLR conducts a more focused search for articles performed (from SMS) to gain
a deeper understanding of CS and biomedical signal fusion. Before commencing the
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detailed review, articles were further explored using more specific queries, such as “CS
optimization,” “Adaptive CS,” and “Biomedical signal fusion.” The articles retrieved from
this targeted search formed an augmented version of the dataset, merged with the initial
SMS results, and were moved to the exclusion stage. Articles were selected from both
the SMS process and the augmented set based on specific exclusion criteria, including
accessibility, publication type, and content suitability. The articles that remained after this
rigorous selection process were subsequently analyzed to answer predefined Research
Questions (RQs). The combined outcome of the SMS and SLR analyses is the State of The
Art (SOTA), which comprises key articles that serve as critical references for exploring
potential research gaps and future research [32].

3. Results
The findings from both the SMS and SLR are presented in relation to their respective

Research Questions (RQs). The RQs guiding the SMS will inform the results regarding
trends in CS within biomedical signals, along with bibliometric analyses, topic modelling,
and their corresponding trends. Conversely, the RQs of the SLR have clarified issues,
methodologies, and performance metrics related to CS, identified limitations and proposed
solutions, and detailed various biomedical signal fusion methods.

3.1. The SMS Result of RQ1, RQ2, and RQ3: Trend, Bibliometric and Topic Modelling

For bibliometric analysis, VOSviewer was used to construct and visualize bibliomet-
ric networks. VOSviewer is a powerful tool that aids researchers in understanding the
structure and dynamics of a research field [33]. It functions by analyzing and visualizing
various types of bibliometric networks, including co-authorship, citation, and co-occurrence
networks. The analysis of keyword (or term) co-occurrence is central to how VOSviewer
identifies topical trends. In this study, metadata from various sources, namely Scopus,
ScienceDirect, and IEEE, were used and stored in the CSV file format. This data contained
information such as title, abstract, keywords, authors, affiliations, publication year, refer-
ences, source, and document type [34]. The threshold applied was the minimum number
of occurrences of a keyword, meaning that only keywords appearing at least a specified
number of times were considered in the analysis. The method used for calculating co-
occurrence was Full Counting. In this method, if keywords A and B appear together in one
document, they receive a score of one. If they appear in 10 documents, their score is 10.
This represents a direct count of the co-occurrences. For example:

• Document 1: A, B, C
• Document 2: A, B, D
• Document 3: A, C

Then:

• Co-occurrence (A, B) = 2 (because they appear in Documents 1 and 2)
• Co-occurrence (A, C) = 2 (because they appear in Documents 1 and 3)
• Co-occurrence (B, C) = 1 (because they appear only in Document 1)

VOSviewer employs normalization techniques to calculate the link strength between
keywords, because some keywords may appear more frequently in general. The formula
for the Link Strength between two items (e.g., keywords) i and j is:

Sij =
Cij

Wi × Wj
(1)

• Sij = Link strength between item i and j.
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• Cij = Number of co-occurrences of items i and j (i.e., how many times they appear
together).

• Wi = Total weight (e.g., total number of occurrences) of item i.
• Wj = Total weight (e.g., total number of occurrences) of item j.

Figure 3 presents a visualization of research trend clustering derived from the metadata
generated in the SMS. This analysis, powered by VOSviewer, served as a crucial initial step
in our systematic literature review, aiming to map the intellectual landscape of compressive
sensing in multimodal biomedical signals over the past decade and to systematically guide
our article selection process. Based on the co-occurrence data and calculated link strengths,
VOSviewer builds network. Network Visualization then displays nodes (representing
individual keywords) and connecting lines (representing co-occurrence relationships) with
different colors indicating different clusters. The clustering algorithm employed was based
on modularity optimization, ensuring a robust identification of thematic groups.

Figure 3. VOS Viewer Analysis.

This SMS contains 1436 keywords, of which 54 meet the threshold. The minimum
number of occurrences of a keyword was 5. For each of the 54 keywords, the total strength
of the co-occurrences link with other keywords was calculated. The visualization clearly
identifies 8 distinct clusters, each represented by a different color, signifying a specific
thematic area within the research domain. In this map, the size of each node is proportional
to its total number of occurrences, highlighting its overall prominence, while the thickness
of the links indicates the strength of the co-occurrence relationship between connected
keywords, illustrating their strong thematic connections.

As observed in Figure 3, “compressed sensing” (and its variant “compressive sens-
ing”) emerges as the central and most prominent keyword, with the highest number of
occurrences (168) and a total link strength of 195, unequivocally confirming its centrality
to our review topic. The following keywords were used in this analysis: compressive
sensing, deep learning, ECG, EEG, compressed sensing (cs), dictionary learning, electrocar-
diogram, signal reconstruction, classification, and so on. The clustering revealed several
key thematic areas that define the field’s current research fronts. For instance, the purple
cluster prominently features ‘deep learning’, ‘machine learning’, and ‘EEG’, indicating a
strong convergence of advanced computational techniques with neurophysiological signal
processing. Similarly, the red and orange clusters highlight the significant application of
compressive sensing in biomedical imaging, including ‘magnetic resonance imaging’ and
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‘photoacoustic tomography’. Other notable themes include specific signal applications
like ‘ECG’ (light blue cluster) and fundamental ‘reconstruction algorithms’ (orange/yellow
cluster). The insights gained from this VOSviewer analysis were instrumental in refining
our literature selection. By visualizing the connections and thematic clusters from thou-
sands of initial search results, we were able to validate the core relevance of our research
focus, identify the most active and central sub-fields, and efficiently filter the vast corpus
of literature.

In the context of analyzing author keywords from the Scopus dataset, the Structure
Topic Model (STM) with Latent Dirichlet Allocation (LDA) can effectively identify research
topic trends and reveal inter-topic relationships within a research publication database. As
a probabilistic topic modeling method, LDA is specifically designed to uncover inherent
topic structures, where each topic is characterized by a set of frequently co-occurring words
grouped through an unsupervised learning approach. Critically, topic prevalence (how
much a topic appears in a document) and/or topic content (words associated with a topic)
can vary as a function of external covariates. Fundamentally, LDA operates under the
bag-of-words assumption, treating documents as collections of word frequencies where
word order is disregarded. Effective topic identification necessitates a sufficiently large
corpus with diverse vocabulary, as inadequate data impedes the discovery of clear the-
matic patterns. Furthermore, the optimal number of topics in LDA is not automatically
determined by the algorithm but rather through user experimentation. For the purpose
of a systematic mapping study, STM with LDA proved to be quite powerful and capable
of analyzing author keywords from a Scopus dataset to help discover patterns and top-
ical trends [35,36]. STM models the prevalence of topics in document d as a function of
document metadata Xd:

θd ∼ LogisticNormal
(
κ
(
Xd, ∑

))
(2)

The θd (topic distribution for document d) is drawn from or distributed according to a
Logistic-Normal distribution of metadata Xd to the mean of the logistic-normal distribution
for θd with covariance Σ. The results of the STM with LDA for this metadata study are
shown in Figure 4.

Figure 4 shows the trends of each topic based on metadata through STM with LDA
analysis. These trends are visualized using a linear regression plot, applied to the annual
proportion of a topic’s occurrence within the specified start-year and end-year range.
Linear regression models the long-term trends of a topic’s proportion within a publication
database. In the graph, the blue dots represent the actual data proportion, indicating
the real-time proportion of the topic in each given year. This proportion signifies the
distribution of a particular topic in the Scopus dataset. For instance, a proportion between
0.01 and 0.02 suggests that approximately 1–2% of the publications in that specific year
discuss this topic. If the proportion increases annually, this implies that the topic is gaining
more attention in the research database. The red dashed line denotes the trend line derived
from the linear regression, illustrating whether the topic’s prevalence generally increased
or decreased. The gray shaded area represents the confidence interval, which indicates the
range of uncertainty for the regression model, thereby providing an estimate of the model’s
confidence in the predicted trend. The interpretation of the slope (gradient) is crucial,
a positive slope indicates that the proportion of publications related to a topic increase
over time. A very small slope value suggests that the topic’s increase was relatively slow.
Table 2 provides a comprehensive summary of the identified topics, their observed trends
(trending up or down), and the explicit statistical support derived from the time-series
analysis, complementing the visual representation in Figure 4.
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Figure 4. STM with LDA result.

Table 2. Summary of Topic Trends and Statistical Validation.

Topic No. Representative Keywords Mean
Proportion (%)

Trend (Slope
Value)

Confidence
Interval (Lower
Bound–Upper

Bound)

Interpretation
(Trending

Up/Down/Stagnant)

1

compressive, sensing,
imaging, ECG, array,

wearable, SVM, realtime,
sensors, detection

~12.0% 0.00019 ~(0.105–0.135) Stagnant

2

sensing, ECG, compressive,
acquisition, adaptive,

simulation, toolbox, kwave,
photoacoustic, imaging

~7.0% −0.00347 ~(0.040–0.105) Trending Down
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Table 2. Cont.

Topic No. Representative Keywords Mean
Proportion (%)

Trend (Slope
Value)

Confidence
Interval (Lower
Bound–Upper

Bound)

Interpretation
(Trending

Up/Down/Stagnant)

3

image, processing, sensing,
signal, data, reconstruction,

compressive, biomedical, MRI,
transform

~4.5% 0.00287 ~(0.025–0.075) Trending Up

4

compressed, sensing, learning,
ECG, signal, dictionary, body,

EEG, reconstruction,
compressive

~34.0% −0.00120 ~(0.300–0.370) Stagnant

5

imaging, resonance, magnetic,
sensing, compressed, MRI,

compressive, greedy, gradient,
biomedical

~5.5% −0.00112 ~(0.045–0.070) Trending Down

6

compressive, sensing, image,
MRI, sampling, classification,

inverse, compressed,
reconstruction, random

~8.5% 0.00100 ~(0.065–0.110) Trending Up

7

pursuit, compressed,
matching, orthogonal, sensing,

algorithm, ratio, wavelet,
signal, electrocardiogram

~12.0% −0.00003 ~(0.110–0.135) Stagnant

8

sensing, compressive,
reconstruction, tomography,

sensor, power, image,
compressed, energy, deep

~5.5% −0.00054 ~(0.045–0.065) Stagnant

9

sensing, images, compressed,
compressive, clustering,
motion, matrix, device,

spelling, onebit

~4.5% 0.00034 ~(0.030–0.060) Stagnant

10

neural, deep, network, signal,
convolutional, sensing,

compressed, biomedical,
learning, imaging

~5.5% 0.00196 ~(0.035–0.090) Trending Up

The more detailed analysis of Table 2 is presented in Section 4. This system provides
a relevance score for article and paper titles based on a selected topic. An example of a
topic search and the resulting scores are shown in Figure 5. Based on these recommended
articles, titles were located within the dataset. Subsequently, the DOI or a direct link to the
reference source can be retrieved to facilitate the downloading of the papers intended for
Systematic Literature Review (SLR).

The systematic approach in the algorithm identifies prominent research themes within
a corpus of articles, specifically by analyzing author-provided keywords. The top five
article recommendations based on author keywords and topic score calculations can be
found in reference number [37–41]. The initial phase involves meticulous extraction of
author keywords from the dataset, ensuring the exclusion of null entries. This raw textual
input then underwent a series of preprocessing steps: each keyword string was uniformly
converted to lowercase, all numerical characters were removed, and punctuation was
eliminated. The cleaned strings were subsequently tokenized into their constituent words,
which were then reassembled into a single string.
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  And others 

Figure 5. Article or paper titles recommendation based on a selected topic.

Following this preprocessing, the refined text is transformed into a document-term
matrix utilizing Term Frequency-Inverse Document Frequency (TF-IDF) vectorization. This
transformation assigns a numerical weight to each term, reflecting its significance in a
broader dataset. For optimal performance, a maximum of 1000 unique features were
retained, and common English stop words were filtered out to enhance the specificity of
the extracted topics.

An LDA model was instantiated to uncover 10 distinct latent topics from the gen-
erated TF-IDF matrix. The model was then iteratively trained using vectorized textual
data. To facilitate the interpretation of these discovered topics, a dedicated function ex-
tracts the top 10 most influential keywords associated with each identified topic. These
keywords are precisely determined by ranking the feature names based on their respective
weights within each topic’s component distribution. Ultimately, the derived topics and
their corresponding salient keywords were structured into a Pandas DataFrame, providing
a clear and accessible format for subsequent visualization and in-depth analysis. This
method offers a robust mechanism for inferring the primary research areas directly from
author-contributed metadata.

3.2. The SLR Result of RQ1: Issue, Method, and Performance Metrics of CS

In a Systematic Literature Review (SLR), the formulation of research questions is
critical for guiding the analysis and synthesis of relevant studies. The first research question
focuses on three key elements: issues, methods, and performance metrics to explore
emerging trends in a research topic, specifically related to the provided dataset on CS and
biomedical signal fusion. Table 3 addresses the key elements by analyzing the dataset and
refining the research questions.

Each methodology (in Table 3) implemented to address a specific issue is subject to
performance measurement. Owing to the diverse objectives inherent to each issue, the
criteria for evaluating their performance also differ. Table 4 provides a comprehensive
breakdown of the performance metrics applied to each issue group, as shown in Table 3.
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Table 3. Issues and Methods Related to Topic.

No. Issue Group Reference Number Methods Used

1
Physiological Signal
Compression (ECG,

EEG, etc.)
[5–9,42–47]

• CS with Kronecker technique and full adder/subtractor
design [5]

• Dynamic CS for multi-lead ECG [6]
• CS with self-adaptive compression ratio and Optimized

DCT [7]
• Deep CS with multiscale feature fusion and SE block [8]
• Deep CS with modified Inception block and LSTM [9]
• CS-based continuous signal acquisition with sparse group

reconstruction [42]
• CS compared with wavelet, spline, Gabor, and Mexican

Hat [43]
• Hybrid CS and classification with Walsh-Hadamard

Transform, SPGL1, and CNN [44]
• CS with local extrema extraction, adaptive hysteretic

filtering, and LZW encoding [45]
• CS with Restricted Boltzmann Machines (RBM-CS) [46]
• l2 regularized formulation of CS [47]

2
Adaptive

Compressive
Sensing

[10,22,48–55]

• Adaptive block CS with information entropy and synthetic
features [10]

• Adaptive CS with weighted iterative estimation (WIE) for
WSN [22]

• Compressive Adaptive Sense and Search (CASS)
algorithm [48]

• Adaptive CS with optimized measurement schemes [49]
• Adaptive CS Radar (ACSR) with optimized waveform and

sensing matrix [50]
• Adaptive CS sample scheduling for WSN [51]
• Adaptive rate block CS for video surveillance [52]
• Adaptive block CS for target tracking in WVSN [53]
• Constrained adaptive sensing with theoretical analysis [54]
• Data-driven Boolean sampling matrix optimization [55]

3
Multimodal Signal

Fusion for
Healthcare

[3,56–58]

• Multimodal signal fusion with feature-based and
decision-based techniques [3]

• Feature-level fusion with linear/non-linear feature
extraction, genetic algorithm, and classifiers (KNN, DT,
SVM) [56]

• Spatiotemporal ECG and PPG feature fusion with Choquet
integral [57]

• rU-Net with STFT, multi-head attention, and transfer
learning for ECG and PPG [58]

4
Deep Learning for
Biomedical Signal

Analysis
[59–61]

• Deep Q-Learning with Deep Q-Network for EEG-based
drowsiness estimation [59]

• Deep learning integrated with CS for sampling and
reconstruction [60]

• Generalized Tensor Summation Networks (GTSNET) for
CS matrix and reconstruction [61]
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Table 4. Performance Metrics Related to Method and Issue Group.

No. Issue Performance Metrics

1

• CR of 75% with reduced power consumption [5]
• Compression ratio (CR) up to 16 without affecting signal metrics [6]
• Percent sparsity, PRD, SNR, and power consumption for ECG/EEG [43]
• CR > 15:1 with quality score for ECG compression [45]

2
• Near-optimal performance at lower SNR [48]
• O(k log log(n/k)) measurements for sparse signal recovery [49]
• 4.6× energy reduction, 9 dB improved image recovery [55]

3

• Higher classification accuracy than single-modality schemes [56]
• RMSE of 1.49 mmol/L, MARD of 13.42%, 99.49% accuracy in Zone A + B for blood glucose

monitoring [9]
• AAMI standards met, BHS Grade A for blood pressure estimation [58]

4
• 2× faster reconstruction than traditional CS, improved performance at low sampling rates [60]
• Improved PSNR and SSIM at low measurement rates [61]

The analysis of the identified performance metrics will be elaborated upon in Section 4.

3.3. The SLR Result of RQ2: The Limitations and Potential Research of CS

The second research question focused on the limitations of related topics and how to
identify their potential research. The results show in Table 5 corresponding to the issue
group from RQ1.

Table 5. Limitations and Potential Research.

Limitations Potential Research

• Trade-off between compression ratio and reconstruction
accuracy

• High computational complexity for resource-constrained
devices

• Potential signal distortion in lossy compression
• Unclear limitations in diverse IoMT scenarios
• Fixed compression ratios limiting flexibility
• Limited validation methods beyond neural networks

• Develop adaptive compression algorithms balancing
accuracy and ratio

• Optimize low-complexity algorithms for wearables
• Minimize distortion in lossy compression
• Evaluate dynamic CS across varied IoMT conditions
• Investigate variable compression ratios
• Explore alternative validation techniques

• Need for costly adaptive sensing hardware
• Assumptions of Gaussian noise and feasible measurements
• Complex mathematical formulations
• Limited performance gains in constrained scenarios

• Design cost-effective adaptive sensing hardware
• Validate performance under diverse noise models
• Simplify adaptive CS algorithms
• Bridge theoretical and practical benefits in constrained

scenarios

• Complexity and discomfort of EEG equipment
• Limited use of high-electrode EEG systems
• Sensitivity to non-physiological factors
• Dependence on specific datasets affecting generalizability
• Limited exploration of non-audio modalities

• Develop user-friendly, low-power EEG sensors
• Explore high-electrode EEG with improved comfort
• Enhance model robustness to non-physiological factors
• Validate on diverse datasets
• Investigate visual or other multimodal stimuli

• Limited EEG dataset availability
• Suboptimal EEG state design
• High computational and memory demands
• Limited generalizability across data types
• Lack of interpretability in models
• Dependence on optimal parameter selection

• Expand EEG dataset collection and synthetic data
generation

• Optimize EEG state design for real-world applications
• Use transfer and federated learning to reduce

computational needs
• Validate models on varied signal types
• Develop interpretable deep learning frameworks
• Automate parameter optimization
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This detailed analysis of the limitations and potential research directions provides a
clear roadmap for future advancement in these critical areas. Addressing these identified
challenges will not only refine existing methodologies but also open new frontiers for
innovation in various engineering and medical applications. More analysis regarding
the identified limitations and potential research of this topic will be elaborated upon in
Section 4.

3.4. The SLR Result of RQ3: Methods, Limitations, and Potential Gaps in Biomedical Signal
Fusion

The third research question focuses on the methods, limitations, and potential gaps
in biomedical signal fusion. It is important to acknowledge its inherent limitations and to
propose avenues for further exploration. These are detailed in Table 6.

Table 6. Methods, Limitations, and Potential Gaps in Biomedical Signal Fusion.

No. Issue Methods Limitations Potential Gaps

1

Feature-level fusion with linear
and non-linear feature
extraction from EEG signals
(neutral, negative, positive
audio stimuli), using genetic
algorithm for feature weighting
and classifiers (KNN, DT,
SVM) [56]

• Complexity and discomfort
of conventional EEG
equipment limiting
large-scale data collection.

• Limited use of
high-electrode EEG
systems (e.g., 128 or 256
electrodes) due to patient
comfort and data collection
challenges

• Develop user-friendly,
low-power EEG sensors for
large-scale data acquisition

• Explore high-electrode
EEG systems with
improved comfort and
scalability

• Investigate visual or other
multimodal stimuli to
enhance depression
recognition accuracy

2

Multimodal signal fusion
categorized by signal type
(physiological, medical imaging)
and fusion techniques
(feature-based, decision-based)
for smart healthcare systems [3]

• Complexity due to the
number of IoMT sensors
and patients connected to
the system

• Challenges in data
synchronization, buffering,
denoising, normalization,
feature selection, and
decision-making (e.g.,
majority voting, confidence
scoring)

• Implement explainable AI
and interpretable machine
learning to enhance fusion
reliability

• Explore edge-computing to
reduce data transmission
constraints

• Develop methods to
address data heterogeneity
and improve
synchronization

3

Spatiotemporal ECG and PPG
feature fusion with three-level
fusion: signal pooling, temporal
and spatial feature extraction
using numerical analysis and
ResNets, and multi-model
fusion with weighted Choquet
integral [57]

• Potential limitations in
wearable devices (e.g., user
comfort, signal quality
affected by movement,
consistent sensor
placement)

• High computational
complexity of multi-level
fusion impacting real-time
implementation

• Limited generalizability
across diverse populations
due to individual
physiological variations

• Enhance model robustness
to non-physiological
factors (e.g., stress, activity)
through advanced feature
engineering

• Optimize computational
efficiency for real-time
implementation in WBAN
systems

• Validate models on diverse
datasets to ensure
generalizability
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Table 6. Cont.

No. Issue Methods Limitations Potential Gaps

4

rU-Net architecture combining
U-Net and ResNet with
Short-Time Fourier Transform
(STFT), multi-head attention,
and transfer learning for ECG
and PPG-based blood pressure
monitoring [58]

• Lack of implementation of
wearable devices, limiting
real-world applicability

• Challenges in calibration
effectiveness over time and
optimal training data
selection

• Test and optimize rU-Net
models for wearable device
integration

• Explore improved transfer
learning and calibration
methods using
autonomously collected
datasets

This comprehensive analysis of the current methods, their inherent limitations, and
the identified research gaps in biomedical signal fusion highlight critical areas for future
investigation. Addressing these challenges is paramount for advancing the field, paving
the way for more robust, user-friendly, and clinically impactful smart healthcare systems.
A comprehensive comparative analysis, presented in Table 7, offers a more granular under-
standing of the current methods’ capabilities and limitations in addressing these critical
areas. This table meticulously outlines the characteristics, advantages, and disadvantages
of key Compressive Sensing techniques, specifically evaluating their performance and
design considerations regarding data storage, computational complexity, and transmis-
sion efficiency.

Table 7. Compressive Sensing Focus Areas for Optimization of Data Storage, Computation, and
Transmission.

Optimization Focus
Area Method/Algorithm Advantages Disadvantages

Data Storage CS for biosignal volume
reduction [62,63]

Reduces massive data storage
requirements (e.g., terabytes

for 1000 neuron
reconstruction).

Enables long-term data
analysis without significant

information loss.

Reconstruction quality is
dependent on signal
sparsity, which is not

always met in EEG signals.
Reconstruction process can

be time-consuming,
especially for real-time

applications.

Computation
BSBL, OMP, SOMP (for
complexity reduction)

[64,65]

Reduces computational load,
enabling implementation on
resource-constrained devices.

BSBL and OMP provide
accurate reconstruction with

lower complexity compared to
L1-norm methods.

Greedy algorithms like
OMP can be less accurate
for non-fully sparse EEG

signals.
BSBL implementation

requires complex
parameter adjustments for

optimal results.

Transmission
CS for reducing

transmitted data in
wireless systems [66,67]

Reduces bandwidth
requirements, crucial for

long-term wireless devices.
Saves battery power,

extending the lifespan of
wireless EEG devices.

Random matrices like
Gaussian require
energy-intensive

operations, making them
not ideal for simple

hardware.
Transmission quality

depends on the sensing
matrix design and the

reconstruction algorithm
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Understanding strategies for effectively integrating diverse data modalities is equally
crucial, following the analysis of Compressive Sensing methods’ capabilities in optimizing
individual biomedical signal streams for efficient storage, computation, and transmission
(Table 7). Multimodal fusion strategies determine how information from disparate sources
combines, leading to richer insights or more robust decisions. A comprehensive under-
standing of these critical integration paradigms is presented. Table 8 offers a detailed
comparison of the primary multimodal fusion strategies for biomedical signals.

Table 8. Comparison of Multimodal Fusion Strategies for Biomedical Signals.

Fusion Strategy/Level Biomedical Signal
Application Advantages Limitations

Early Fusion/Data Level
(Raw data from multiple
modalities are combined

before feature extraction or
modelling.)

[3,68,69]

• EEG + NIRS for
emotion classification

• ECG + PPG for heart
rate estimation

• EMG + motion
sensors for hand
rehabilitation

• Captures cross-modal
interactions early,
improving predictive
power.

• Preserves raw data
information.

• Suitable for highly
correlated modalities.

• High computational
complexity due to
large data dimensions.

• Requires
synchronized and
compatible data (e.g.,
same sampling rate).

• Sensitive to noise or
scaling differences
across modalities

Intermediate
Fusion/Feature Level

(Features extracted from
each modality are
combined before
decision-making.)

[3,70,71]

• EEG (spectral features)
+ ECG (HRV features)
for sleep apnoea
detection

• Medical images
(HOG, texture
features) + EEG for
disease diagnosis

• EMG (time-frequency
features) + inertial
sensors for gesture
recognition

• Reduces
dimensionality
compared to early
fusion.

• Flexible for
heterogeneous
modalities (e.g.,
signals and images).

• Allows
modality-specific
feature extraction.

• Requires effective
feature extraction
methods.

• May lose low-level
data information.

• Feature alignment
across modalities can
be challenging

Late Fusion/Decision
Level

(Decisions or scores from
individual modality

models are combined for
final output.)

[3,72,73]

• EEG + EMG for sleep
apnoea classification
(separate classifiers
combined via voting)

• ECG + SpO2 for
respiratory rate
estimation (weighted
averaging)

• EEG + eye-tracking
for cognitive load
assessment

• Computationally
efficient as modalities
are processed
independently.

• Robust to noise in
individual modalities.

• Suitable for
distributed systems
(e.g., IoMT with edge
computing)

• Limited capture of
cross-modal
interactions.

• Performance depends
on individual model
quality.

• Requires effective
decision combination
methods (e.g.,
weighted voting).

This systematic comparison highlights that while significant advancements have
been made in each area, trade-offs frequently exist between high compression ratios,
computational efficiency, and real-time transmission capabilities. Understanding these
specific characteristics, advantages, and disadvantages for each method is crucial for
identifying optimal CS solutions for varied biomedical signal applications and for guiding
future research towards more holistic optimization strategies.
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4. Discussion
The Systematic Mapping Study (SMS) and Systematic Literature Review (SLR) con-

ducted in this research emphasize the escalating importance of Compressive Sensing (CS)
within biomedical signal processing, particularly concerning Wireless Body Sensor Net-
works (WBSN). A bibliometric analysis, performed using VOSviewer, revealed prominent
research clusters formed around keywords such as “compressive sensing,” “deep learning,”
and “ECG.” Notably, “compressed sensing” exhibited the highest occurrence (168) and a to-
tal link strength of 195, signifying a strong research emphasis on optimizing CS techniques
for physiological signals, including ECG and EEG. Furthermore, trend analysis, visually
represented through Structural Topic Modelling (STM) with Latent Dirichlet Allocation
(LDA), showed a positive slope in topic prevalence. This indicates a consistent surge of
interest in CS applications for biomedical signals throughout the 2014 to 2025 period. This
observed trend highlights CS’s substantial potential to mitigate critical challenges in data
compression, storage, and transmission. These are the principal factors for the development
of energy-efficient and real-time healthcare monitoring systems. Figure 4 describes the
STM with LDA result for topic 4 as the highest proportion of articles (approximately 35%)
with author keyword combinations: compressed, sensing, learning, ECG, signal, dictionary,
body, EEG, reconstruction, and compressive. Topic 9 showed the lowest proportion of
articles whit stagnant trends from 2014 till 2025. Topic 3 showed the highest trend, whit
a slope of 0.00287, but its proportion is still low. The negative slopes indicate that the
proportion available for research or publication consequently decreases, these are topics 2,
4, 5, 7, and 8. Confidence interval estimates of the model’s confidence in the predicted trend,
and topic 3 had a good confidence interval for this study. This means that the number of
articles (with their author keywords) has consistently increased each year.

A significant challenge identified in the SLR is the inherent trade-off between compres-
sion ratio and reconstruction accuracy, which is particularly critical for resource-constrained
devices in Internet of Medical Things (IoMT) applications. For example, while approaches,
such as dynamic CS for multi-lead ECG have demonstrated compression ratios of up to 16
without degrading signal metrics, their high computational complexity poses a bottleneck
for integration into wearable devices. Furthermore, the incorporation of adaptive CS tech-
niques, such as the Compressive Adaptive Sense and Search (CASS) algorithm, can achieve
near-optimal performance at lower signal-to-noise ratios (SNR).

However, the dependence on costly adaptive sensing hardware restricts scalability.
This “adaptive sensing hardware” typically refers to specialized analog-to-digital convert-
ers (ADCs) or front-end circuitry that can dynamically adjust measurement parameters
(e.g., sampling rate, measurement matrix configuration) based on real-time signal character-
istics or changing environmental conditions. Such dynamic configurability, while offering
performance benefits, often leads to increased design complexity, power consumption,
and manufacturing costs compared to fixed-rate, non-adaptive hardware. Consequently,
future research should prioritize the development of low-complexity algorithms that effec-
tively balance reconstruction accuracy with computational efficiency. This can potentially
be achieved by leveraging hardware-accelerated implementations to minimize power
consumption in WBSN deployments. The SLR results also emphasize the potential of
multimodal signal fusion for improving diagnostic accuracy in healthcare applications.
For instance, techniques such as spatiotemporal ECG and PPG feature fusion, augmented
by the Choquet integral, have demonstrated high classification accuracy (e.g., 99.49% in
Zone A + B for blood glucose monitoring), consistently outperforming approaches based
on single-modality data. The practical implementation of such systems is challenged by
factors including the inherent complexity of EEG equipment and its sensitivity to non-
physiological factors, such as motion artifacts. Addressing these limitations necessitates the
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development of user-friendly, low-power EEG sensors and the creation of robust feature
engineering techniques capable of mitigating non-physiological noise. These advancements
have significantly enhanced the scalability of multimodal fusion systems. Furthermore,
exploring edge-computing frameworks to manage data synchronization and heterogene-
ity within IoMT environments could further optimize real-time performance, thereby
overcoming the limitations of current fusion methodologies.

The integration of deep learning with CS, exemplified by methods such as deep CS
with multiscale feature fusion and rU-Net architectures, holds significant promise for im-
proving the reconstruction performance even at low sampling rates. However, substantial
barriers persist, notably high computational demands and limited generalizability across
diverse data sets. These issues can be mitigated through the application of transfer and
federated learning, as suggested in Table 6. Such approaches would reduce computational
overhead and enable model adaptation to various physiological signal types. Furthermore,
automating parameter optimization using techniques such as Deep Reinforcement Learn-
ing (DRL) can enhance the adaptability of CS frameworks, making them more suitable for
dynamic Internet of Medical Things (IoMT) scenarios. These advancements will facilitate
the deployment of CS-based systems in resource-constrained environments, thereby paving
the way for next-generation healthcare monitoring solutions.

Building upon the identified limitations and research gaps, several critical open
questions emerge, guiding future investigations in Compressive Sensing (CS) for mul-
timodal biomedical signal processing within WBSN and IoMT contexts. These ques-
tions aim to advance the field towards more robust, efficient, and user-centric healthcare
monitoring systems.

For CS optimization in resource-constrained devices, future research must develop
adaptive compression algorithms that optimally balance compression ratio and reconstruc-
tion accuracy for diverse 1D biomedical signals from wearables. This includes designing
novels, low-complexity, hardware-accelerated CS reconstruction algorithms to minimize
computational overhead and power consumption in real-time WBSN deployments and
minimizing signal distortion in lossy CS compression while maintaining high ratios for
IoMT. Additionally, exploring alternative validation techniques beyond traditional neural
networks is crucial to assessing the clinical utility of CS-reconstructed biomedical signals
across diverse patient populations.

Regarding adaptive sensing hardware and noise robustness, a key challenge lies
in designing cost-effective adaptive sensing hardware architectures that offer dynamic
measurement schemes without significantly increasing complexity or power draw for
continuous monitoring. Validating adaptive CS algorithms for robust performance under
diverse and realistic noise models (e.g., motion artifacts, environmental noise) in real-world
acquisition is essential. Furthermore, simplifying mathematical formulations for adaptive
CS is needed to bridge theoretical performance gains with practical benefits in constrained
clinical settings.

In the domain of multimodal signal fusion in IoMT, developing user-friendly, low-
power, and scalable EEG sensors is necessary to overcome the complexity and discomfort of
conventional high-electrode systems for large-scale data acquisition. Research should also
focus on advanced feature engineering and model architectures to enhance the robustness
of fusion models to non-physiological factors and ensure generalizability. Integrating
explainable AI (XAI) and interpretable machine learning approaches into multimodal
fusion systems is vital to enhance reliability and trustworthiness of diagnostic predictions.
Finally, identifying effective edge-computing frameworks and strategies is crucial for
addressing data synchronization, heterogeneity, and transmission constraints for real-time
fusion within distributed IoMT environments.
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Pertaining to deep learning integration with CS, future work should leverage transfer
and federated learning to reduce high computational, and memory demands of deep CS
frameworks, enabling deployment on resource-constrained WBSN nodes and improving
generalizability across varied signal types. Developing novel deep learning frameworks
that automate parameter optimization in CS algorithms will enhance their adaptability
to dynamic IoMT scenarios. Lastly, improving interpretability in deep learning models
integrated with CS for biomedical signal analysis is critical for clinical acceptance and
trust. Addressing these questions will be pivotal in unlocking the full transformative
potential of CS combined with multimodal fusion and deep learning, paving the way for
the next-generation, ubiquitous, and clinically impactful healthcare monitoring solutions.

5. Conclusions
The findings from the SMS and SLR collectively emphasize the transformative poten-

tial of CS in biomedical signal processing, especially when integrated with deep learning
and multimodal fusion techniques. Despite these advancements, significant research
gaps remain in literature. These include the necessity for cost-effective adaptive sensing
hardware, the development of simplified algorithms suitable for resource-constrained
environments, and the crucial need for robust validation across diverse IoMT scenarios.
Addressing these identified gaps by combining expertise in signal processing, machine
learning, and hardware optimization will be critical for fully realizing CS’s potential in
revolutionizing WBSN-based healthcare systems.
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References
1. Gravina, R.; Alinia, P.; Ghasemzadeh, H.; Fortino, G. Multi-Sensor Fusion in Body Sensor Networks: State-of-the-Art and Research

Challenges. Inf. Fusion 2017, 35, 68–80. [CrossRef]
2. Li, J.; Wang, Q. Multi-Modal Bioelectrical Signal Fusion Analysis Based on Different Acquisition Devices and Scene Settings:

Overview, Challenges, and Novel Orientation. Inf. Fusion 2022, 79, 229–247. [CrossRef]
3. Muhammad, G.; Alshehri, F.; Karray, F.; El Saddik, A.; Alsulaiman, M.; Falk, T.H. A Comprehensive Survey on Multimodal

Medical Signals Fusion for Smart Healthcare Systems. Inf. Fusion 2021, 76, 355–375. [CrossRef]
4. Gurve, D.; Delisle-Rodriguez, D.; Bastos-Filho, T.; Krishnan, S. Trends in Compressive Sensing for EEG Signal Processing

Applications. Sensors 2020, 20, 3703. [CrossRef] [PubMed]
5. Izadi, V.; Shahri, P.K.; Ahani, H. A Compressed-Sensing-Based Compressor for ECG. Biomed. Eng. Lett. 2020, 10, 299–307. [CrossRef]
6. Hassan, A.M.A.; Mohsen, S.; Abo-Zahhad, M.M. ECG Signals Compression Using Dynamic Compressive Sensing Technique

toward IoT Applications. Multimed. Tools Appl. 2024, 83, 35709–35726. [CrossRef]
7. Chen, C.; Pan, R.; Huang, H.; Zhang, Q.; Jiang, X.; Zhang, Y.; Zhao, J.; Li, Y. PSCS: A Physiological Sound Compression System

Based on Compressive Sensing with Self-Adaptive Compression Ratio and Optimized DCT. In Proceedings of the 2024 IEEE
International Symposium on Circuits and Systems (ISCAS), Singapore, 19–22 May 2024; pp. 1–5. [CrossRef]

8. Hua, J.; Zou, J.; Rao, J.; Yin, H.; Chen, J. ECG Signals Deep Compressive Sensing Framework Based on Multiscale Feature Fusion
and SE Block. IEEE Access 2023, 11, 104359–104372. [CrossRef]

9. Hua, J.; Rao, J.; Peng, Y.; Liu, J.; Tang, J. Deep Compressive Sensing on ECG Signals with Modified Inception Block and LSTM.
Entropy 2022, 24, 1024. [CrossRef] [PubMed]

10. Zhu, Y.; Liu, W.; Shen, Q. Adaptive Algorithm on Block-Compressive Sensing and Noisy Data Estimation. Electronics 2019, 8, 753. [CrossRef]
11. Wang, Y.; Du, L.; Tang, G.; Ling, S. A Biometric Identification for Multi-Modal Biomedical Signals in Geriatric Care. Sensors 2024,

24, 6558. [CrossRef]
12. Wang, S.; Celebi, M.E.; Zhang, Y.-D.; Yu, X.; Lu, S.; Yao, X.; Zhou, Q.; Martinez-Garcia, M.; Tian, Y.; Gorriz, J.M.; et al. Advances in

Data Preprocessing for Biomedical Data Fusion: An Overview of the Methods, Challenges, and Prospects. Inf. Fusion 2021, 76,
376–421. [CrossRef]

13. Duan, J.; Xiong, J.; Li, Y.; Ding, W. Deep Learning Based Multimodal Biomedical Data Fusion: An Overview and Comparative
Review. Inf. Fusion 2024, 112, 102536. [CrossRef]

14. Azam, K.S.F.; Ryabchykov, O.; Bocklitz, T. A Review on Data Fusion of Multidimensional Medical and Biomedical Data. Molecules
2022, 27, 7448. [CrossRef]

15. Siirtola, P.; Tamminen, S.; Chandra, G.; Ihalapathirana, A.; Röning, J. Predicting Emotion with Biosignals: A Comparison of
Classification and Regression Models for Estimating Valence and Arousal Level. Sensors 2022, 22, 1598. [CrossRef]

16. Wang, Y.; Song, W.; Tao, W.; Liotta, A.; Yang, D.; Li, X.; Gao, S.; Sun, Y.; Ge, W.; Zhang, W.; et al. A Systematic Review on Affective
Computing: Emotion Models, Databases, and Recent Advances. Inf. Fusion 2022, 83–84, 19–52. [CrossRef]

17. Khan, H.; Sharma, T.; Soni, A.; Choudhary, M.; Islam, S. Analysis of Mental Health Based on the Dreams by Analyzing the
Biomedical Signals of the Body. NeuroQuantology 2022, 20, 4204.

18. Moon, K.S.; Lee, S.Q. A Wearable Multimodal Wireless Sensing System for Respiratory Monitoring and Analysis. Sensors 2023, 23,
6790. [CrossRef] [PubMed]

19. Antaki, B.; Dalloul, A.H.; Miramirkhani, F. Intelligent Health Monitoring in 6G Networks: Machine Learning-Enhanced VLC-
Based Medical Body Sensor Networks. Sensors 2025, 25, 3280. [CrossRef]

20. Ancans, A.; Greitans, M.; Kagis, S. An Efficient Communication Protocol for Real-Time Body Sensor Data Acquisition and
Feedback in Interactive Wearable Systems. J. Sens. Actuator Netw. 2025, 14, 4. [CrossRef]

21. Matsuo, Y.; LeCun, Y.; Sahani, M.; Precup, D.; Silver, D.; Sugiyama, M.; Uchibe, E.; Morimoto, J. Deep Learning, Reinforcement
Learning, and World Models. Neural Netw. 2022, 152, 267–275. [CrossRef]

https://doi.org/10.1016/j.inffus.2016.09.005
https://doi.org/10.1016/j.inffus.2021.10.018
https://doi.org/10.1016/j.inffus.2021.06.007
https://doi.org/10.3390/s20133703
https://www.ncbi.nlm.nih.gov/pubmed/32630685
https://doi.org/10.1007/s13534-020-00148-7
https://doi.org/10.1007/s11042-023-17099-7
https://doi.org/10.1109/ISCAS58744.2024.10558535
https://doi.org/10.1109/ACCESS.2023.3316487
https://doi.org/10.3390/e24081024
https://www.ncbi.nlm.nih.gov/pubmed/35893004
https://doi.org/10.3390/electronics8070753
https://doi.org/10.3390/s24206558
https://doi.org/10.1016/j.inffus.2021.07.001
https://doi.org/10.1016/j.inffus.2024.102536
https://doi.org/10.3390/molecules27217448
https://doi.org/10.3390/s22041598
https://doi.org/10.1016/j.inffus.2022.03.009
https://doi.org/10.3390/s23156790
https://www.ncbi.nlm.nih.gov/pubmed/37571572
https://doi.org/10.3390/s25113280
https://doi.org/10.3390/jsan14010004
https://doi.org/10.1016/j.neunet.2022.03.037


Signals 2025, 6, 54 21 of 22

22. Chen, J.; Jia, J.; Deng, Y.; Wang, X.; Aghvami, A.A. Adaptive Compressive Sensing and Data Recovery for Periodical Monitoring
Wireless Sensor Networks. Sensors 2018, 18, 3369. [CrossRef]

23. Zeng, H.; Yu, Y.; Liu, G.; Wu, Y. A Robust Method Based on Deep Learning for Compressive Spectrum Sensing. Sensors 2025, 25,
2187. [CrossRef]

24. Kumar, S.S.; Ramachandran, P. Review on Compressive Sensing Algorithms for ECG Signal for IoT Based Deep Learning
Framework. Appl. Sci. 2022, 12, 8368. [CrossRef]

25. Tedja, B.; Al Musadieq, M.; Kusumawati, A. Systematic Literature Review Using PRISMA: Exploring the Influence of Service
Quality and Perceived Value on Satisfaction and Intention to Continue Relationship. Future Bus. J. 2024, 10, 39. [CrossRef]

26. Hapsari, G.I.; Munadi, R.; Erfianto, B.; Irawati, I.D. Future Research and Trends in Ultra-Wideband Indoor Tag Localization. IEEE
Access 2025, 13, 21827–21836. [CrossRef]

27. Wang, J.; Zakaria, S.A. Design Application and Evolution of 3D Visualization Technology in Architectural Heritage Conservation:
A CiteSpace-Based Knowledge Mapping and Systematic Review (2005–2024). Buildings 2025, 15, 1854. [CrossRef]

28. Salama, M.; Bahsoon, R.; Bencomo, N. Managing Trade-offs in Self-Adaptive Software Architectures: A Systematic Mapping
Study. In Managing Trade-Offs in Adaptable Software Architectures; Mistrik, I., Ali, N., Kazman, R., Grundy, J., Schmerl, B., Eds.;
Morgan Kaufmann: Cambridge, MA, USA, 2017; pp. 249–297. [CrossRef]

29. Werneck, H.; Silva, N.; Viana, M.; Pereira, A.C.M.; Mourão, F.; Rocha, L. Points of Interest Recommendations: Methods, Evaluation,
and Future Directions. Inf. Syst. 2021, 101, 101789. [CrossRef]

30. Hosseini, M.; Shahri, A.; Phalp, K.; Taylor, J.; Ali, R. Crowdsourcing: A Taxonomy and Systematic Mapping Study. Comput. Sci.
Rev. 2015, 17, 43–69. [CrossRef]

31. Carrera-Rivera, A.; Ochoa, W.; Larrinaga, F.; Lasa, G. How-to Conduct a Systematic Literature Review: A Quick Guide for
Computer Science Research. MethodsX 2022, 9, 101895. [CrossRef] [PubMed]

32. Machchhar, R.J.; Toller, C.N.K.; Bertoni, A.; Bertoni, M. Data-Driven Value Creation in Smart Product-Service System Design:
State-of-the-Art and Research Directions. Comput. Ind. 2022, 137, 103606. [CrossRef]

33. van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84,
523–538. [CrossRef]

34. Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and
Guidelines. J. Bus. Res. 2021, 133, 285–296. [CrossRef]

35. He, L.; Han, D.; Zhou, X.; Qu, Z. The Voice of Drug Consumers: Online Textual Review Analysis Using Structural Topic Model.
Int. J. Environ. Res. Public Health 2020, 17, 3648. [CrossRef]

36. Yin, R.; Tian, R.; Wu, J.; Gan, F. Exploring the Factors Associated with Mental Health Attitude in China: A Structural Topic
Modeling Approach. Int. J. Environ. Res. Public Health 2022, 19, 12579. [CrossRef]

37. Lee, D.J.; Shields, E.A. Compressive Hyperspectral Imaging Using Total Variation Minimization. In Proceedings of the SPIE
International Society for Optical Engineering, San Diego, CA, USA, 19–23 August 2018; Volume 10768, p. 1076804. [CrossRef]

38. Pant, J.K.; Krishnan, S. Compressive Sensing of Foot Gait Signals and Its Application for the Estimation of Clinically Relevant
Time Series. IEEE Trans. Biomed. Eng. 2016, 63, 1401–1415. [CrossRef]

39. Thanki, R.; Dwivedi, V.; Borisagar, K. Hybrid Compression Method Using Compressive Sensing (CS) Theory for Various Biometric
Data and Biomedical Data. Adv. Intell. Syst. Comput. 2018, 671, 1–13. [CrossRef]

40. Zheng, Y.; Guo, X.; Jiang, H.; Zhou, B. An Innovative Multi-Level Singular Value Decomposition and Compressed Sensing Based
Framework for Noise Removal from Heart Sounds. Biomed. Signal Process. Control 2017, 38, 34–43. [CrossRef]

41. Ambrosanio, M.; Kosmas, P.; Pascazio, V. Exploiting Wavelet Decomposition to Enhance Sparse Recovery in Microwave Imaging.
In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017;
pp. 1607–1610. [CrossRef]

42. Chen, Y.; Chen, J.; Sun, S.; Su, J.; Li, Q.; Lyu, Z. Atrial fibrillation detection from compressed ecg measurements for wireless body
sensor network. ACM Trans. Internet Technol. 2024. [CrossRef]

43. Craven, D.; McGinley, B.; Kilmartin, L.; Glavin, M.; Jones, E. Compressed sensing for bioelectric signals: A review. IEEE J. Biomed.
Health Inform. 2015, 19, 529–540. [CrossRef] [PubMed]

44. Emara, H.M.; El-Shafai, W.; Algarni, A.D.; Soliman, N.F.; Abd El-Samie, F.E. A hybrid compressive sensing and classification
approach for dynamic storage management of vital biomedical signals. IEEE Access 2023, 11, 10823–10836. [CrossRef]

45. Chen, B.; Zhang, X.; Liu, S.; Zhang, Y.; Zhang, J. Self-supervised scalable deep compressed sensing. Int. J. Comput. Vis. 2025, 133,
688–723. [CrossRef]

46. Polanía, L.F.; Plaza, R.I. Compressed sensing ECG using restricted Boltzmann machines. Biomed. Signal Process. Control 2018, 45,
237–245. [CrossRef]

47. Bertsimas, D.; Johnson, N.A.G. Compressed sensing: A discrete optimization approach. Mach. Learn. 2024, 113, 6725–6764. [CrossRef]
48. Ndaoud, M.; Tsybakov, A.B. Optimal variable selection and adaptive noisy compressed sensing. IEEE Trans. Inf. Theory 2020, 66,

2517–2532. [CrossRef]

https://doi.org/10.3390/s18103369
https://doi.org/10.3390/s25072187
https://doi.org/10.3390/app12168368
https://doi.org/10.1186/s43093-024-00326-4
https://doi.org/10.1109/ACCESS.2024.3399476
https://doi.org/10.3390/buildings15111854
https://doi.org/10.1016/B978-0-12-802855-1.00011-3
https://doi.org/10.1016/j.is.2021.101789
https://doi.org/10.1016/j.cosrev.2015.05.001
https://doi.org/10.1016/j.mex.2022.101895
https://www.ncbi.nlm.nih.gov/pubmed/36405369
https://doi.org/10.1016/j.compind.2022.103606
https://doi.org/10.1007/s11192-009-0146-3
https://doi.org/10.1016/j.jbusres.2021.04.070
https://doi.org/10.3390/ijerph17103648
https://doi.org/10.3390/ijerph191912579
https://doi.org/10.1117/12.2322145
https://doi.org/10.1109/TBME.2015.2401512
https://doi.org/10.1007/978-981-10-6977-2_1
https://doi.org/10.1016/j.bspc.2017.04.005
https://doi.org/10.23919/EuCAP.2017.7928539
https://doi.org/10.1145/3637440
https://doi.org/10.1109/JBHI.2014.2327194
https://www.ncbi.nlm.nih.gov/pubmed/24879647
https://doi.org/10.1109/ACCESS.2023.3317241
https://doi.org/10.1007/s11263-024-02209-1
https://doi.org/10.1016/j.bspc.2018.05.022
https://doi.org/10.1007/s10994-024-06577-0
https://doi.org/10.1109/TIT.2020.2965738


Signals 2025, 6, 54 22 of 22

49. Nakos, V.; Shi, X.; Woodruff, D.P.; Zhang, H. Improved Algorithms for Adaptive Compressed Sensing. arXiv 2018,
arXiv:1804.09673. [CrossRef]

50. Hadi, M.A.; Alshebeili, S.; Jamil, K.; El-Samie, F.E.A. Compressive sensing applied to radar systems: An overview. Signal Image
Video Process. 2015, 9, 25–39. [CrossRef]

51. Hao, J.; Zhang, B.; Jiao, Z.; Mao, S. Adaptive compressive sensing based sample scheduling mechanism for wireless sensor
networks. Pervasive Mob. Comput. 2015, 22, 113–125. [CrossRef]

52. Wang, J.; Wang, W.; Chen, J. Adaptive rate block compressive sensing based on statistical characteristics estimation. IEEE Trans.
Image Process. 2022, 31, 734–747. [CrossRef]

53. Fayed, S.; Youssef, S.M.; El-Helw, A.; Patwary, M.; Moniri, M. Adaptive compressive sensing for target tracking within wireless
visual sensor networks-based surveillance applications. Multimedia Tools Appl. 2016, 75, 6347–6371. [CrossRef]

54. Davenport, M.A.; Massimino, A.K.; Needell, D.; Woolf, T. Constrained adaptive sensing. IEEE Trans. Signal Process. 2016, 64,
5437–5449. [CrossRef]

55. Wang, Y.; Li, X.; Xu, K.; Ren, F.; Yu, H. Data-driven sampling matrix Boolean optimization for energy-efficient biomedical signal
acquisition by compressive sensing. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 255–265. [CrossRef]

56. Cai, H.; Qu, Z.; Li, Z.; Zhang, Y.; Hu, X.; Hu, B. Feature-level fusion approaches based on multimodal EEG data for depression
recognition. Inf. Fusion 2020, 59, 127–138. [CrossRef]

57. Li, J.; Ma, J.; Omisore, O.M.; Liu, Y.; Tang, H.; Ao, P.; Yan, Y.; Wang, L.; Nie, Z. Noninvasive blood glucose monitoring using
spatiotemporal ECG and PPG feature fusion and weight-based Choquet integral multimodel approach. IEEE Trans. Neural Netw.
Learn. Syst. 2024, 35, 3521–3535. [CrossRef]

58. Chen, J.; Zhou, X.; Feng, L.; Ling, B.W.-K.; Han, L.; Zhang, H. rU-Net, multi-scale feature fusion and transfer learning: Unlocking
the potential of cuffless blood pressure monitoring with PPG and ECG. IEEE J. Biomed. Health Inform. 2025, 29, 346–357. [CrossRef]

59. Ming, Y.; Wu, D.; Wang, Y.-K.; Shi, Y.; Lin, C.-T. EEG-based drowsiness estimation for driving safety using deep Q-learning. IEEE
Trans. Emerg. Top. Comput. Intell. 2021, 5, 505–516.
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